Author Name: BIO 218 Natural History Paper General Formatting: (10%) • 1 Margins correct? • 1 Font correct? • 2 Double-spaced? • 2 Pages numbered? • 2 All sections included? • 2 At least 3 pages of text, not more than 5 pages? Project elements (50%) • Introduction: o 8 General background on topic and species (state scientific name!)? o 2 Goes from general to specific? • Review of Journal Articles: o 4 States topic and hypothesis/hypotheses described in articles? o 3 Reports how research was conducted? o 2 Describes specialized materials used? o 2 Discusses type(s) of data collected and how to be analyzed/compared/used? o 3 Reports what happened in the experiments? o 2 If comparisons made, discusses how they were made? o 2 Figure(s) reproduced and cited? o 2 Table(s) reproduced and cited? • Summary/Conclusion: o 10 Synthesizes the results of the experiments and ties the findings of the articles together? • Literature Cited: o 4 At least 3 journal articles (primary literature) used? o 2 References used in paper properly? o 2 References all listed in this section and formatted correctly? o 2 All references listed are in the body of the paper and all references in the body are listed in this section? *0.5% for each extra citation (>3) that is correctly used* Writing Elements (40%) • /15 Grammar or spelling errors? • /15 Writing is clear and flows logically throughout paper? • /10 Appropriate content in each section? Final Paper Total ( %) = /40 Comments:

Author Name: BIO 218 Natural History Paper General Formatting: (10%) • 1 Margins correct? • 1 Font correct? • 2 Double-spaced? • 2 Pages numbered? • 2 All sections included? • 2 At least 3 pages of text, not more than 5 pages? Project elements (50%) • Introduction: o 8 General background on topic and species (state scientific name!)? o 2 Goes from general to specific? • Review of Journal Articles: o 4 States topic and hypothesis/hypotheses described in articles? o 3 Reports how research was conducted? o 2 Describes specialized materials used? o 2 Discusses type(s) of data collected and how to be analyzed/compared/used? o 3 Reports what happened in the experiments? o 2 If comparisons made, discusses how they were made? o 2 Figure(s) reproduced and cited? o 2 Table(s) reproduced and cited? • Summary/Conclusion: o 10 Synthesizes the results of the experiments and ties the findings of the articles together? • Literature Cited: o 4 At least 3 journal articles (primary literature) used? o 2 References used in paper properly? o 2 References all listed in this section and formatted correctly? o 2 All references listed are in the body of the paper and all references in the body are listed in this section? *0.5% for each extra citation (>3) that is correctly used* Writing Elements (40%) • /15 Grammar or spelling errors? • /15 Writing is clear and flows logically throughout paper? • /10 Appropriate content in each section? Final Paper Total ( %) = /40 Comments:

info@checkyourstudy.com
1) Humid air at 32 #176;C , 760 mmHg and 80 % relative humidity is fed to a cooling chamber at constant pressure to condense some of the water vapor out of the humid air. The exit air leaves at 4 #176;C, 760 mm Hg and 100% relative humidity. If the lquid condensate flows at a rate of 4 kg/h. Calculate the feed rate of humid air in SCMH? Vapor pressures of water at 32 #176;C and 4 #176;C are 35.7 mm Hg and 6.1 mm Hg respectively. Treat air as a mixture of two components: dry air and water vapor.

1) Humid air at 32 #176;C , 760 mmHg and 80 % relative humidity is fed to a cooling chamber at constant pressure to condense some of the water vapor out of the humid air. The exit air leaves at 4 #176;C, 760 mm Hg and 100% relative humidity. If the lquid condensate flows at a rate of 4 kg/h. Calculate the feed rate of humid air in SCMH? Vapor pressures of water at 32 #176;C and 4 #176;C are 35.7 mm Hg and 6.1 mm Hg respectively. Treat air as a mixture of two components: dry air and water vapor.

EE214 Fall 2015 Problem Set1 I am submitting my own work in this exercise, and I am aware of the penalties for cheating that will be assessed if I submit work for credit that is not my own. Print Name Sign Name Date Contains material © Digilent, Inc. 7 pages 1. (15 points) Below are some circuit elements from a simple digital system. 3.3V 20mA VB 1Kohm VA 1.3V RB 1K RC RD SW1 SW2 RA VC When the pushbutton SW1 is not pressed, what is the voltage at VA? (1pt) When the SW1 is pressed, what is the voltage at VA? (1pt) When the SW1 is pressed, what current flows in the 1K resistor RA? (1pt) When SW1 is pressed, what power is dissipated in RA? (2pt) In the LED circuit, 1.3V is required at VB to forward-bias the LED and cause current to flow. Given there is a 1.3V drop across the LED, what resistance RB is required for 20mA to flow through the LED? (2pt) What power is dissipated in the LED? (1pt) In the circuit on the far right, if RC dissipates 25mW, what is VC? (2pt) Using the VC voltage you calculated, if RC is changed to 100Ohms, how much power would it dissipate? (2pt) Using the VC voltage you calculated and a 1K RC, if pressing SW2 causes the total circuit power to increase to 75mW, what value must RD be? (3pt) EE214 Problem Set 1 2. (20 points) Complete the truth tables below. Provide SOP equations for the bottom three tables. F <= Σ ( ) F <= Σ ( ) F <= Σ ( ) 3. (12 points) Write the number of transistors required for each logic gate below inside the gate symbol, and then write the logic gate name below the symbol. 4. (12 points) Complete truth tables for the circuits shown below A B F AND A B F OR A B F XOR A F INV A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ? = ? ̅ ∙ ? + ? A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ? = ? ∙ ? ∙? ̅ + ? ∙ ? A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ? = ? ∙? ̅+? ̅ ∙ ? A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 A F B C A B C Y EE214 Problem Set 1 5. (18 points) Show the total transistor count and gate/input number for the circuits below. Then sketch equivalent circuits using NAND gates that use fewer transistors (do not minimize the circuits). 6. (12 points) Sketch circuits for the following logic equations F = A̅ ∙ B ∙ C + A ∙B̅ ∙C̅ +A̅ ∙ C F = A̅ ∙ B ∙C̅ ̅̅̅̅̅̅̅̅̅̅ + ̅A̅̅+̅̅̅B̅ F = (? +? ̅ ) ∙ ̅̅?̅̅̅̅̅+̅̅̅̅̅̅̅?̅̅̅∙̅̅?̅̅ G AB C D AB C D H G F F AB C EE214 Problem Set 1 7. (22 points) Sketch a circuit similar to the figure below that asserts logic 1 only when both switches are closed. Label the switches 1 and 2, and complete the truth table below. Then circle the correct term (high or low, and open or closed) to complete the following sentences describing the AND and OR relationships: AND Relationship: The output F is [high / low] when SW1 is [open / closed], and SW2 is [open / closed]. OR Relationship: The output F is [high / low] when SW1 is [open / closed], or SW2 is [open / closed]. Sketch a circuit similar to the figure below that asserts logic 0 whenever one or both switches are closed. Label the switches 1 and 2, and complete the truth table below. Circle the correct term (high or low, and open or closed) to complete the following sentences describing the AND and OR relationships: AND Relationship: The output F is [high / low] when SW1 is [open / closed], and SW2 is [open / closed]. OR Relationship: The output F is [high / low] when SW1 is [open / closed], or SW2 is [open / closed]. 8. (4 points) Complete the following. A pFET turns [ ON / OFF ] with LLV and conducts [ LHV / LLV ] well (circle one in each bracket). An nFET turns [ ON / OFF ] with LLV and conducts [ LHV / LLV ] well (circle one in each bracket). Vdd GND F SW1 SW2 Vdd GND F SW1 SW2 SW1 SW2 F SW1 SW2 F EE214 Problem Set 1 9. (8 points) Sketch circuits and write Verilog assignment statements for the following equations. F = m(1, 2, 6) F = M(0, 7) 10. (21 points) Complete the truth tables below (enter “on” or “off” under each transistor entry, and “1” or “0” for output F), and enter the gate name and schematic shapes in the tables. You get 1/2 point for each correct column, and 1/2 point each for correct names and shapes. Q1 Q2 Q3 Q4 A B F Vdd Q2 Q1 Q3 Q4 A B F Vdd A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape EE214 Problem Set 1 Q2 Q1 Q3 Q4 A B F Q5 Q6 Vdd Q1 Q2 Q3 Q4 A B F Q5 Q6 Vdd (2 points) Enter the logic equation for the 3-input circuit above: A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape A B C Q1 Q2 Q3 Q4 Q5 Q6 F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 F = Q1 Q2 Q4 Q5 A B F Q6 Vdd C Q3 EE214 Problem Set 1 11. (20 points) In a logic function with n inputs, there are 2? unique combinations of inputs and 22? possible logic functions. The table below has four rows that show the four possible combinations of two inputs (22 = 4), and 16 output columns that show all possible two-input logic function (222 = 16). Six of these output columns are associated with common logic functions of two variables. Circle the six columns, and label them with the appropriate logic gate name. Draw the circuit symbols for the functions represented. INPUTS ALL POSSIBLE FUNCTIONS A B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 A table like the one above for 3 inputs would need _________ rows and _________ columns. A table like the one above for 4 inputs would need _________ rows and _________ columns. A table like the one above for 5 inputs would need _________ rows and _________ columns. 12. (15 points) Find global minimum circuits for the following three logic signal outputs that are all functions of the same three inputs. Show all work. F1 =  m (0, 3, 4) F2 =  m (1, 6, 7) F3 =  m (0, 1, 3, 4)

EE214 Fall 2015 Problem Set1 I am submitting my own work in this exercise, and I am aware of the penalties for cheating that will be assessed if I submit work for credit that is not my own. Print Name Sign Name Date Contains material © Digilent, Inc. 7 pages 1. (15 points) Below are some circuit elements from a simple digital system. 3.3V 20mA VB 1Kohm VA 1.3V RB 1K RC RD SW1 SW2 RA VC When the pushbutton SW1 is not pressed, what is the voltage at VA? (1pt) When the SW1 is pressed, what is the voltage at VA? (1pt) When the SW1 is pressed, what current flows in the 1K resistor RA? (1pt) When SW1 is pressed, what power is dissipated in RA? (2pt) In the LED circuit, 1.3V is required at VB to forward-bias the LED and cause current to flow. Given there is a 1.3V drop across the LED, what resistance RB is required for 20mA to flow through the LED? (2pt) What power is dissipated in the LED? (1pt) In the circuit on the far right, if RC dissipates 25mW, what is VC? (2pt) Using the VC voltage you calculated, if RC is changed to 100Ohms, how much power would it dissipate? (2pt) Using the VC voltage you calculated and a 1K RC, if pressing SW2 causes the total circuit power to increase to 75mW, what value must RD be? (3pt) EE214 Problem Set 1 2. (20 points) Complete the truth tables below. Provide SOP equations for the bottom three tables. F <= Σ ( ) F <= Σ ( ) F <= Σ ( ) 3. (12 points) Write the number of transistors required for each logic gate below inside the gate symbol, and then write the logic gate name below the symbol. 4. (12 points) Complete truth tables for the circuits shown below A B F AND A B F OR A B F XOR A F INV A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ? = ? ̅ ∙ ? + ? A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ? = ? ∙ ? ∙? ̅ + ? ∙ ? A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ? = ? ∙? ̅+? ̅ ∙ ? A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 A F B C A B C Y EE214 Problem Set 1 5. (18 points) Show the total transistor count and gate/input number for the circuits below. Then sketch equivalent circuits using NAND gates that use fewer transistors (do not minimize the circuits). 6. (12 points) Sketch circuits for the following logic equations F = A̅ ∙ B ∙ C + A ∙B̅ ∙C̅ +A̅ ∙ C F = A̅ ∙ B ∙C̅ ̅̅̅̅̅̅̅̅̅̅ + ̅A̅̅+̅̅̅B̅ F = (? +? ̅ ) ∙ ̅̅?̅̅̅̅̅+̅̅̅̅̅̅̅?̅̅̅∙̅̅?̅̅ G AB C D AB C D H G F F AB C EE214 Problem Set 1 7. (22 points) Sketch a circuit similar to the figure below that asserts logic 1 only when both switches are closed. Label the switches 1 and 2, and complete the truth table below. Then circle the correct term (high or low, and open or closed) to complete the following sentences describing the AND and OR relationships: AND Relationship: The output F is [high / low] when SW1 is [open / closed], and SW2 is [open / closed]. OR Relationship: The output F is [high / low] when SW1 is [open / closed], or SW2 is [open / closed]. Sketch a circuit similar to the figure below that asserts logic 0 whenever one or both switches are closed. Label the switches 1 and 2, and complete the truth table below. Circle the correct term (high or low, and open or closed) to complete the following sentences describing the AND and OR relationships: AND Relationship: The output F is [high / low] when SW1 is [open / closed], and SW2 is [open / closed]. OR Relationship: The output F is [high / low] when SW1 is [open / closed], or SW2 is [open / closed]. 8. (4 points) Complete the following. A pFET turns [ ON / OFF ] with LLV and conducts [ LHV / LLV ] well (circle one in each bracket). An nFET turns [ ON / OFF ] with LLV and conducts [ LHV / LLV ] well (circle one in each bracket). Vdd GND F SW1 SW2 Vdd GND F SW1 SW2 SW1 SW2 F SW1 SW2 F EE214 Problem Set 1 9. (8 points) Sketch circuits and write Verilog assignment statements for the following equations. F = m(1, 2, 6) F = M(0, 7) 10. (21 points) Complete the truth tables below (enter “on” or “off” under each transistor entry, and “1” or “0” for output F), and enter the gate name and schematic shapes in the tables. You get 1/2 point for each correct column, and 1/2 point each for correct names and shapes. Q1 Q2 Q3 Q4 A B F Vdd Q2 Q1 Q3 Q4 A B F Vdd A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape EE214 Problem Set 1 Q2 Q1 Q3 Q4 A B F Q5 Q6 Vdd Q1 Q2 Q3 Q4 A B F Q5 Q6 Vdd (2 points) Enter the logic equation for the 3-input circuit above: A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape A B C Q1 Q2 Q3 Q4 Q5 Q6 F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 F = Q1 Q2 Q4 Q5 A B F Q6 Vdd C Q3 EE214 Problem Set 1 11. (20 points) In a logic function with n inputs, there are 2? unique combinations of inputs and 22? possible logic functions. The table below has four rows that show the four possible combinations of two inputs (22 = 4), and 16 output columns that show all possible two-input logic function (222 = 16). Six of these output columns are associated with common logic functions of two variables. Circle the six columns, and label them with the appropriate logic gate name. Draw the circuit symbols for the functions represented. INPUTS ALL POSSIBLE FUNCTIONS A B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 A table like the one above for 3 inputs would need _________ rows and _________ columns. A table like the one above for 4 inputs would need _________ rows and _________ columns. A table like the one above for 5 inputs would need _________ rows and _________ columns. 12. (15 points) Find global minimum circuits for the following three logic signal outputs that are all functions of the same three inputs. Show all work. F1 =  m (0, 3, 4) F2 =  m (1, 6, 7) F3 =  m (0, 1, 3, 4)

info@checkyourstudy.com
Tornado Eddy Investigation Abstract The objective of this lab was to write a bunch of jibberish to provide students with a formatting template. Chemical engineering, bioengineering, and environmental engineering are “process engineering” disciplines. Good abstracts contains real content, such as 560 mL/min, 35 deg, and 67 percent yield. Ideal degreed graduates are technically strong, bring broad system perspectives to problem solving, and have the professional “soft skills” to make immediate contributions in the workplace. The senior lab sequence is the “capstone” opportunity to realize this ideal by integrating technical skills and developing professional soft skills to ensure workforce preparedness. The best conclusions are objective and numerical, such as operating conditions of 45 L/min at 32 deg C with expected costs of $4.55/lb. Background Insect exchange processes are often used in bug filtration, as they are effective at removing either positive or negative insects from water. An insect exchange column is a packed or fluidized bed filled with resin beads. Water flows through the column and most of the insects from the water enter the beads, but some of them pass in between the beads, which makes the exchange of insects non-ideal. Insectac 249 resin is a cation exchange resin, as it is being used to attract cationic Ca2+ from the toxic waste stream. This means the resin is negatively charged, and needs to be regenerated with a solution that produces positively charged insects, in this case, salt water which contains Na+ insects. The resin contains acidic styrene backbones which capture the cationic insects in a reversible process. A curve of Ca2+ concentration concentration vs. time was obtained after a standard curve was made to determine how many drops from the low cost barium test kit from Aquarium Pharmaceuticals (API)1 bottle #2 would correspond to a certain concentration in solution. A standard curve works by preparing solutions with known concentrations and testing these concentrations using the kit to create a curve of number of drops from bottle #2 (obtained result) vs. concentration of Ca2+ in solution (desired response). The standard curve can then be used for every test on the prototype and in the field, to quickly and accurately obtain a concentration from the test kit. The barium concentration vs. time curve can be used to calculate the exchange capacity of the resin and, in later tests, the regeneration efficiency. The curves must be used to get the total amount of barium removed from the water, m. Seen in Equation 2, the volumetric flow rate of water, , is multiplied by the integral from tinitial to tfinal of the total concentration of Ca2+ absorbed by the resin as a function of time, C. (2) 1 http://aquariumpharm.com/Products/Product.aspx?ProductID=72 , date accessed: 11/26/10 CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 9 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A graphical trapezoid method was used to evaluate the integral and get the final solution in equivalents of Ca2+ per L, it must be noted that there are 2 equivalents per mole of barium, as the charge of the barium insect is +2. An initial exchange capacity was calculated for the virgin resin, and an adjusted exchange capacity was calculated once the resin was regenerated. The regenerated resin capacity was found by multiplying the virgin resin capacity by the regeneration efficiency, expressed in Equation 3. (3) See Appendix A for the calculation of the exchange capacities and the regeneration efficiency. Materials and Methods Rosalie and Peter Johnson of Corvallis established the Linus Pauling Chair in Chemical Engineering to honor Oregon State University’s most famous graduate. Peter Johnson, former President and owner of Tekmax, Inc., a company which revolutionized battery manufacturing equipment, is a 1955 graduate of the College of Engineering.2 The Chair, also known as the Linus Pauling Distinguished Engineer or Linus Pauling Engineer (LPE), was originally designed to focus on the traditional “capstone” senior lab sequence in the former Department of Chemical Engineering. The focus is now extended to all the process engineering disciplines. The LPE is charged with establishing strong ties with industry, ensuring current and relevant laboratory experiences, and helping upperclass students develop skills in communication, teamwork, project management, and leadership. Include details about lab procedures not sufficiently detailed in the SOP, problems you had, etc. The bulk solution prepared to create the standard curve was used in the second day of testing to obtain the exchange capacity of the insectac 249 resin. The solution was pumped through a bathroom scale into the prototype insect exchange column. 45 mL of resin was rinsed and added to the column. The bed was fluidized as the solution was pumped through the resin, but for the creation of the Ca2+ concentration vs. time curve, the solution was pumped down through the column, as illustrated in the process flow diagram seen in Figure 1. Figure 1. Process sketch of the insect exchange column used for the project. Ref: http://www.generon.co.uk/acatalog/Chromatography.html 2 Harding, P. Viscosity Measurement SOP, Spring, 2010. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 10 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A bathroom scale calibration curve was created to ensure that the 150 mL/min, used to calculate the breakthrough time, would be delivered to the resin. The bathroom scale used was a Dwyer brand with flowrates between 0 and 300 cc/min of water. Originally, values between 120 and 180 mL/min were chosen for the calibration, with three runs for each flowrate, however the bathroom scale values were so far away from the measure values the range was extended to 100 to 200 mL/min. The regeneration experiment was performed using a method similar to that used in the water softening experiment, however instead of using a 640 ppm Ca2+ solution to fill the resin, a 6000 ppm Na+ solution was used to eject the Ca2+ from the resin. Twelve samples times were chosen and adjusted as the experiment progressed, with more than half of the samples taken at times less than 10 minutes, and the last sample taken at 45 minutes. The bulk exit solution was also tested to determine the regeneration efficiency. Results and Discussion The senior lab sequence has its roots in the former Department of Chemical Engineering. CHE 414 and 415 were taught in Winter and Spring and included 6 hours of lab time per week. The School has endeavored to incorporate the courses into the BIOE and ENVE curriculum, and this will be complete in 2008-2009. Recent development of the senior lab course sequence is shown chronologically in Fig. 1. In 2006-2007, CHE 414 and 415 were moved to Fall and Winter to enable CHE 416, an elective independent senior project course. Also that year, BIOE students took BIOE 414 in the Fall and BIOE 415 was developed and taught. No BIOE students enrolled in the optional CHE. In 2007-2008, the program transitioned in a new Linus Pauling Engineer and ENVE 414 was offered. Also, approximately 30 percent of BIOE students enrolled in the optional CHE 416. Accommodating the academic calendars of the three disciplines required a reduction in weekly student lab time from 6 to 3 hours. The expected relationship between coughing rate, y, and length of canine, x, is Bx z y Fe− (1) where F is a pre-exponential constant, B is vitamin B concentration and z is the height of an average trapeze artist. 3 The 2008-2009 brings the challenge of the dramatic enrollment increase shown in Fig. 1 and the first offering of ENVE 415. The result, shown on the right in Fig. 1, is the delivery of the senior lab sequence uniformly across the process engineering disciplines. CBEE 416 is expected to drawn approximately of the students that take the 415 courses. In 2007-2008, 414 and 415 were required for CHEs, 414 and 415 for BIOEs, and only 414 for ENVEs. CHE 416 is ostensibly an elective for all disciplines. In 2008-2009, 414 and 415 is required for all disciplines and CHE 416 will be an elective. The content of 414 is essentially 3 Fundamentals of Momentum, Heat, and Mass Transfer, Welty, J.R. et al., 4th edition, John Wiley & Sons, Inc. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 11 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE identical for all three disciplines, 415 has discipline-specific labs, and 416 consists of senior projects with potentially cross-discipline teams of 2 to 4 students. Tremendous labor and struggling with the lab equipment resulted in the data shown in y = –‐0.29x + 1.71 y = –‐0.25x + 2.03 y = –‐0.135x + 2.20 –‐1.5 –‐1.0 –‐0.5 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 ln y (units) x (units) ln y_1 ln y_2 ln y_3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Case 1 Case 2 Case 3 Slope (units) (a) (b) Figure 1. (a) Data for y and x plotted for various values of z and (b) a comparison of slopes for the 3 cases investigate. The log plot slope yields the vitamin B concentration. The slopes were shown to be significantly at the 90% confidence level, but the instructor ran out of time and did not include error bars. The slope changed as predicted by the Snirtenhoffer equation. Improvements to the lab might include advice on how to legally change my name to something less embarrassing. My whole life I have been forced to repeat and spell it. I really feel that this has affected my psychologically. This was perhaps the worst lab I have ever done in my academic career, primarily due to the fact that there was no lab time. I simply typed in this entire report and filled it with jibberish. Some might think nobody will notice, but I know that …… Harding reads every word. Acknowledgments The author acknowledges his elementary teacher for providing truly foundational instruction in addition and subtraction. Jenny Burninbalm was instrumental with guidance on use of the RT-345 dog scratching device. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 12

Tornado Eddy Investigation Abstract The objective of this lab was to write a bunch of jibberish to provide students with a formatting template. Chemical engineering, bioengineering, and environmental engineering are “process engineering” disciplines. Good abstracts contains real content, such as 560 mL/min, 35 deg, and 67 percent yield. Ideal degreed graduates are technically strong, bring broad system perspectives to problem solving, and have the professional “soft skills” to make immediate contributions in the workplace. The senior lab sequence is the “capstone” opportunity to realize this ideal by integrating technical skills and developing professional soft skills to ensure workforce preparedness. The best conclusions are objective and numerical, such as operating conditions of 45 L/min at 32 deg C with expected costs of $4.55/lb. Background Insect exchange processes are often used in bug filtration, as they are effective at removing either positive or negative insects from water. An insect exchange column is a packed or fluidized bed filled with resin beads. Water flows through the column and most of the insects from the water enter the beads, but some of them pass in between the beads, which makes the exchange of insects non-ideal. Insectac 249 resin is a cation exchange resin, as it is being used to attract cationic Ca2+ from the toxic waste stream. This means the resin is negatively charged, and needs to be regenerated with a solution that produces positively charged insects, in this case, salt water which contains Na+ insects. The resin contains acidic styrene backbones which capture the cationic insects in a reversible process. A curve of Ca2+ concentration concentration vs. time was obtained after a standard curve was made to determine how many drops from the low cost barium test kit from Aquarium Pharmaceuticals (API)1 bottle #2 would correspond to a certain concentration in solution. A standard curve works by preparing solutions with known concentrations and testing these concentrations using the kit to create a curve of number of drops from bottle #2 (obtained result) vs. concentration of Ca2+ in solution (desired response). The standard curve can then be used for every test on the prototype and in the field, to quickly and accurately obtain a concentration from the test kit. The barium concentration vs. time curve can be used to calculate the exchange capacity of the resin and, in later tests, the regeneration efficiency. The curves must be used to get the total amount of barium removed from the water, m. Seen in Equation 2, the volumetric flow rate of water, , is multiplied by the integral from tinitial to tfinal of the total concentration of Ca2+ absorbed by the resin as a function of time, C. (2) 1 http://aquariumpharm.com/Products/Product.aspx?ProductID=72 , date accessed: 11/26/10 CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 9 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A graphical trapezoid method was used to evaluate the integral and get the final solution in equivalents of Ca2+ per L, it must be noted that there are 2 equivalents per mole of barium, as the charge of the barium insect is +2. An initial exchange capacity was calculated for the virgin resin, and an adjusted exchange capacity was calculated once the resin was regenerated. The regenerated resin capacity was found by multiplying the virgin resin capacity by the regeneration efficiency, expressed in Equation 3. (3) See Appendix A for the calculation of the exchange capacities and the regeneration efficiency. Materials and Methods Rosalie and Peter Johnson of Corvallis established the Linus Pauling Chair in Chemical Engineering to honor Oregon State University’s most famous graduate. Peter Johnson, former President and owner of Tekmax, Inc., a company which revolutionized battery manufacturing equipment, is a 1955 graduate of the College of Engineering.2 The Chair, also known as the Linus Pauling Distinguished Engineer or Linus Pauling Engineer (LPE), was originally designed to focus on the traditional “capstone” senior lab sequence in the former Department of Chemical Engineering. The focus is now extended to all the process engineering disciplines. The LPE is charged with establishing strong ties with industry, ensuring current and relevant laboratory experiences, and helping upperclass students develop skills in communication, teamwork, project management, and leadership. Include details about lab procedures not sufficiently detailed in the SOP, problems you had, etc. The bulk solution prepared to create the standard curve was used in the second day of testing to obtain the exchange capacity of the insectac 249 resin. The solution was pumped through a bathroom scale into the prototype insect exchange column. 45 mL of resin was rinsed and added to the column. The bed was fluidized as the solution was pumped through the resin, but for the creation of the Ca2+ concentration vs. time curve, the solution was pumped down through the column, as illustrated in the process flow diagram seen in Figure 1. Figure 1. Process sketch of the insect exchange column used for the project. Ref: http://www.generon.co.uk/acatalog/Chromatography.html 2 Harding, P. Viscosity Measurement SOP, Spring, 2010. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 10 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A bathroom scale calibration curve was created to ensure that the 150 mL/min, used to calculate the breakthrough time, would be delivered to the resin. The bathroom scale used was a Dwyer brand with flowrates between 0 and 300 cc/min of water. Originally, values between 120 and 180 mL/min were chosen for the calibration, with three runs for each flowrate, however the bathroom scale values were so far away from the measure values the range was extended to 100 to 200 mL/min. The regeneration experiment was performed using a method similar to that used in the water softening experiment, however instead of using a 640 ppm Ca2+ solution to fill the resin, a 6000 ppm Na+ solution was used to eject the Ca2+ from the resin. Twelve samples times were chosen and adjusted as the experiment progressed, with more than half of the samples taken at times less than 10 minutes, and the last sample taken at 45 minutes. The bulk exit solution was also tested to determine the regeneration efficiency. Results and Discussion The senior lab sequence has its roots in the former Department of Chemical Engineering. CHE 414 and 415 were taught in Winter and Spring and included 6 hours of lab time per week. The School has endeavored to incorporate the courses into the BIOE and ENVE curriculum, and this will be complete in 2008-2009. Recent development of the senior lab course sequence is shown chronologically in Fig. 1. In 2006-2007, CHE 414 and 415 were moved to Fall and Winter to enable CHE 416, an elective independent senior project course. Also that year, BIOE students took BIOE 414 in the Fall and BIOE 415 was developed and taught. No BIOE students enrolled in the optional CHE. In 2007-2008, the program transitioned in a new Linus Pauling Engineer and ENVE 414 was offered. Also, approximately 30 percent of BIOE students enrolled in the optional CHE 416. Accommodating the academic calendars of the three disciplines required a reduction in weekly student lab time from 6 to 3 hours. The expected relationship between coughing rate, y, and length of canine, x, is Bx z y Fe− (1) where F is a pre-exponential constant, B is vitamin B concentration and z is the height of an average trapeze artist. 3 The 2008-2009 brings the challenge of the dramatic enrollment increase shown in Fig. 1 and the first offering of ENVE 415. The result, shown on the right in Fig. 1, is the delivery of the senior lab sequence uniformly across the process engineering disciplines. CBEE 416 is expected to drawn approximately of the students that take the 415 courses. In 2007-2008, 414 and 415 were required for CHEs, 414 and 415 for BIOEs, and only 414 for ENVEs. CHE 416 is ostensibly an elective for all disciplines. In 2008-2009, 414 and 415 is required for all disciplines and CHE 416 will be an elective. The content of 414 is essentially 3 Fundamentals of Momentum, Heat, and Mass Transfer, Welty, J.R. et al., 4th edition, John Wiley & Sons, Inc. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 11 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE identical for all three disciplines, 415 has discipline-specific labs, and 416 consists of senior projects with potentially cross-discipline teams of 2 to 4 students. Tremendous labor and struggling with the lab equipment resulted in the data shown in y = –‐0.29x + 1.71 y = –‐0.25x + 2.03 y = –‐0.135x + 2.20 –‐1.5 –‐1.0 –‐0.5 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 ln y (units) x (units) ln y_1 ln y_2 ln y_3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Case 1 Case 2 Case 3 Slope (units) (a) (b) Figure 1. (a) Data for y and x plotted for various values of z and (b) a comparison of slopes for the 3 cases investigate. The log plot slope yields the vitamin B concentration. The slopes were shown to be significantly at the 90% confidence level, but the instructor ran out of time and did not include error bars. The slope changed as predicted by the Snirtenhoffer equation. Improvements to the lab might include advice on how to legally change my name to something less embarrassing. My whole life I have been forced to repeat and spell it. I really feel that this has affected my psychologically. This was perhaps the worst lab I have ever done in my academic career, primarily due to the fact that there was no lab time. I simply typed in this entire report and filled it with jibberish. Some might think nobody will notice, but I know that …… Harding reads every word. Acknowledgments The author acknowledges his elementary teacher for providing truly foundational instruction in addition and subtraction. Jenny Burninbalm was instrumental with guidance on use of the RT-345 dog scratching device. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 12

For any additional help, please contact: info@checkyourstudy.com Call / Whatsapp … Read More...
Assignment One Suggested Due Date: July 17th In this assignment you will read three articles You will answer questions about Hayek, Lucas, and Mankiw et. al. which consider just those particular articles. Then at the end of the assignment there is a cluster of questions that deal with both Lucas and Mankiw et al where you will have an opportunity to compare and contrast those two articles. When you have completed the assignment, place it in the appropriate drop box in WTClass. Hayek: The Use of Knowledge in Society http://www.econlib.org/library/Essays/hykKnw1.html Adapted from Michael K. Salemi “The Use of Knowledge in Society” F. A. Hayek Discussion Questions 1.1. “The peculiar character of the problem of a rational economic order is determined precisely by the fact that the knowledge of the circumstances of which we must make use never exists in concentrated or integrated form, but solely as the dispersed bits of incomplete and frequently contradictory knowledge which all the separate individuals possess (H.3)” a. What does Hayek mean by a “rational economic order”? b. What does Hayek mean by “dispersed bits of incomplete and frequently contradictory knowledge”? c. Why is Hayek critical of the common assumptions in economic analysis that buyers, sellers, producers and the economist all know every relevant thing about the economy? d. What, in summary, does Hayek mean by the quoted statement? 1.2. What, according to Hayek, is the information needed to operate effectively in a complex market economy? a. What does Hayek mean by “planning”? b. What is the minimum information needed by economic planners and individuals? c. Does the minimum differ for planners and for individuals? How? Why? d. What happens when some individuals possess more information than other individuals? e. What does Hayek mean when he says (H.16) “…the sort of knowledge with which I have been concerned is knowledge of the kind which by its nature cannot enter into statistics and therefore cannot be conveyed to any central authority in statistical form”? f. Why, according to Hayek, can the “information problem” be solved by “the price system”? 1.3. Why, according to Hayek, is the true function of the price system the communication of information? a. Why does Hayek use the term ‘marvel’ in his discussion of the economy of knowledge? b. What does Hayek mean when he says (H.26) “…man has been able to develop that division of labor on which our civilization is based because he happened to stumble upon a method which made it possible”? Read Robert Lucas’ “Some Macroeconomics for the 21st Century” in the Journal of Economic Perspectives. (Skip the appendix.) All four of these links go to the same article. Some of the links might not be accessible to you, but I think that at least one of them should work for all of you. https://www.aeaweb.org/articles.php?doi=10.1257/jep.14.1.159 http://www.jstor.org/stable/2647059 http://www.econ.psu.edu/~aur10/Econ%20570%20Fall%202009/Lucas%20JEP%202000.pdf http://faculty.georgetown.edu/mh5/class/econ102/readings/Macro_21st_Century.pdf 1. According to Lucas, why has the world’s economy grown so much since 1960? 2. According to Lucas, why do some nations grow faster than others? 3. According to Lucas, why will growth and inequality decrease in the next 100 years? 4. Is Lucas’ model in this paper “economics?” Read Greg Mankiw, Romer and Wiel’s article in The Quarterly Journal of Economics. http://www.econ.nyu.edu/user/debraj/Courses/Readings/MankiwRomerWeil.pdf 1. Many economists think the Solow Growth Model is of limited use. (One of my professors at OU stated that it took economists 50 years to figure out that their growth model has nothing to do with growth.) But does the Solow model give “…the right answer to the questions it is designed to address?” 2. Why is human capital important when testing the Solow model against the data? 3. Explain how the authors conclude that the incomes of the world’s nations are converging? Now that you’ve answered questions about Lucas and Mankiw et al separately, consider this question: Both of these papers develop the notion that the economies of the world’s nations will tend to “converge” over time. Compare and contrast the way(s) in which the papers advance the idea of convergence. Assignment Two Due Date July 24th This assignment is very straight forward. You’ll read two papers and answer questions about each of them. Read Krugman’s paper on unemployment http://www.kc.frb.org/PUBLICAT/ECONREV/EconRevArchive/1994/4Q94KRUG.pdf 1. What is the difference between structural and cyclical unemployment? In this context, what is the difference between Europe and the US? What is the evidence that Krugman uses to back his opinion? 2. What is the natural rate of unemployment? Why is it higher/rising in Europe? Again, what is the evidence? 3. What is the relationship between the rising unemployment in Europe and the rise in inequality in the US. (What does Krugman mean by inequality?) 4. What is NOT to blame for either the rise in unemployment or inequality? 5. What policies, if any, can be put into place to combat rising inequality/unemployment? 6. Are you convinced by Krugman’s argument which rules out globalization as the likely cause for high European unemployment and high US wage inequality? 7. Consider Table 2 in Krugman. Why does Krugman include Table 2 in his paper? In other words, what point is strengthened by the data in Table 2 and why is it crucial to Krugman’s larger thesis? NOW, recreate the data for Table 2 for either the UK or US for the latest year possible. Has anything changed as a result of the Great Recession? Read Thomas Sargent’s paper about the credibility of “Reaganonomics.” http://minneapolisfed.contentdm.oclc.org/cdm/ref/collection/p15334coll1/id/366 http://minneapolisfed.contentdm.oclc.org/cdm/singleitem/collection/p15334coll1/id/366/rec/1 You might like this: http://www.ispot.tv/ad/7Lj9/ally-bank-predictions-featuring-thomas-sargent 1. What is a dynamic game? 2. Why should we think of monetary and fiscal policy as dynamic game? Who are the players and what are the strategies? 3. When are government budgets inflationary? (Again, think in terms of a game.) 4. What are the consequences if the monetary authority does not coordinate with fiscal policy agents? 5. Has Sargent done of good job characterizing the interplay between policymakers in the government, the central bank, and the public? 6. What is the connection between policy coordination and credibility? 7. Why, according to Sargent, were Reagan’s fiscal and monetary policy regimes “incredible?” Explain carefully. Assignment Three Due Date July 31 Read Taylor, Miskin, Obstfeld and Rogoff. Answer the questions for each article, then answer the final cluster that requires you to consider Miskin, Obstfeld and Rogoff. Suggested due date: January 2nd. Read John Taylor’s article about monetary transmission mechanisms. http://web.econ.unito.it/bagliano/ecmon_readings/taylor_jep95.pdf Also, to understand traditional monetary policy, listen to this: http://www.econtalk.org/archives/2008/08/john_taylor_on.html These questions refer to the article, not the podcast. 1. How does monetary policy (or changes in monetary policy) affect output and inflation? In other words, what is the monetary policy transmission mechanism? 2. What is the importance of financial market prices in Taylor’s view? 3. What is the importance of rational expectations and rigidities in the prices of labor and goods? 4. What is a reaction function? Why is a reaction function important? 5. What is an “optimal monetary policy rule?” 6. Has the monetary transmission mechanism changed? How? 7. What are the criticisms of Taylor’s views? How does he respond? What do you think? Read Mishkin’s article about global financial instability. http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.13.4.3 1. What is a financial crisis? 2. How did adverse selection and moral hazard contribute to the financial crisis in Mexico and East Asia in the 1990s? What are adverse selection and moral hazard? 3. Did irresponsible monetary and fiscal policy contribute to the crisis in the 90s? Why or why not? 4. How is it possible for the IMF to help in a crisis when a domestic central bank might not be able to help. 5. What should the US learn (or have learned??) from the crisis in the 90s? Read Rogoff’s article about global financial instability. http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.13.4.21 http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.13.4.21 Answer the questions and place the answers in the appropriate drop box in WTClass. 1. According to Rogoff, is the status quo in international lending viable or not? Explain. 2. Can the IMF handle international financial crises? Why or why not? 3. Rogoff gives six solutions to save the global financial system (deep pockets lender of last resort, an international financial crisis manager, an international bankruptcy court, an international regulator, international deposit insurance corporation, and a world monetary authority.) What is wrong with all of these? 4. Can developing economies cope with speculative capital flows without help? Explain. 5. What will be (should be) the role that equity financing play in developing country projects? Read Obstfeld on Global Capital Markets: http://www.nber.org/papers/w6559.pdf 1. Look at table 1 and figure 1. How does Obstfeld use the data in that table to suggest that 1) markets became less open then more open in the 20th century. 2. What is the “openness trilemma?” What are the economic and/or policy trade-offs with having a global, open and integrated financial system? 3. How does economic integration impact a nation’s ability to tax capital? Can you think of some high profile cases in the news lately that illustrate this fact? (Hint: you should be able to.) 4. What is the international diversification puzzle? What market failures have arisen (if any) have arisen due to more integration and openness? Comparing Obstfeld, Miskin, and Rogoff 1. Would the authors’ advice about policies to reduce the costs of financial integration be the same? Why or why not? 2. Would the authors’ agree that we need an international regulatory body to stave off international financial crises? Why or why not? 3. What is your opinion? Is it good to have a global financial market? Why or why not? Assignment Four Due Date August 7 Straight forward assignment: Read and answer the questions. Read Arnold Kling’s history of the policies that created the great recession http://mercatus.org/publication/not-what-they-had-mind-history-policies-produced-financial-crisis-2008 1. Using only the executive summary, what does Kling think caused the Financial Crisis of 2008? (Use only one sentence.) 2. One page 5, what is “the fact?” and what does this “fact” mean to you? 3. Briefly summarize the four components of the Financial Crisis? 4. On page 10, Kling states, “These property bubbles (in the U.K. and Spain) cannot be blamed on U.S. policy.” How confident are you on that point? Is Kling wrong? 5. Kling’s matrix of causes, gives almost all weight to what two factors? What three factors are almost completely not responsible? 6. Many have blamed designer financial (my term) like CDS and CDO and the shadow banking system for the collapse. How do these fit into Kling’s narrative? 7. Outline the progression of policy that caused/responded to economic conditions in the 30s, 70s and 80s and 00s. 8. What role did the mortgage interest deduction have on housing market? 9. What institution invented and allowed the expansion of mortgage-backed securities? 10. What is regulatory arbitrage? 11. Why did the Basel agreement create an advantage for mortgage securitization? 12. Did the Federal Reserve (and presumably other regulatory agencies know and even encourage regulatory capital arbitrage? What author does Kling cite to establish this? 13. What did the 2002 modification of the Basel Rules do to capital requirements? (See figure 4) 14. Summarize the Shadow Regulatory Committee’s statement 160. 15. Did non market institutions, such as the IMF and Bernanke, think, in 2006, that financial innovation had make the banking sector more or less fragile? 16. What is time inconsistency? (You can look this up elsewhere.) 17. How might “barriers to entry” by related to “safety and soundness?” 18. A Curmudgeon is an old man who is easily annoyed and angered. He also complains a lot. (I had to look it up.) I think I’ll change my xbox gamertag to this word, but I’ll bet it is taken. 19. How did credit scoring and credit default swaps enlarge the mortgage securities market? 20. Why, up until 2007, did we think that monetary expansion was all that was needed to mitigate the impact of financial crises? 21. Suppose that financial markets are inherently unstable. What does this mean are two goals of regulation and regulators? 22. Why are type two errors so problematic? (Two reasons.) 23. How could we make the banking sector easy to fix? Assignment Five Due August 13 Read the linked lectures and answer the questions. Lecture 1 http://econlog.econlib.org/archives/2008/11/lectures_in_mac.html 1.1 Why do you think macroeconomic realities must be reconciled with microeconomic analysis? (This is not a rhetorical question, but it will be hard for you to answer. There is no “wrong” answer you could give. Just think about it for a few minutes.) Lecture 2 http://econlog.econlib.org/archives/2008/11/lectures_in_mac_1.html 2.1 Consider this article after you have read Hayek. How do prices and wages perform the function of “central planning?” 2.2 Kling makes that claim that, because most workers do not do manual labor anymore, the economy is different that it was in 1930. Assuming he is correct, do you think central planning would be harder today or easier? Why? Lecture 3 http://econlog.econlib.org/archives/2008/11/lectures_on_mac.html 3.1 Give a one sentence definition of structural unemployment, of frictional unemployment and of cyclical unemployment. Lecture 4 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_1.html 4.1 So, why does the economy adjust employment rather than wages? Lecture 5 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_2.html 5.1 Kling gives 5 reasons the DotCom recession was worse than the previous two recessions (at least in duration). Which reason do you think is the most compelling? Lecture 6 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_3.html 6.1 Why are Keynesian remedies (blunt fiscal and monetary policy measures) less appropriate in a post industrial economy, according to Kling? Lecture 7 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_4.html 7.1 Why is it so hard to separate finance and government, according to Kling? Lecture 8 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_5.html 8.1 Why is American Express Travelers Checks so interesting? Do credit cards work in a similar way? (I really don’t know the answer to this one. I just know that credit cards have made travelers checks obsolete.) Lecture 9. http://econlog.econlib.org/archives/2008/12/lectures_on_mac_6.html 9.1 According to this article, why do we have banks (financial sector or financial intermediation?) Lecture 10 http://econlog.econlib.org/archives/2008/12/lectures_on_mac_7.html 10.1 Why are banks better than barter, according to this leture? 10.2 Politics tends to favor bailouts of failed firms. Why is this exactly wrong?

Assignment One Suggested Due Date: July 17th In this assignment you will read three articles You will answer questions about Hayek, Lucas, and Mankiw et. al. which consider just those particular articles. Then at the end of the assignment there is a cluster of questions that deal with both Lucas and Mankiw et al where you will have an opportunity to compare and contrast those two articles. When you have completed the assignment, place it in the appropriate drop box in WTClass. Hayek: The Use of Knowledge in Society http://www.econlib.org/library/Essays/hykKnw1.html Adapted from Michael K. Salemi “The Use of Knowledge in Society” F. A. Hayek Discussion Questions 1.1. “The peculiar character of the problem of a rational economic order is determined precisely by the fact that the knowledge of the circumstances of which we must make use never exists in concentrated or integrated form, but solely as the dispersed bits of incomplete and frequently contradictory knowledge which all the separate individuals possess (H.3)” a. What does Hayek mean by a “rational economic order”? b. What does Hayek mean by “dispersed bits of incomplete and frequently contradictory knowledge”? c. Why is Hayek critical of the common assumptions in economic analysis that buyers, sellers, producers and the economist all know every relevant thing about the economy? d. What, in summary, does Hayek mean by the quoted statement? 1.2. What, according to Hayek, is the information needed to operate effectively in a complex market economy? a. What does Hayek mean by “planning”? b. What is the minimum information needed by economic planners and individuals? c. Does the minimum differ for planners and for individuals? How? Why? d. What happens when some individuals possess more information than other individuals? e. What does Hayek mean when he says (H.16) “…the sort of knowledge with which I have been concerned is knowledge of the kind which by its nature cannot enter into statistics and therefore cannot be conveyed to any central authority in statistical form”? f. Why, according to Hayek, can the “information problem” be solved by “the price system”? 1.3. Why, according to Hayek, is the true function of the price system the communication of information? a. Why does Hayek use the term ‘marvel’ in his discussion of the economy of knowledge? b. What does Hayek mean when he says (H.26) “…man has been able to develop that division of labor on which our civilization is based because he happened to stumble upon a method which made it possible”? Read Robert Lucas’ “Some Macroeconomics for the 21st Century” in the Journal of Economic Perspectives. (Skip the appendix.) All four of these links go to the same article. Some of the links might not be accessible to you, but I think that at least one of them should work for all of you. https://www.aeaweb.org/articles.php?doi=10.1257/jep.14.1.159 http://www.jstor.org/stable/2647059 http://www.econ.psu.edu/~aur10/Econ%20570%20Fall%202009/Lucas%20JEP%202000.pdf http://faculty.georgetown.edu/mh5/class/econ102/readings/Macro_21st_Century.pdf 1. According to Lucas, why has the world’s economy grown so much since 1960? 2. According to Lucas, why do some nations grow faster than others? 3. According to Lucas, why will growth and inequality decrease in the next 100 years? 4. Is Lucas’ model in this paper “economics?” Read Greg Mankiw, Romer and Wiel’s article in The Quarterly Journal of Economics. http://www.econ.nyu.edu/user/debraj/Courses/Readings/MankiwRomerWeil.pdf 1. Many economists think the Solow Growth Model is of limited use. (One of my professors at OU stated that it took economists 50 years to figure out that their growth model has nothing to do with growth.) But does the Solow model give “…the right answer to the questions it is designed to address?” 2. Why is human capital important when testing the Solow model against the data? 3. Explain how the authors conclude that the incomes of the world’s nations are converging? Now that you’ve answered questions about Lucas and Mankiw et al separately, consider this question: Both of these papers develop the notion that the economies of the world’s nations will tend to “converge” over time. Compare and contrast the way(s) in which the papers advance the idea of convergence. Assignment Two Due Date July 24th This assignment is very straight forward. You’ll read two papers and answer questions about each of them. Read Krugman’s paper on unemployment http://www.kc.frb.org/PUBLICAT/ECONREV/EconRevArchive/1994/4Q94KRUG.pdf 1. What is the difference between structural and cyclical unemployment? In this context, what is the difference between Europe and the US? What is the evidence that Krugman uses to back his opinion? 2. What is the natural rate of unemployment? Why is it higher/rising in Europe? Again, what is the evidence? 3. What is the relationship between the rising unemployment in Europe and the rise in inequality in the US. (What does Krugman mean by inequality?) 4. What is NOT to blame for either the rise in unemployment or inequality? 5. What policies, if any, can be put into place to combat rising inequality/unemployment? 6. Are you convinced by Krugman’s argument which rules out globalization as the likely cause for high European unemployment and high US wage inequality? 7. Consider Table 2 in Krugman. Why does Krugman include Table 2 in his paper? In other words, what point is strengthened by the data in Table 2 and why is it crucial to Krugman’s larger thesis? NOW, recreate the data for Table 2 for either the UK or US for the latest year possible. Has anything changed as a result of the Great Recession? Read Thomas Sargent’s paper about the credibility of “Reaganonomics.” http://minneapolisfed.contentdm.oclc.org/cdm/ref/collection/p15334coll1/id/366 http://minneapolisfed.contentdm.oclc.org/cdm/singleitem/collection/p15334coll1/id/366/rec/1 You might like this: http://www.ispot.tv/ad/7Lj9/ally-bank-predictions-featuring-thomas-sargent 1. What is a dynamic game? 2. Why should we think of monetary and fiscal policy as dynamic game? Who are the players and what are the strategies? 3. When are government budgets inflationary? (Again, think in terms of a game.) 4. What are the consequences if the monetary authority does not coordinate with fiscal policy agents? 5. Has Sargent done of good job characterizing the interplay between policymakers in the government, the central bank, and the public? 6. What is the connection between policy coordination and credibility? 7. Why, according to Sargent, were Reagan’s fiscal and monetary policy regimes “incredible?” Explain carefully. Assignment Three Due Date July 31 Read Taylor, Miskin, Obstfeld and Rogoff. Answer the questions for each article, then answer the final cluster that requires you to consider Miskin, Obstfeld and Rogoff. Suggested due date: January 2nd. Read John Taylor’s article about monetary transmission mechanisms. http://web.econ.unito.it/bagliano/ecmon_readings/taylor_jep95.pdf Also, to understand traditional monetary policy, listen to this: http://www.econtalk.org/archives/2008/08/john_taylor_on.html These questions refer to the article, not the podcast. 1. How does monetary policy (or changes in monetary policy) affect output and inflation? In other words, what is the monetary policy transmission mechanism? 2. What is the importance of financial market prices in Taylor’s view? 3. What is the importance of rational expectations and rigidities in the prices of labor and goods? 4. What is a reaction function? Why is a reaction function important? 5. What is an “optimal monetary policy rule?” 6. Has the monetary transmission mechanism changed? How? 7. What are the criticisms of Taylor’s views? How does he respond? What do you think? Read Mishkin’s article about global financial instability. http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.13.4.3 1. What is a financial crisis? 2. How did adverse selection and moral hazard contribute to the financial crisis in Mexico and East Asia in the 1990s? What are adverse selection and moral hazard? 3. Did irresponsible monetary and fiscal policy contribute to the crisis in the 90s? Why or why not? 4. How is it possible for the IMF to help in a crisis when a domestic central bank might not be able to help. 5. What should the US learn (or have learned??) from the crisis in the 90s? Read Rogoff’s article about global financial instability. http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.13.4.21 http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.13.4.21 Answer the questions and place the answers in the appropriate drop box in WTClass. 1. According to Rogoff, is the status quo in international lending viable or not? Explain. 2. Can the IMF handle international financial crises? Why or why not? 3. Rogoff gives six solutions to save the global financial system (deep pockets lender of last resort, an international financial crisis manager, an international bankruptcy court, an international regulator, international deposit insurance corporation, and a world monetary authority.) What is wrong with all of these? 4. Can developing economies cope with speculative capital flows without help? Explain. 5. What will be (should be) the role that equity financing play in developing country projects? Read Obstfeld on Global Capital Markets: http://www.nber.org/papers/w6559.pdf 1. Look at table 1 and figure 1. How does Obstfeld use the data in that table to suggest that 1) markets became less open then more open in the 20th century. 2. What is the “openness trilemma?” What are the economic and/or policy trade-offs with having a global, open and integrated financial system? 3. How does economic integration impact a nation’s ability to tax capital? Can you think of some high profile cases in the news lately that illustrate this fact? (Hint: you should be able to.) 4. What is the international diversification puzzle? What market failures have arisen (if any) have arisen due to more integration and openness? Comparing Obstfeld, Miskin, and Rogoff 1. Would the authors’ advice about policies to reduce the costs of financial integration be the same? Why or why not? 2. Would the authors’ agree that we need an international regulatory body to stave off international financial crises? Why or why not? 3. What is your opinion? Is it good to have a global financial market? Why or why not? Assignment Four Due Date August 7 Straight forward assignment: Read and answer the questions. Read Arnold Kling’s history of the policies that created the great recession http://mercatus.org/publication/not-what-they-had-mind-history-policies-produced-financial-crisis-2008 1. Using only the executive summary, what does Kling think caused the Financial Crisis of 2008? (Use only one sentence.) 2. One page 5, what is “the fact?” and what does this “fact” mean to you? 3. Briefly summarize the four components of the Financial Crisis? 4. On page 10, Kling states, “These property bubbles (in the U.K. and Spain) cannot be blamed on U.S. policy.” How confident are you on that point? Is Kling wrong? 5. Kling’s matrix of causes, gives almost all weight to what two factors? What three factors are almost completely not responsible? 6. Many have blamed designer financial (my term) like CDS and CDO and the shadow banking system for the collapse. How do these fit into Kling’s narrative? 7. Outline the progression of policy that caused/responded to economic conditions in the 30s, 70s and 80s and 00s. 8. What role did the mortgage interest deduction have on housing market? 9. What institution invented and allowed the expansion of mortgage-backed securities? 10. What is regulatory arbitrage? 11. Why did the Basel agreement create an advantage for mortgage securitization? 12. Did the Federal Reserve (and presumably other regulatory agencies know and even encourage regulatory capital arbitrage? What author does Kling cite to establish this? 13. What did the 2002 modification of the Basel Rules do to capital requirements? (See figure 4) 14. Summarize the Shadow Regulatory Committee’s statement 160. 15. Did non market institutions, such as the IMF and Bernanke, think, in 2006, that financial innovation had make the banking sector more or less fragile? 16. What is time inconsistency? (You can look this up elsewhere.) 17. How might “barriers to entry” by related to “safety and soundness?” 18. A Curmudgeon is an old man who is easily annoyed and angered. He also complains a lot. (I had to look it up.) I think I’ll change my xbox gamertag to this word, but I’ll bet it is taken. 19. How did credit scoring and credit default swaps enlarge the mortgage securities market? 20. Why, up until 2007, did we think that monetary expansion was all that was needed to mitigate the impact of financial crises? 21. Suppose that financial markets are inherently unstable. What does this mean are two goals of regulation and regulators? 22. Why are type two errors so problematic? (Two reasons.) 23. How could we make the banking sector easy to fix? Assignment Five Due August 13 Read the linked lectures and answer the questions. Lecture 1 http://econlog.econlib.org/archives/2008/11/lectures_in_mac.html 1.1 Why do you think macroeconomic realities must be reconciled with microeconomic analysis? (This is not a rhetorical question, but it will be hard for you to answer. There is no “wrong” answer you could give. Just think about it for a few minutes.) Lecture 2 http://econlog.econlib.org/archives/2008/11/lectures_in_mac_1.html 2.1 Consider this article after you have read Hayek. How do prices and wages perform the function of “central planning?” 2.2 Kling makes that claim that, because most workers do not do manual labor anymore, the economy is different that it was in 1930. Assuming he is correct, do you think central planning would be harder today or easier? Why? Lecture 3 http://econlog.econlib.org/archives/2008/11/lectures_on_mac.html 3.1 Give a one sentence definition of structural unemployment, of frictional unemployment and of cyclical unemployment. Lecture 4 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_1.html 4.1 So, why does the economy adjust employment rather than wages? Lecture 5 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_2.html 5.1 Kling gives 5 reasons the DotCom recession was worse than the previous two recessions (at least in duration). Which reason do you think is the most compelling? Lecture 6 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_3.html 6.1 Why are Keynesian remedies (blunt fiscal and monetary policy measures) less appropriate in a post industrial economy, according to Kling? Lecture 7 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_4.html 7.1 Why is it so hard to separate finance and government, according to Kling? Lecture 8 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_5.html 8.1 Why is American Express Travelers Checks so interesting? Do credit cards work in a similar way? (I really don’t know the answer to this one. I just know that credit cards have made travelers checks obsolete.) Lecture 9. http://econlog.econlib.org/archives/2008/12/lectures_on_mac_6.html 9.1 According to this article, why do we have banks (financial sector or financial intermediation?) Lecture 10 http://econlog.econlib.org/archives/2008/12/lectures_on_mac_7.html 10.1 Why are banks better than barter, according to this leture? 10.2 Politics tends to favor bailouts of failed firms. Why is this exactly wrong?

info@checkyourstudy.com
Phys4A: Practice problems for the 1st midterm test Fall 2015 1 If K has dimensions ML2/T 2, the k in K = kmv 2 must be: Answer: dimensionless 2. A 8.7 hour trip is made at an average speed of 73.0 km/h. If the first third of the trip (chronologically) was driven at 96.5 km/h, what was the average speed for the rest of the journey? Answer: 61 km/h 3. A car travels 95 km to the north at 70.0 km/h, then turns around and travels 21.9 km at 80.0 km/h. What is the difference between the average speed and the average velocity on this trip? Answer: 27 km/h 4. A particle confined to motion along the x axis moves with constant acceleration from x = 2.0 m to x = 8.0 m during a 2.5s time interval. The velocity of the particle at x = 8.0 m is 2.8 m/s. What is the acceleration during this time interval? Answer: 0.32 m/s2 5. A package is dropped from a helicopter moving upward at 15 m/s. If it takes 16.0 s before the package strikes the ground, how high above the ground was the package when it was released? (Disregard air resistance.) Answer: 1000m 6. If vector B is added to vector A, the result is 6i + j. If B is subtracted from A, the result is –4i + 7j. What is the magnitude of A? Answer: 4.1 7. Starting from one oasis, a camel walks 25 km in a direction 30° south of west and then walks 30 km toward the north to a second oasis. What is the direction from the first oasis to the second oasis? Answer: 51° W of N 8 A river 1.00 mile wide flows with a constant speed of 1.00 mi/h. A man can row a boat at 2.00 mi/h. He crosses the river in a direction that puts him directly across the river from the starting point, and then he returns in a direction that puts him back at the starting point in the shortest time possible. The travel time for the man is, Answer: 1.15 h 9 An airplane is heading due east. The airspeed indicator shows that the plane is moving at a speed of 370 km/h relative to the air. If the wind is blowing from the south at 92.5 km/h, the velocity of the airplane relative to the ground is: Answer: 381 km/h at 76o east of north 10. A rock is projected from the edge of the top of a building with an initial velocity of 12.2 m/s at an angle of 53° above the horizontal. The rock strikes the ground a horizontal distance of 25 m from the base of the building. Assume that the ground is level and that the side of the building is vertical. How tall is the building? Answer: 23.6m 11. A boy throws a rock with an initial velocity of 3.13 m/s at 30.0° above the horizontal. How long does it take for the rock to reach the maximum height of its trajectory? Answer: 0.160 s 12. A helicopter is traveling at 54 m/s at a constant altitude of 100 m over a level field. If a wheel falls off the helicopter, with what speed will it hit the ground? Note: air resistance negligible. Answer: 70 m/s 13 A rescue airplane is diving at an angle of 37º below the horizontal with a speed of 250 m/s. It releases a survival package when it is at an altitude of 600 m. If air resistance is ignored, the horizontal distance of the point of impact from the plane at the moment of the package’s release is, Answer: 720 m 14. A hobby rocket reaches a height of 72.3 m and lands 111 m from the launch point. What was the angle of launch? Answer: 69.0° 15. An object moving at a constant speed requires 6.0 s to go once around a circle with a diameter of 4.0 m. What is the magnitude of the instantaneous acceleration of the particle during this time? Answer: 2.2 m/s2 16 A ball is whirled in a horizontal circle of radius r and speed v. The radius is increased to 2r keeping the speed of the ball constant. The period of the ball changes by a factor of Answer: two

Phys4A: Practice problems for the 1st midterm test Fall 2015 1 If K has dimensions ML2/T 2, the k in K = kmv 2 must be: Answer: dimensionless 2. A 8.7 hour trip is made at an average speed of 73.0 km/h. If the first third of the trip (chronologically) was driven at 96.5 km/h, what was the average speed for the rest of the journey? Answer: 61 km/h 3. A car travels 95 km to the north at 70.0 km/h, then turns around and travels 21.9 km at 80.0 km/h. What is the difference between the average speed and the average velocity on this trip? Answer: 27 km/h 4. A particle confined to motion along the x axis moves with constant acceleration from x = 2.0 m to x = 8.0 m during a 2.5s time interval. The velocity of the particle at x = 8.0 m is 2.8 m/s. What is the acceleration during this time interval? Answer: 0.32 m/s2 5. A package is dropped from a helicopter moving upward at 15 m/s. If it takes 16.0 s before the package strikes the ground, how high above the ground was the package when it was released? (Disregard air resistance.) Answer: 1000m 6. If vector B is added to vector A, the result is 6i + j. If B is subtracted from A, the result is –4i + 7j. What is the magnitude of A? Answer: 4.1 7. Starting from one oasis, a camel walks 25 km in a direction 30° south of west and then walks 30 km toward the north to a second oasis. What is the direction from the first oasis to the second oasis? Answer: 51° W of N 8 A river 1.00 mile wide flows with a constant speed of 1.00 mi/h. A man can row a boat at 2.00 mi/h. He crosses the river in a direction that puts him directly across the river from the starting point, and then he returns in a direction that puts him back at the starting point in the shortest time possible. The travel time for the man is, Answer: 1.15 h 9 An airplane is heading due east. The airspeed indicator shows that the plane is moving at a speed of 370 km/h relative to the air. If the wind is blowing from the south at 92.5 km/h, the velocity of the airplane relative to the ground is: Answer: 381 km/h at 76o east of north 10. A rock is projected from the edge of the top of a building with an initial velocity of 12.2 m/s at an angle of 53° above the horizontal. The rock strikes the ground a horizontal distance of 25 m from the base of the building. Assume that the ground is level and that the side of the building is vertical. How tall is the building? Answer: 23.6m 11. A boy throws a rock with an initial velocity of 3.13 m/s at 30.0° above the horizontal. How long does it take for the rock to reach the maximum height of its trajectory? Answer: 0.160 s 12. A helicopter is traveling at 54 m/s at a constant altitude of 100 m over a level field. If a wheel falls off the helicopter, with what speed will it hit the ground? Note: air resistance negligible. Answer: 70 m/s 13 A rescue airplane is diving at an angle of 37º below the horizontal with a speed of 250 m/s. It releases a survival package when it is at an altitude of 600 m. If air resistance is ignored, the horizontal distance of the point of impact from the plane at the moment of the package’s release is, Answer: 720 m 14. A hobby rocket reaches a height of 72.3 m and lands 111 m from the launch point. What was the angle of launch? Answer: 69.0° 15. An object moving at a constant speed requires 6.0 s to go once around a circle with a diameter of 4.0 m. What is the magnitude of the instantaneous acceleration of the particle during this time? Answer: 2.2 m/s2 16 A ball is whirled in a horizontal circle of radius r and speed v. The radius is increased to 2r keeping the speed of the ball constant. The period of the ball changes by a factor of Answer: two

info@checkyourstudy.com
ENGR 3300: Fluid Mechanics, Fall 2015 Assignment 3 Due: Friday, Oct. 2, 2015 Topics: Chapter 3 & 4 Solutions must be neatly written and must include the following steps (if applicable) to receive full credit. 1. Given: List all known parameters in the problem. 2. Find: List what parameters the problem is asking you to find. 3. Solution: List all equations needed to solve the problem, and show all your work. Draw any necessary sketches or free body diagrams. Circle or box your final answer, and make sure to include appropriate units in your final answer. Grading: 15 total points (10 points for completeness + 5 points for one randomly chosen problem graded for correctness) 1. Water flows at a steady rate up a vertical pipe and out a nozzle into open air. The pipe diameter is 1 inch and the nozzle diameter is 0.5 inches. (a) Determine the minimum pressure that would be required at section 1 (shown in the figure below) to produce a fluid velocity of 30 ft/s at the nozzle (section 2). (b) If the pipe was inverted, determine the minimum pressure that would be required at section 1 to maintain the 30 ft/s velocity at the nozzle. 2. Water flows from a large tank through a small pipe with a diameter of 5 cm. A mercury manometer is placed along the pipe. Assuming the flow is frictionless, (a) estimate the velocity of the water in the pipe and (b) determine the rate of discharge (i.e. volumetric flow rate) from the tank. 3. An engineer is designing a suit for a race car driver and wants to supply cooling air to the suit from an air inlet on the body of the race car. The air speed at the inlet location must be 65 mph when the race car is traveling at 230 mph. Under these conditions, what would be the static pressure at the proposed inlet location? 4. Air flows downward toward a horizontal flat plate. The velocity field is given by ? = (??! − ??!)(2 + cos ??) where a = 5 s-1, ω = 2π s-1, and x and y (measured in meters) are horizontal and vertically upward, respectively, and t is in seconds. (a) Obtain an algebraic equation for a streamline at t = 0. (b) Plot the streamline that passes through point (x,y) = (3,3) at this instant.

ENGR 3300: Fluid Mechanics, Fall 2015 Assignment 3 Due: Friday, Oct. 2, 2015 Topics: Chapter 3 & 4 Solutions must be neatly written and must include the following steps (if applicable) to receive full credit. 1. Given: List all known parameters in the problem. 2. Find: List what parameters the problem is asking you to find. 3. Solution: List all equations needed to solve the problem, and show all your work. Draw any necessary sketches or free body diagrams. Circle or box your final answer, and make sure to include appropriate units in your final answer. Grading: 15 total points (10 points for completeness + 5 points for one randomly chosen problem graded for correctness) 1. Water flows at a steady rate up a vertical pipe and out a nozzle into open air. The pipe diameter is 1 inch and the nozzle diameter is 0.5 inches. (a) Determine the minimum pressure that would be required at section 1 (shown in the figure below) to produce a fluid velocity of 30 ft/s at the nozzle (section 2). (b) If the pipe was inverted, determine the minimum pressure that would be required at section 1 to maintain the 30 ft/s velocity at the nozzle. 2. Water flows from a large tank through a small pipe with a diameter of 5 cm. A mercury manometer is placed along the pipe. Assuming the flow is frictionless, (a) estimate the velocity of the water in the pipe and (b) determine the rate of discharge (i.e. volumetric flow rate) from the tank. 3. An engineer is designing a suit for a race car driver and wants to supply cooling air to the suit from an air inlet on the body of the race car. The air speed at the inlet location must be 65 mph when the race car is traveling at 230 mph. Under these conditions, what would be the static pressure at the proposed inlet location? 4. Air flows downward toward a horizontal flat plate. The velocity field is given by ? = (??! − ??!)(2 + cos ??) where a = 5 s-1, ω = 2π s-1, and x and y (measured in meters) are horizontal and vertically upward, respectively, and t is in seconds. (a) Obtain an algebraic equation for a streamline at t = 0. (b) Plot the streamline that passes through point (x,y) = (3,3) at this instant.

Name: Lab Time: BIO 218 Experiment Paper Rubric (20 points) General Formatting: (2 pts.) • Margins should be 1 inch top, bottom, left, and right. • Font should be 12 point Times New Roman or similar font. • Double-spaced. • Pages numbered. Title page is unnumbered. Next page is numbered at the bottom right corner with a 2 followed by pages 3, 4, and 5. • All sections must be included: Abstract, Introduction, Methods, Results, Discussion, and Literature Cited. • At least 3 pages (double spaced) but no more than five pages long. • All scientific names should be formatted correctly by italicizing and capitalizing the genus name and having the species name in lowercase (Bufo americanus). • Title page should have a specific title, student name, course, lab section time, and date. Project elements (18 pts. Total) • Abstract (2 points) o Summarize most important points using past tense. Use present tense to suggest a general conclusion which supports or refutes the hypothesis. • Introduction (3 points) o General background on topic and species (state scientific name!) o Discuss the possible tests of the hypothesis. o Reads from general to specific. o States hypothesis/hypotheses to be addressed. May discuss null and all alternative hypotheses. • Methods (2 points) o Reports how experiment was conducted and all materials used. Use enough detail so others could repeat the study. o Discuss the type(s) of data collected. o Discuss how data was to be analyzed/compared/used to test hypothesis. • Results (3 points) o Reports what happened in the experiment. o If comparisons made, discuss how they were made. o Report statistical and other data. Use “significant” only for statistical significance. o NO interpretation of data (no data analysis). o At least one original figure present and formatted correctly. Figures such as pictures and graphs are numbered and have captions underneath. o At least one table present and formatted correctly. Tables such as charts are numbered and have captions above them. • Discussion: (3 points) o Discusses the results of the experiment and ties in how the results fit with the literature. o Use past tense to discuss your results and shift to present tense to discuss previously published information. o States how results supported or refuted the original hypothesis. Hypotheses are never proven! o Ties in results with big picture within topic of biology. • Literature Cited: (2 points: .5 per citation) o At least 2 peer-reviewed journal articles (provided) + 2 peer-reviewed journal articles (found on your own). o References used in text properly. o References all listed in this section are alphabetized by author’s last name and formatted correctly. o All references listed in the Literature Cited section are cited in text. Writing Elements (3 pts.) • Grammar or spelling is error-free and excellent print quality. (1 pt) • Writing is clear and flows logically throughout paper. (1 pt) • Appropriate content in each section? (1 pt) Additional Comments:

Name: Lab Time: BIO 218 Experiment Paper Rubric (20 points) General Formatting: (2 pts.) • Margins should be 1 inch top, bottom, left, and right. • Font should be 12 point Times New Roman or similar font. • Double-spaced. • Pages numbered. Title page is unnumbered. Next page is numbered at the bottom right corner with a 2 followed by pages 3, 4, and 5. • All sections must be included: Abstract, Introduction, Methods, Results, Discussion, and Literature Cited. • At least 3 pages (double spaced) but no more than five pages long. • All scientific names should be formatted correctly by italicizing and capitalizing the genus name and having the species name in lowercase (Bufo americanus). • Title page should have a specific title, student name, course, lab section time, and date. Project elements (18 pts. Total) • Abstract (2 points) o Summarize most important points using past tense. Use present tense to suggest a general conclusion which supports or refutes the hypothesis. • Introduction (3 points) o General background on topic and species (state scientific name!) o Discuss the possible tests of the hypothesis. o Reads from general to specific. o States hypothesis/hypotheses to be addressed. May discuss null and all alternative hypotheses. • Methods (2 points) o Reports how experiment was conducted and all materials used. Use enough detail so others could repeat the study. o Discuss the type(s) of data collected. o Discuss how data was to be analyzed/compared/used to test hypothesis. • Results (3 points) o Reports what happened in the experiment. o If comparisons made, discuss how they were made. o Report statistical and other data. Use “significant” only for statistical significance. o NO interpretation of data (no data analysis). o At least one original figure present and formatted correctly. Figures such as pictures and graphs are numbered and have captions underneath. o At least one table present and formatted correctly. Tables such as charts are numbered and have captions above them. • Discussion: (3 points) o Discusses the results of the experiment and ties in how the results fit with the literature. o Use past tense to discuss your results and shift to present tense to discuss previously published information. o States how results supported or refuted the original hypothesis. Hypotheses are never proven! o Ties in results with big picture within topic of biology. • Literature Cited: (2 points: .5 per citation) o At least 2 peer-reviewed journal articles (provided) + 2 peer-reviewed journal articles (found on your own). o References used in text properly. o References all listed in this section are alphabetized by author’s last name and formatted correctly. o All references listed in the Literature Cited section are cited in text. Writing Elements (3 pts.) • Grammar or spelling is error-free and excellent print quality. (1 pt) • Writing is clear and flows logically throughout paper. (1 pt) • Appropriate content in each section? (1 pt) Additional Comments:

info@checkyourstudy.com