Develop a 4 page-500 word précis on Chapter 7 “How to Monitor & Control a TPM Project” of the Wysocki 7th Ed. text.”

Develop a 4 page-500 word précis on Chapter 7 “How to Monitor & Control a TPM Project” of the Wysocki 7th Ed. text.”

Summary of ‘How to Monitor and Control a TPM Project’ … Read More...
CHM114: Exam #2 CHM 114, S2015 Exam #2, Version C 16 March 2015 Instructor: O. Graudejus Points: 100 Print Name Sign Name Student I.D. # 1. You are responsible for the information on this page. Please read it carefully. 2. Code your name and 10 digit affiliate identification number on the separate scantron answer sheet. Use only a #2 pencil 3. If you enter your ASU ID incorrectly on the scantron, a 3 point penalty will be assessed. 4. Do all calculations on the exam pages. Do not make any unnecessary marks on the answer sheet. 5. This exam consists of 25 multiple choice questions worth 4 points each and a periodic table. Make sure you have them all. 6. Choose the best answer to each of the questions and answer it on the computer-graded answer sheet. Read all responses before making a selection. 7. Read the directions carefully for each problem. 8. Avoid even casual glances at other students’ exams. 9. Stop writing and hand in your scantron answer sheet and your test promptly when instructed. LATE EXAMS MAY HAVE POINTS DEDUCTED. 10. You will have 50 minutes to complete the exam. 11. If you leave early, please do so quietly. 12. Work the easiest problems first. 13. A periodic table is attached as the last page to this exam. 14. Answers will be posted online this afternoon. Potentially useful information: K = ºC + 273.15 RH=2.18·10-18 J R=8.314 J·K-1·mol-1 1Å=10-10 m c=3·108 m/s Ephoton=h·n=h·c/l h=6.626·10-34 Js Avogadro’s Number = 6.022 × 1023 particles/mole DH°rxn =  n DHf° (products) –  n DHf° (reactants) ) 1 1 ( 2 2 f i H n n DE = R − \ -2- CHM114: Exam #2 1) Which one of the following is an incorrect orbital notation? A) 2s B) 2p C) 3f D) 3d E) 4s 2) The energy of a photon that has a frequency of 8.21 1015s 1 − × is __________ J. A) 8.08 10 50 − × B) 1.99 10 25 − × C) 5.44 10 18 − × D) 1.24×1049 E) 1.26 10 19 − × 3) The ground state electron configuration of Ga is __________. A) 1s22s23s23p64s23d104p1 B) 1s22s22p63s23p64s24d104p1 C) 1s22s22p63s23p64s23d104p1 D) 1s22s22p63s23p64s23d104d1 E) [Ar]4s23d11 4) Of the bonds N–N, N=N, and NN, the N-N bond is __________. A) strongest/shortest B) weakest/longest C) strongest/longest D) weakest/shortest E) intermediate in both strength and length 5) Of the atoms below, __________ is the most electronegative. A) Br B) O C) Cl D) N E) F 6) Of the following, __________ cannot accommodate more than an octet of electrons. A) P B) O C) S D) Cl E) I -3- CHM 114: Exam #2 7) Which electron configuration represents a violation of Hund’s Rule? A) B) C) D) E) 8) A tin atom has 50 electrons. Electrons in the _____ subshell experience the highest effective nuclear charge. A) 1s B) 3p C) 3d D) 5s E) 5p 9) In ionic compounds, the lattice energy_____ as the magnitude of the ion charges _____ and the radii _____. A) increases, decrease, increase B) increases, increase, increase C) decreases, increase, increase D) increases, increase, decrease E) increases, decrease, decrease 10) Which of the following ionic compounds has the highest lattice energy? A) LiF B) MgO C) CsF D) CsI E) LiI -4- CHM 114: Exam #2 11) For which one of the following reactions is the value of H°rxn equal to Hf° for the product? A) 2 C (s, graphite) + 2 H2 (g)  C2H4 (g) B) N2 (g) + O2 (g)  2 NO (g) C) 2 H2 (g) + O2 (g)  2 H2O (l) D) 2 H2 (g) + O2 (g)  2 H2O (g) E) all of the above 12) Given the data in the table below, H rxn D ° for the reaction 3 2 3 PCl (g) + 3HCl(g)®3Cl (g) + PH (g) is __________ kJ. A) -570.37 B) -385.77 C) 570.37 D) 385.77 E) The f DH° of 2 Cl (g) is needed for the calculation. 13) Given the following reactions (1) 2 2 2NO® N +O H = -180 kJ (2) 2 2 2NO+O ®2NO H = -112 kJ the enthalpy of the reaction of nitrogen with oxygen to produce nitrogen dioxide 2 2 2 N + 2O ®2NO is __________ kJ. A) 68 B) -68 C) -292 D) 292 E) -146 14) Of the following transitions in the Bohr hydrogen atom, the __________ transition results in the absorption of the lowest-energy photon. A) n = 1  n = 6 B) n = 6  n = 1 C) n = 6  n = 5 D) n = 3  n = 6 E) n = 1  n = 4 -5- CHM 114: Exam #2 15) Which equation correctly represents the electron affinity of calcium? A) Ca (g)  Ca+ (g) + e- B) Ca (g)  Ca- (g) + e- C) Ca (g) + e-  Ca- (g) D) Ca- (g)  Ca (g) + e- E) Ca+ (g) + e-  Ca (g) 16) Which of the following does not have eight valence electrons? A) Ca+ B) Rb+ C) Xe D) Br− E) All of the above have eight valence electrons. 17) The specific heat of liquid bromine is 0.226 J/g · K. The molar heat capacity (in J/mol-K) of liquid bromine is __________. A) 707 B) 36.1 C) 18.1 D) 9.05 E) 0.226 18) Given the electronegativities below, which covalent single bond is least polar? Element: H C N O F Electronegativity: 2.1 2.5 3.0 3.5 4.0 A) C-H B) C-F C) O-H D) O-C E) F-H 19) The bond length in an HCl molecule is 1.27 Å and the measured dipole moment is 1.08 D. What is the magnitude (in units of e) of the negative charge on Cl in HCl? (1 debye = 3.34 10 30 coulomb-meters − × ; e=1.6 10 19 coulombs − × ) A) 1.6 10 19 − × B) 0.057 C) 0.18 D) 1 E) 0.22 -6- CHM 114: Exam #2 20) The F-B-F bond angle in the BF3 molecule is approximately __________. A) 90° B) 109.5° C) 120° D) 180° E) 60° 21) Which isoelectronic series is correctly arranged in order of increasing radius? A) K+ < Ca2+ < Ar < Cl- B) Cl- < Ar < K+ < Ca2+ C) Ca2+ < Ar < K+ < Cl- D) Ca2+ < K+ < Ar < Cl- E) Ca2+ < K+ < Cl- < Ar 22) What is the electron configuration for the Fe2+ ion? A) [Ar]4s03d6 B) [Ar]4s23d4 C) [Ar]4s03d8 D) [Ar]4s23d8 E) [Ar]4s63d2 23) The formal charge on carbon in the Lewis structure of the NCS - ion is __________: A) -1 B) +1 C) +2 D) 0 E) +3 -7- CHM 114: Exam #2 24) Using the table of bond dissociation energies, the H for the following gas-phase reaction is __________ kJ. A) 291 B) 2017 C) -57 D) -356 E) -291 25) According to VSEPR theory, if there are six electron domains in the valence shell of an atom, they will be arranged in a(n) __________ geometry. A) octahedral B) linear C) tetrahedral D) trigonal planar E) trigonal bipyramidal -8- CHM 114: Exam #2

CHM114: Exam #2 CHM 114, S2015 Exam #2, Version C 16 March 2015 Instructor: O. Graudejus Points: 100 Print Name Sign Name Student I.D. # 1. You are responsible for the information on this page. Please read it carefully. 2. Code your name and 10 digit affiliate identification number on the separate scantron answer sheet. Use only a #2 pencil 3. If you enter your ASU ID incorrectly on the scantron, a 3 point penalty will be assessed. 4. Do all calculations on the exam pages. Do not make any unnecessary marks on the answer sheet. 5. This exam consists of 25 multiple choice questions worth 4 points each and a periodic table. Make sure you have them all. 6. Choose the best answer to each of the questions and answer it on the computer-graded answer sheet. Read all responses before making a selection. 7. Read the directions carefully for each problem. 8. Avoid even casual glances at other students’ exams. 9. Stop writing and hand in your scantron answer sheet and your test promptly when instructed. LATE EXAMS MAY HAVE POINTS DEDUCTED. 10. You will have 50 minutes to complete the exam. 11. If you leave early, please do so quietly. 12. Work the easiest problems first. 13. A periodic table is attached as the last page to this exam. 14. Answers will be posted online this afternoon. Potentially useful information: K = ºC + 273.15 RH=2.18·10-18 J R=8.314 J·K-1·mol-1 1Å=10-10 m c=3·108 m/s Ephoton=h·n=h·c/l h=6.626·10-34 Js Avogadro’s Number = 6.022 × 1023 particles/mole DH°rxn =  n DHf° (products) –  n DHf° (reactants) ) 1 1 ( 2 2 f i H n n DE = R − \ -2- CHM114: Exam #2 1) Which one of the following is an incorrect orbital notation? A) 2s B) 2p C) 3f D) 3d E) 4s 2) The energy of a photon that has a frequency of 8.21 1015s 1 − × is __________ J. A) 8.08 10 50 − × B) 1.99 10 25 − × C) 5.44 10 18 − × D) 1.24×1049 E) 1.26 10 19 − × 3) The ground state electron configuration of Ga is __________. A) 1s22s23s23p64s23d104p1 B) 1s22s22p63s23p64s24d104p1 C) 1s22s22p63s23p64s23d104p1 D) 1s22s22p63s23p64s23d104d1 E) [Ar]4s23d11 4) Of the bonds N–N, N=N, and NN, the N-N bond is __________. A) strongest/shortest B) weakest/longest C) strongest/longest D) weakest/shortest E) intermediate in both strength and length 5) Of the atoms below, __________ is the most electronegative. A) Br B) O C) Cl D) N E) F 6) Of the following, __________ cannot accommodate more than an octet of electrons. A) P B) O C) S D) Cl E) I -3- CHM 114: Exam #2 7) Which electron configuration represents a violation of Hund’s Rule? A) B) C) D) E) 8) A tin atom has 50 electrons. Electrons in the _____ subshell experience the highest effective nuclear charge. A) 1s B) 3p C) 3d D) 5s E) 5p 9) In ionic compounds, the lattice energy_____ as the magnitude of the ion charges _____ and the radii _____. A) increases, decrease, increase B) increases, increase, increase C) decreases, increase, increase D) increases, increase, decrease E) increases, decrease, decrease 10) Which of the following ionic compounds has the highest lattice energy? A) LiF B) MgO C) CsF D) CsI E) LiI -4- CHM 114: Exam #2 11) For which one of the following reactions is the value of H°rxn equal to Hf° for the product? A) 2 C (s, graphite) + 2 H2 (g)  C2H4 (g) B) N2 (g) + O2 (g)  2 NO (g) C) 2 H2 (g) + O2 (g)  2 H2O (l) D) 2 H2 (g) + O2 (g)  2 H2O (g) E) all of the above 12) Given the data in the table below, H rxn D ° for the reaction 3 2 3 PCl (g) + 3HCl(g)®3Cl (g) + PH (g) is __________ kJ. A) -570.37 B) -385.77 C) 570.37 D) 385.77 E) The f DH° of 2 Cl (g) is needed for the calculation. 13) Given the following reactions (1) 2 2 2NO® N +O H = -180 kJ (2) 2 2 2NO+O ®2NO H = -112 kJ the enthalpy of the reaction of nitrogen with oxygen to produce nitrogen dioxide 2 2 2 N + 2O ®2NO is __________ kJ. A) 68 B) -68 C) -292 D) 292 E) -146 14) Of the following transitions in the Bohr hydrogen atom, the __________ transition results in the absorption of the lowest-energy photon. A) n = 1  n = 6 B) n = 6  n = 1 C) n = 6  n = 5 D) n = 3  n = 6 E) n = 1  n = 4 -5- CHM 114: Exam #2 15) Which equation correctly represents the electron affinity of calcium? A) Ca (g)  Ca+ (g) + e- B) Ca (g)  Ca- (g) + e- C) Ca (g) + e-  Ca- (g) D) Ca- (g)  Ca (g) + e- E) Ca+ (g) + e-  Ca (g) 16) Which of the following does not have eight valence electrons? A) Ca+ B) Rb+ C) Xe D) Br− E) All of the above have eight valence electrons. 17) The specific heat of liquid bromine is 0.226 J/g · K. The molar heat capacity (in J/mol-K) of liquid bromine is __________. A) 707 B) 36.1 C) 18.1 D) 9.05 E) 0.226 18) Given the electronegativities below, which covalent single bond is least polar? Element: H C N O F Electronegativity: 2.1 2.5 3.0 3.5 4.0 A) C-H B) C-F C) O-H D) O-C E) F-H 19) The bond length in an HCl molecule is 1.27 Å and the measured dipole moment is 1.08 D. What is the magnitude (in units of e) of the negative charge on Cl in HCl? (1 debye = 3.34 10 30 coulomb-meters − × ; e=1.6 10 19 coulombs − × ) A) 1.6 10 19 − × B) 0.057 C) 0.18 D) 1 E) 0.22 -6- CHM 114: Exam #2 20) The F-B-F bond angle in the BF3 molecule is approximately __________. A) 90° B) 109.5° C) 120° D) 180° E) 60° 21) Which isoelectronic series is correctly arranged in order of increasing radius? A) K+ < Ca2+ < Ar < Cl- B) Cl- < Ar < K+ < Ca2+ C) Ca2+ < Ar < K+ < Cl- D) Ca2+ < K+ < Ar < Cl- E) Ca2+ < K+ < Cl- < Ar 22) What is the electron configuration for the Fe2+ ion? A) [Ar]4s03d6 B) [Ar]4s23d4 C) [Ar]4s03d8 D) [Ar]4s23d8 E) [Ar]4s63d2 23) The formal charge on carbon in the Lewis structure of the NCS - ion is __________: A) -1 B) +1 C) +2 D) 0 E) +3 -7- CHM 114: Exam #2 24) Using the table of bond dissociation energies, the H for the following gas-phase reaction is __________ kJ. A) 291 B) 2017 C) -57 D) -356 E) -291 25) According to VSEPR theory, if there are six electron domains in the valence shell of an atom, they will be arranged in a(n) __________ geometry. A) octahedral B) linear C) tetrahedral D) trigonal planar E) trigonal bipyramidal -8- CHM 114: Exam #2

ELEC153 Circuit Theory II M2A1 Textbook Assignment: Problem Set A: Chapter 15 Instructions Save this document and place your answers into it so you can submit it to the appropriate homework dropbox. Handwritten solutions should be scanned and saved as a BMP, GIF, or JPG image, or scanned and pasted into this document. Questions 1. Find the impedance of this AC series circuit as seen from the two open-ended terminals. Show your answer in rectangular and polar form. The AC signal frequency is 1 KHz. 2. Repeat your analysis of Question 1 for a frequency of 200 Hz. 3. Consider the following AC series circuit: a. Find the total impedance across the voltage source in polar form. b. Find the source current, in polar form. Note: the source voltage is 20 volts rms at 0 degrees. c. Find the voltage across each component, in polar form. d. Find the real power supplied to the circuit, in Watts. ELEC153 Circuit Theory II M2A2 Textbook Assignment: Problem Set B: Chapter 15 Instructions Save this document and place your answers into it so you can submit it to the appropriate homework dropbox. Handwritten solutions should be scanned and saved as a BMP, GIF, or JPG image, or scanned and pasted into this document. Questions 1. Find the impedance of this AC parallel circuit between the two open-ended terminals, in rectangular and polar forms: 2. Consider the following AC parallel circuit: a. Find the total impedance across the voltage source in polar form. b. Find the source current, in polar form. Note: the source voltage is 12 volts rms at 0 degrees. c. Find the current through each component, in polar form. d. Find the real power supplied to the circuit, in Watts.

ELEC153 Circuit Theory II M2A1 Textbook Assignment: Problem Set A: Chapter 15 Instructions Save this document and place your answers into it so you can submit it to the appropriate homework dropbox. Handwritten solutions should be scanned and saved as a BMP, GIF, or JPG image, or scanned and pasted into this document. Questions 1. Find the impedance of this AC series circuit as seen from the two open-ended terminals. Show your answer in rectangular and polar form. The AC signal frequency is 1 KHz. 2. Repeat your analysis of Question 1 for a frequency of 200 Hz. 3. Consider the following AC series circuit: a. Find the total impedance across the voltage source in polar form. b. Find the source current, in polar form. Note: the source voltage is 20 volts rms at 0 degrees. c. Find the voltage across each component, in polar form. d. Find the real power supplied to the circuit, in Watts. ELEC153 Circuit Theory II M2A2 Textbook Assignment: Problem Set B: Chapter 15 Instructions Save this document and place your answers into it so you can submit it to the appropriate homework dropbox. Handwritten solutions should be scanned and saved as a BMP, GIF, or JPG image, or scanned and pasted into this document. Questions 1. Find the impedance of this AC parallel circuit between the two open-ended terminals, in rectangular and polar forms: 2. Consider the following AC parallel circuit: a. Find the total impedance across the voltage source in polar form. b. Find the source current, in polar form. Note: the source voltage is 12 volts rms at 0 degrees. c. Find the current through each component, in polar form. d. Find the real power supplied to the circuit, in Watts.

No expert has answered this question yet. You can browse … Read More...
PHSX 220 Homework 13 D2L – Friday April 28 – 5:00 pm SHM and Pendula Problem 1: Shown below are 6 identical masses attached to springs and hung vertically. The masses are pulled down various distances and then released. The spring constant (k), spring sti ness, and the distance (d) that the mass is pulled down from its equilibrium position are given for each situation. The expression relating k and m to the angular frequency of the system is the same for both a horizontal and vertical spring-block system. Rank the situations based on the time it takes the mass to get from its maximum height to its minimum height from greatest to least. Problem 2: Shown below are systems containing a block resting on a frictionless surface and attached to the end of a spring. The springs are displaced to the right by a distance given in each gure and then released from rest. The blocks oscillate back and forth. The mass and spring constant are given for each system. Rank the cases based on the frequency of oscillation from greatest to least. Problem 3: Shown below are six masses hung on the ends of strings forming a pendulum. The masses have been pulled to the side and released so that they are swinging back and forth. For each pendulum the diagrams give the mass of the swinging object, the frequency of the swing, and how far, in terms of the angle from the vertical, that the masses were initially pulled to the side. Rank the six cases based on the length of the string from greatest to least. Problem 4: Shown below are four spring-cart systsems that consist of a spring connected to a cart. All systems are shown with the cart located at the equilibrium position. The cart is resting on a horizontal frictionless surface. If the cart is pulled to the right a small distance and released, the mass will oscillate back and forth. The amplitude of oscillation, mass of the cart and spring constants for the four cases are provided in the gure. Rank the cases shown based on their frequency of oscillation from greatest to least.

PHSX 220 Homework 13 D2L – Friday April 28 – 5:00 pm SHM and Pendula Problem 1: Shown below are 6 identical masses attached to springs and hung vertically. The masses are pulled down various distances and then released. The spring constant (k), spring sti ness, and the distance (d) that the mass is pulled down from its equilibrium position are given for each situation. The expression relating k and m to the angular frequency of the system is the same for both a horizontal and vertical spring-block system. Rank the situations based on the time it takes the mass to get from its maximum height to its minimum height from greatest to least. Problem 2: Shown below are systems containing a block resting on a frictionless surface and attached to the end of a spring. The springs are displaced to the right by a distance given in each gure and then released from rest. The blocks oscillate back and forth. The mass and spring constant are given for each system. Rank the cases based on the frequency of oscillation from greatest to least. Problem 3: Shown below are six masses hung on the ends of strings forming a pendulum. The masses have been pulled to the side and released so that they are swinging back and forth. For each pendulum the diagrams give the mass of the swinging object, the frequency of the swing, and how far, in terms of the angle from the vertical, that the masses were initially pulled to the side. Rank the six cases based on the length of the string from greatest to least. Problem 4: Shown below are four spring-cart systsems that consist of a spring connected to a cart. All systems are shown with the cart located at the equilibrium position. The cart is resting on a horizontal frictionless surface. If the cart is pulled to the right a small distance and released, the mass will oscillate back and forth. The amplitude of oscillation, mass of the cart and spring constants for the four cases are provided in the gure. Rank the cases shown based on their frequency of oscillation from greatest to least.

Login to see content or contact +1 909 666-5988
(b) Based on the lessons learned, best practices and any additional steps you came up with in part (a), what if project manager X then got a job at Bank of America. Would it be possible for him/her to implement lean in the banking industry based on experience from the previous positions held at the automotive plant and the pharmaceutical company? Please state yes or no and explain the logic clearly for the same. Also, explain the steps that project manager X could take to implement lean at Bank of America (in the service industry) [10 points] You can refer to your class notes and will also have to do research online for both parts (a) and (b). Please state all the references used for each question.

(b) Based on the lessons learned, best practices and any additional steps you came up with in part (a), what if project manager X then got a job at Bank of America. Would it be possible for him/her to implement lean in the banking industry based on experience from the previous positions held at the automotive plant and the pharmaceutical company? Please state yes or no and explain the logic clearly for the same. Also, explain the steps that project manager X could take to implement lean at Bank of America (in the service industry) [10 points] You can refer to your class notes and will also have to do research online for both parts (a) and (b). Please state all the references used for each question.

Yes, lean can be applied to the banking industry.   … Read More...
A helicopter landing gear consists of a metal framework rather than the coil spring based suspension system used in a xed-wing aircraft. The vibration of the frame in the vertical direction can be modeled by a spring made of a slender steel bar, such as the one illustrated in Figure 1.23 of the textbook. Here l=0.3 m and m=125 kg. Calculate the cross-sectional area (in cm2) that should be used if the natural frequency is to be fn=800 Hz.

A helicopter landing gear consists of a metal framework rather than the coil spring based suspension system used in a xed-wing aircraft. The vibration of the frame in the vertical direction can be modeled by a spring made of a slender steel bar, such as the one illustrated in Figure 1.23 of the textbook. Here l=0.3 m and m=125 kg. Calculate the cross-sectional area (in cm2) that should be used if the natural frequency is to be fn=800 Hz.

For any additional help, please contact: info@checkyourstudy.com Call and Whatsapp … Read More...
Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 Assignment 4 – Noise and Correlation 1. If a signal is measured as 2.5 V and the noise is 28 mV (28 × 10−3 V), what is the SNR in dB? 2. A single sinusoidal signal is found with some noise. If the RMS value of the noise is 0.5 V and the SNR is 10 dB, what is the RMS amplitude of the sinusoid? 3. The file signal_noise.mat contains a variable x that consists of a 1.0-V peak sinusoidal signal buried in noise. What is the SNR for this signal and noise? Assume that the noise RMS is much greater than the signal RMS. Note: “signal_noise.mat” and other files used in these assignments can be downloaded from the content area of Brightspace, within the “Data Files for Exercises” folder. These files can be opened in Matlab by copying into the active folder and double-clicking on the file or using the Matlab load command using the format: load(‘signal_noise.mat’). To discover the variables within the files use the Matlab who command. 4. An 8-bit ADC converter that has an input range of ±5 V is used to convert a signal that ranges between ±2 V. What is the SNR of the input if the input noise equals the quantization noise of the converter? Hint: Refer to Equation below to find the quantization noise: 5. The file filter1.mat contains the spectrum of a fourth-order lowpass filter as variable x in dB. The file also contains the corresponding frequencies of x in variable freq. Plot the spectrum of this filter both as dB versus log frequency and as linear amplitude versus linear frequency. The frequency axis should range between 10 and 400 Hz in both plots. Hint: Use Equation below to convert: Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 6. Generate one cycle of the square wave similar to the one shown below in a 500-point MATLAB array. Determine the RMS value of this waveform. [Hint: When you take the square of the data array, be sure to use a period before the up arrow so that MATLAB does the squaring point-by-point (i.e., x.^2).]. 7. A resistor produces 10 μV noise (i.e., 10 × 10−6 V noise) when the room temperature is 310 K and the bandwidth is 1 kHz (i.e., 1000 Hz). What current noise would be produced by this resistor? 8. A 3-ma current flows through both a diode (i.e., a semiconductor) and a 20,000-Ω (i.e., 20-kΩ) resistor. What is the net current noise, in? Assume a bandwidth of 1 kHz (i.e., 1 × 103 Hz). Which of the two components is responsible for producing the most noise? 9. Determine if the two signals, x and y, in file correl1.mat are correlated by checking the angle between them. 10. Modify the approach used in Practice Problem 3 to find the angle between short signals: Do not attempt to plot these vectors as it would require a 6-dimensional plot!

Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 Assignment 4 – Noise and Correlation 1. If a signal is measured as 2.5 V and the noise is 28 mV (28 × 10−3 V), what is the SNR in dB? 2. A single sinusoidal signal is found with some noise. If the RMS value of the noise is 0.5 V and the SNR is 10 dB, what is the RMS amplitude of the sinusoid? 3. The file signal_noise.mat contains a variable x that consists of a 1.0-V peak sinusoidal signal buried in noise. What is the SNR for this signal and noise? Assume that the noise RMS is much greater than the signal RMS. Note: “signal_noise.mat” and other files used in these assignments can be downloaded from the content area of Brightspace, within the “Data Files for Exercises” folder. These files can be opened in Matlab by copying into the active folder and double-clicking on the file or using the Matlab load command using the format: load(‘signal_noise.mat’). To discover the variables within the files use the Matlab who command. 4. An 8-bit ADC converter that has an input range of ±5 V is used to convert a signal that ranges between ±2 V. What is the SNR of the input if the input noise equals the quantization noise of the converter? Hint: Refer to Equation below to find the quantization noise: 5. The file filter1.mat contains the spectrum of a fourth-order lowpass filter as variable x in dB. The file also contains the corresponding frequencies of x in variable freq. Plot the spectrum of this filter both as dB versus log frequency and as linear amplitude versus linear frequency. The frequency axis should range between 10 and 400 Hz in both plots. Hint: Use Equation below to convert: Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 6. Generate one cycle of the square wave similar to the one shown below in a 500-point MATLAB array. Determine the RMS value of this waveform. [Hint: When you take the square of the data array, be sure to use a period before the up arrow so that MATLAB does the squaring point-by-point (i.e., x.^2).]. 7. A resistor produces 10 μV noise (i.e., 10 × 10−6 V noise) when the room temperature is 310 K and the bandwidth is 1 kHz (i.e., 1000 Hz). What current noise would be produced by this resistor? 8. A 3-ma current flows through both a diode (i.e., a semiconductor) and a 20,000-Ω (i.e., 20-kΩ) resistor. What is the net current noise, in? Assume a bandwidth of 1 kHz (i.e., 1 × 103 Hz). Which of the two components is responsible for producing the most noise? 9. Determine if the two signals, x and y, in file correl1.mat are correlated by checking the angle between them. 10. Modify the approach used in Practice Problem 3 to find the angle between short signals: Do not attempt to plot these vectors as it would require a 6-dimensional plot!

Whatsapp +919911743277