Name Car Fuel Economy Objectives: 1. Collect data from a reliable source 2. Create a chart of important values 3. Determine what type of graph best fits the available data (exponential, linear, logarithmic, polynomial… etc) 4. Create a plot using the correct values and determine which variable goes on which axis 5. Fit a line to the graph and show equation 6. Use the equation to predict a future value 7. Use the equation editor to display equations Your task: You want to determine whether the curb weight of the vehicle has any impact on the Highway MPG of the vehicle. In order to do this, go to a reliable source and select 10 of your favorite cars. It can be from any make, model or year and be different across the board. As a matter of fact, the more variety you have in the make, model and year the better. (Please follow the correct homework heading format and please record your answers in blue color on this sheet) General note: Whenever you create a graph, label the X-axis and the Y-axis. Give the graph an appropriate title and include units for the axes. Use the Equation Editor to type answers as equations. 1. On Excel, create a table by recording the make, model and year of the vehicle, the curb weight, and the highway MPG (Miles per gallon). Do this for all 10 cars. 2. Create/insert a scatter plot of the Curb weight (X-axis) vs. Highway MPG (Y-axis). 3. Select the data points by right clicking on the data point and select to add a linear trendline for the 10 cars you currently have. Make it a solid green line (format the line). 4. Select to display the equation on the chart. What is the equation? _______________________________ 5. Using your equation, predict the MPG of a Uhaul that has a curb weight of 12,600lbs (type in curb weight as x). What is that MPG (y)? ___________________________. Record the Uhaul’s curb weight and predicted MPG on the excel sheet. Label clearly with the equation used. Does that answer make sense? Why or why not? ___________________________________________________ ___________________________________________________________________________________________ 6. According to the Uhaul website, a typical truck will get about 10 MPG. Create another scatter plot (do not delete the original one) that shows the same data, but is fitted with an exponential trendline (dashed red line). 7. Select to display the equation on the chart. What is the equation? ________________________________ 8. Using your equation, predict the MPG of a Uhaul that has a curb weight of 12,600lbs. What is that MPG? ___________________________. Record the Uhaul’s curb weight and predicted MPG on the excel sheet. Label clearly with the equation used. Does that answer make sense? Why or why not? Is this prediction better or worse than the first equation? ___________________________________________________________________________________________ ___________________________________________________________________________________________ 9. Now create a third scatter plot of curb weight and highway MPG. Add both a linear and exponential trendline. Make the linear trendline a solid green line and the exponential trendline a dashed red line (just like the two previous graphs). 10. Include a legend for the third graph. 11. Organize the excel sheet to make it look professional. 12. Please upload both this document with all of your answers and the Excel sheet that you created in the assignment on eCampus.

Name Car Fuel Economy Objectives: 1. Collect data from a reliable source 2. Create a chart of important values 3. Determine what type of graph best fits the available data (exponential, linear, logarithmic, polynomial… etc) 4. Create a plot using the correct values and determine which variable goes on which axis 5. Fit a line to the graph and show equation 6. Use the equation to predict a future value 7. Use the equation editor to display equations Your task: You want to determine whether the curb weight of the vehicle has any impact on the Highway MPG of the vehicle. In order to do this, go to a reliable source and select 10 of your favorite cars. It can be from any make, model or year and be different across the board. As a matter of fact, the more variety you have in the make, model and year the better. (Please follow the correct homework heading format and please record your answers in blue color on this sheet) General note: Whenever you create a graph, label the X-axis and the Y-axis. Give the graph an appropriate title and include units for the axes. Use the Equation Editor to type answers as equations. 1. On Excel, create a table by recording the make, model and year of the vehicle, the curb weight, and the highway MPG (Miles per gallon). Do this for all 10 cars. 2. Create/insert a scatter plot of the Curb weight (X-axis) vs. Highway MPG (Y-axis). 3. Select the data points by right clicking on the data point and select to add a linear trendline for the 10 cars you currently have. Make it a solid green line (format the line). 4. Select to display the equation on the chart. What is the equation? _______________________________ 5. Using your equation, predict the MPG of a Uhaul that has a curb weight of 12,600lbs (type in curb weight as x). What is that MPG (y)? ___________________________. Record the Uhaul’s curb weight and predicted MPG on the excel sheet. Label clearly with the equation used. Does that answer make sense? Why or why not? ___________________________________________________ ___________________________________________________________________________________________ 6. According to the Uhaul website, a typical truck will get about 10 MPG. Create another scatter plot (do not delete the original one) that shows the same data, but is fitted with an exponential trendline (dashed red line). 7. Select to display the equation on the chart. What is the equation? ________________________________ 8. Using your equation, predict the MPG of a Uhaul that has a curb weight of 12,600lbs. What is that MPG? ___________________________. Record the Uhaul’s curb weight and predicted MPG on the excel sheet. Label clearly with the equation used. Does that answer make sense? Why or why not? Is this prediction better or worse than the first equation? ___________________________________________________________________________________________ ___________________________________________________________________________________________ 9. Now create a third scatter plot of curb weight and highway MPG. Add both a linear and exponential trendline. Make the linear trendline a solid green line and the exponential trendline a dashed red line (just like the two previous graphs). 10. Include a legend for the third graph. 11. Organize the excel sheet to make it look professional. 12. Please upload both this document with all of your answers and the Excel sheet that you created in the assignment on eCampus.

info@checkyourstudy.com Whatsapp +919911743277
Many people believe that choosing a job and choosing a career are the same. You know my position; I believe a JOB is Just over Broke. What is your position? Explain the differences between a job and a career.

Many people believe that choosing a job and choosing a career are the same. You know my position; I believe a JOB is Just over Broke. What is your position? Explain the differences between a job and a career.

A job is essentially one thing an individual do to … Read More...
The Rocket Equation The Tsiolovsky Rocket Equation describes the velocity that results from pushing matter (exploding rocket fuel) in the opposite direction to the direction you want to travel. This assignment requires you to do basic calculation using the Tsiolovsky Rocket Equation : v[t] = eV Log M M – bR t  – g t The parameters used are : ◼ eV exhaust velocity (m/s) ◼ pL payload (kg) ◼ fL fuel load (kg) ◼ M is the mass of the rocket (pL+fL, kg) ◼ bR the burn rate of fuel (kg/s) ◼ g the force due to gravity ms2 The variables calculated are : h(t) the height of the rocket at time t (m) v(t) the velocity of the rocket at time t (m/s) m(t) the mass of the rocket at time t (kg) Questions Question 1 (1 mark) Write an expression corresponding to the Tsiolovsky rocket equation and use integrate to find a function to describe the height of the rocket during fuel burn. Question 2 (2 marks) The fuel burns at a constant rate. Find the time (t0), velocity (vmax), and height (h0) of the rocket when the fuel runs out (calculate the time when the fuel runs out, and substitute this into the height Printed by Wolfram Mathematica Student Edition and velocity equations). Question 3 (2 marks) The second phase is when the only accelaration acting on the rocket is from gravity. This phase starts from the height and velocity of the previous question, and the velocity is given by the projectile motion equation, v(t) = vmax – g (t – t0). Use Solve to find the time when this equation equals 0. This will be the highest point the rocket reaches before returning to earth. Question 4 (1 marks) Integerate the projectile motion equation and add h0 to find the maximum height the rocket reaches. Question 5 (1 marks) Use Solve over the projectile motion equation to find the time when the height is 0. 2 assignment4.nb Printed by Wolfram Mathematica Student Edition

The Rocket Equation The Tsiolovsky Rocket Equation describes the velocity that results from pushing matter (exploding rocket fuel) in the opposite direction to the direction you want to travel. This assignment requires you to do basic calculation using the Tsiolovsky Rocket Equation : v[t] = eV Log M M – bR t  – g t The parameters used are : ◼ eV exhaust velocity (m/s) ◼ pL payload (kg) ◼ fL fuel load (kg) ◼ M is the mass of the rocket (pL+fL, kg) ◼ bR the burn rate of fuel (kg/s) ◼ g the force due to gravity ms2 The variables calculated are : h(t) the height of the rocket at time t (m) v(t) the velocity of the rocket at time t (m/s) m(t) the mass of the rocket at time t (kg) Questions Question 1 (1 mark) Write an expression corresponding to the Tsiolovsky rocket equation and use integrate to find a function to describe the height of the rocket during fuel burn. Question 2 (2 marks) The fuel burns at a constant rate. Find the time (t0), velocity (vmax), and height (h0) of the rocket when the fuel runs out (calculate the time when the fuel runs out, and substitute this into the height Printed by Wolfram Mathematica Student Edition and velocity equations). Question 3 (2 marks) The second phase is when the only accelaration acting on the rocket is from gravity. This phase starts from the height and velocity of the previous question, and the velocity is given by the projectile motion equation, v(t) = vmax – g (t – t0). Use Solve to find the time when this equation equals 0. This will be the highest point the rocket reaches before returning to earth. Question 4 (1 marks) Integerate the projectile motion equation and add h0 to find the maximum height the rocket reaches. Question 5 (1 marks) Use Solve over the projectile motion equation to find the time when the height is 0. 2 assignment4.nb Printed by Wolfram Mathematica Student Edition

No expert has answered this question yet. You can browse … Read More...
In case the body have to stay in lower temperature for extended time period (more than 1 hour), how does the body regulate its response?

In case the body have to stay in lower temperature for extended time period (more than 1 hour), how does the body regulate its response?

Arterioles transporting blood to external capillaries beneath the surface of … Read More...
Fall Semester 2015 NMSU Econ 252, Instructor: Dr. Larry Blank Writing Assignment and Critical Thinking Problems: This assignment is worth 100 points toward your overall course average. The criteria used to grade this assignment includes the professional appearance of the document you submit, your ability to use the principles of supply and demand to critically assess the impacts, and your ability to explain your conclusions in writing. Each part can be answered in one page or less. Assigned: October 5, 2015 Deadline: Friday, October 16, 2015 You will email your assignment in Canvas. Before you email your assignment, make sure your name is on your paper AND your full name is included in the electronic file name. For example, filename: Jose Sanchez_Econ252_paper.doc I will not read your work if your name is not in the electronic filename. Assignment: Answers to all parts shall be completed in a Microsoft Word document. Begin by copying the Scenario below and then, for each part, copy the problem before completing your answer. You may want to draw your diagrams in Microsoft PowerPoint or other software and then copy and paste the diagram into the Word document as a “Picture (Enhanced Metafile)” using the “Paste Special” feature in Word. The document you turn in should be six (6) pages long. For the first page include a short title for this assignment, the course name and number, your name, and then copy and paste everything below beginning with “Scenario” onto your first page. The 2nd page of your document should include the description of Part 1 and then your diagram and answer. Do the same for Parts 2-5, with each part on a separate page. Scenario: The Federal Government implemented a policy some years ago to subsidize the production of ethanol fuel at 46 cents per gallon. See news article here: http://usnews.nbcnews.com/_news/2011/12/29/9804028-6-billion-a-year-ethanol-subsidy-dies-but-wait-theres-more?lite Ethanol is an alternative fuel (a substitute for regular gasoline) that can be used in some models of automobiles designed to burn any mix of gasoline up to 85% ethanol (fuel is known as E85, and auto manufacturers label these vehicles as “FlexFuel” and similar names). A primary input in the production of ethanol is corn. For the purposes of this assignment, assume that all relevant markets are perfectly competitive. Part 1: Show geometrically using the supply and demand curves the impact the subsidy had in the ethanol market (hint: the result has been a reduction in the market price of ethanol). Fully explain the impact of the production subsidy in terms of the behavior of producers (sellers) in the market and customers (buyers) in the market and what has happened to equilibrium price and quantity in the market for ethanol. Part 2: Show geometrically using the supply and demand curves what impact the reduction in market price for ethanol had in the market for regular gasoline. Fully explain the impact this reduced ethanol price had on the customer demand for regular gasoline. Part 3: Show geometrically using the supply and demand curves the impact due to the change in the equilibrium quantity in the market for ethanol had in the market for corn. Fully explain the impact and the resulting equilibrium price and quantity for corn. Part 4: Show geometrically using the supply and demand curves what impact the change in the market price of corn had in the market for manufactured corn tortillas (assume that the market for corn tortillas is perfectly competitive). Corn tortillas are a staple food item in the diets of millions of families across the U.S.. Fully explain the impact of change in the market price of corn in terms of the behavior of producers (sellers) in the market and customers (buyers) in the corn tortilla market. Part 5: Show geometrically using the supply and demand curves the impact in the ethanol market when the ethanol subsidy ended on Jan. 1, 2012. Give one possible explanation why I can no longer find E85 fuel at gas stations. Hint: When the subsidy still existed, the market price of E85 was about 30 cents a gallon less than regular gasoline. E85 is not a perfect substitute for regular gasoline because the performance is less and gas mileage drops by 5-7 miles per gallon.

Fall Semester 2015 NMSU Econ 252, Instructor: Dr. Larry Blank Writing Assignment and Critical Thinking Problems: This assignment is worth 100 points toward your overall course average. The criteria used to grade this assignment includes the professional appearance of the document you submit, your ability to use the principles of supply and demand to critically assess the impacts, and your ability to explain your conclusions in writing. Each part can be answered in one page or less. Assigned: October 5, 2015 Deadline: Friday, October 16, 2015 You will email your assignment in Canvas. Before you email your assignment, make sure your name is on your paper AND your full name is included in the electronic file name. For example, filename: Jose Sanchez_Econ252_paper.doc I will not read your work if your name is not in the electronic filename. Assignment: Answers to all parts shall be completed in a Microsoft Word document. Begin by copying the Scenario below and then, for each part, copy the problem before completing your answer. You may want to draw your diagrams in Microsoft PowerPoint or other software and then copy and paste the diagram into the Word document as a “Picture (Enhanced Metafile)” using the “Paste Special” feature in Word. The document you turn in should be six (6) pages long. For the first page include a short title for this assignment, the course name and number, your name, and then copy and paste everything below beginning with “Scenario” onto your first page. The 2nd page of your document should include the description of Part 1 and then your diagram and answer. Do the same for Parts 2-5, with each part on a separate page. Scenario: The Federal Government implemented a policy some years ago to subsidize the production of ethanol fuel at 46 cents per gallon. See news article here: http://usnews.nbcnews.com/_news/2011/12/29/9804028-6-billion-a-year-ethanol-subsidy-dies-but-wait-theres-more?lite Ethanol is an alternative fuel (a substitute for regular gasoline) that can be used in some models of automobiles designed to burn any mix of gasoline up to 85% ethanol (fuel is known as E85, and auto manufacturers label these vehicles as “FlexFuel” and similar names). A primary input in the production of ethanol is corn. For the purposes of this assignment, assume that all relevant markets are perfectly competitive. Part 1: Show geometrically using the supply and demand curves the impact the subsidy had in the ethanol market (hint: the result has been a reduction in the market price of ethanol). Fully explain the impact of the production subsidy in terms of the behavior of producers (sellers) in the market and customers (buyers) in the market and what has happened to equilibrium price and quantity in the market for ethanol. Part 2: Show geometrically using the supply and demand curves what impact the reduction in market price for ethanol had in the market for regular gasoline. Fully explain the impact this reduced ethanol price had on the customer demand for regular gasoline. Part 3: Show geometrically using the supply and demand curves the impact due to the change in the equilibrium quantity in the market for ethanol had in the market for corn. Fully explain the impact and the resulting equilibrium price and quantity for corn. Part 4: Show geometrically using the supply and demand curves what impact the change in the market price of corn had in the market for manufactured corn tortillas (assume that the market for corn tortillas is perfectly competitive). Corn tortillas are a staple food item in the diets of millions of families across the U.S.. Fully explain the impact of change in the market price of corn in terms of the behavior of producers (sellers) in the market and customers (buyers) in the corn tortilla market. Part 5: Show geometrically using the supply and demand curves the impact in the ethanol market when the ethanol subsidy ended on Jan. 1, 2012. Give one possible explanation why I can no longer find E85 fuel at gas stations. Hint: When the subsidy still existed, the market price of E85 was about 30 cents a gallon less than regular gasoline. E85 is not a perfect substitute for regular gasoline because the performance is less and gas mileage drops by 5-7 miles per gallon.

F7.10 The flame spread rate through porous solids increases with concurrent wind velocity. decreases with concurrent wind velocity. is independent of concurrent wind velocity. F7.11 Surface tension accelerates opposed-flow flame spread over liquid fuels. True False F7.12 Opposed-flow flame spread rates over a solid surface are typically much smaller than 1 mm/s. around 1mm/s. much greater than 1 mm/s. F7.13 Upward flame spread rate over a vertical surface is typically between 10 and 1000 mm/s. True False F7.14 The Steiner tunnel test described in ASTM standard E 84 is used to assess the fire performance of interior finish materials based on lateral flame spread over a vertical sample. True False F8.1 Describe the triad of fire growth. F8.2 Liquid pool fires reach steady burning conditions within seconds after ignition. True False F8.3 The heat of gasification of liquid fuels is typically less than 1 kJ/g. between 1 and 3 kJ/g. greater than 3 kJ/g. F8.4 The heat flux from the flame to the surface of real burning objects can usually be determined with sufficient accuracy so that reasonable burning rate predictions can be made. True False F8.5 The mass burning flux generally associated with extinction is 0.5 g/m2s. 5 g/m2s. 50 g/m2s. F8.6 The mass burning flux of a liquid pool fire is a function of only the pool diameter. only the fuel type. pool diameter and fuel type. F8.7 The energy release rate of real objects can be measured in an oxygen bomb calorimeter. an oxygen consumption calorimeter. a room/corner test. F8.8 The peak energy release rate of typical domestic upholstered furniture can be as high as 3000 kW. True False F8.9 Draw a typical curve of the mass burning flux of a char forming fuel as a function of time. F8.10 A fast fire as defined in NFPA 72B grows proportionally to t2 and reaches an energy release rate of 1 MW in 75 sec. 150 sec. 300 sec. F9.1 Air entrainment into turbulent pool fire flames is due to buoyancy. True False F9.2 The frequency of vortex shedding in turbulent pool fire flames increases with pool diameter. decreases with pool diameter. is independent of pool diameter. F9.3 The height of turbulent jet flames for a given fuel type and orifice size is independent of energy release rate. True False F9.4 The exit velocities of fuel vapors leaving a solid or liquid pool fire surface are responsible for entrainment of air in the plume. True False F9.5 The height of a turbulent pool fire flame is a function of only energy release rate. only pool diameter. energy release rate and pool diameter. F9.6 Turbulent pool fire flame heights fluctuate in time within a factor of 2. True False F9.7 The Q* value for jet fires is 102 or greater. 104 or greater. 106 or greater. F9.8 The temperature in the continuous flame region of moderate size turbulent pool fires is approximately 820°C. True False F9.9 The temperature at the maximum flame height of a turbulent pool fire flame is approximately 1200°C. 800°C. 300°C. F9.10 The adiabatic flame temperature of hydrocarbon fuels is 1700-2000°C. 2000-2300°C. 2300-2600°C. F10.1 The stoichiometric air to fuel mass ratio of hydrocarbon fuels is of the order of 1.5 g/g. 15 g/g. 150 g/g. F10.2 Give two examples of products of incomplete combustion that occur in fires. F10.3 Slight amounts of products of incomplete combustion are generated in overventilated fires. True False F10.4 The CO yield of a fire is a function of only the fuel involved. only the ventilation conditions. the fuel and the ventilation conditions. F10.5 A carboxyhemoglobin level of 40% in the blood is usually lethal. True (doubt) False F10.6 Carbon monoxide is the leading killer of people in fires. True False F10.7 HCN is a narcotic gas. an irritant gas. a fuel vapor. F10.8 The hazard to humans from narcotic gases is a function of only the concentration of the gas. only the duration of exposure. the product of concentration and duration of exposure. F10.9 The effects on lethality of CO, HCN, and reduced O2 are additive. True False F10.10 Irritant gases typically cause post-exposure fatalities. True False F10.11 Visibility through smoke improves with increasing optical density. True False F10.12 Heat stress occurs when the skin is exposed to a heat flux of 1 kW/m2. the skin reaches a temperature of 45°C. the body’s core temperature reaches 41°C.

F7.10 The flame spread rate through porous solids increases with concurrent wind velocity. decreases with concurrent wind velocity. is independent of concurrent wind velocity. F7.11 Surface tension accelerates opposed-flow flame spread over liquid fuels. True False F7.12 Opposed-flow flame spread rates over a solid surface are typically much smaller than 1 mm/s. around 1mm/s. much greater than 1 mm/s. F7.13 Upward flame spread rate over a vertical surface is typically between 10 and 1000 mm/s. True False F7.14 The Steiner tunnel test described in ASTM standard E 84 is used to assess the fire performance of interior finish materials based on lateral flame spread over a vertical sample. True False F8.1 Describe the triad of fire growth. F8.2 Liquid pool fires reach steady burning conditions within seconds after ignition. True False F8.3 The heat of gasification of liquid fuels is typically less than 1 kJ/g. between 1 and 3 kJ/g. greater than 3 kJ/g. F8.4 The heat flux from the flame to the surface of real burning objects can usually be determined with sufficient accuracy so that reasonable burning rate predictions can be made. True False F8.5 The mass burning flux generally associated with extinction is 0.5 g/m2s. 5 g/m2s. 50 g/m2s. F8.6 The mass burning flux of a liquid pool fire is a function of only the pool diameter. only the fuel type. pool diameter and fuel type. F8.7 The energy release rate of real objects can be measured in an oxygen bomb calorimeter. an oxygen consumption calorimeter. a room/corner test. F8.8 The peak energy release rate of typical domestic upholstered furniture can be as high as 3000 kW. True False F8.9 Draw a typical curve of the mass burning flux of a char forming fuel as a function of time. F8.10 A fast fire as defined in NFPA 72B grows proportionally to t2 and reaches an energy release rate of 1 MW in 75 sec. 150 sec. 300 sec. F9.1 Air entrainment into turbulent pool fire flames is due to buoyancy. True False F9.2 The frequency of vortex shedding in turbulent pool fire flames increases with pool diameter. decreases with pool diameter. is independent of pool diameter. F9.3 The height of turbulent jet flames for a given fuel type and orifice size is independent of energy release rate. True False F9.4 The exit velocities of fuel vapors leaving a solid or liquid pool fire surface are responsible for entrainment of air in the plume. True False F9.5 The height of a turbulent pool fire flame is a function of only energy release rate. only pool diameter. energy release rate and pool diameter. F9.6 Turbulent pool fire flame heights fluctuate in time within a factor of 2. True False F9.7 The Q* value for jet fires is 102 or greater. 104 or greater. 106 or greater. F9.8 The temperature in the continuous flame region of moderate size turbulent pool fires is approximately 820°C. True False F9.9 The temperature at the maximum flame height of a turbulent pool fire flame is approximately 1200°C. 800°C. 300°C. F9.10 The adiabatic flame temperature of hydrocarbon fuels is 1700-2000°C. 2000-2300°C. 2300-2600°C. F10.1 The stoichiometric air to fuel mass ratio of hydrocarbon fuels is of the order of 1.5 g/g. 15 g/g. 150 g/g. F10.2 Give two examples of products of incomplete combustion that occur in fires. F10.3 Slight amounts of products of incomplete combustion are generated in overventilated fires. True False F10.4 The CO yield of a fire is a function of only the fuel involved. only the ventilation conditions. the fuel and the ventilation conditions. F10.5 A carboxyhemoglobin level of 40% in the blood is usually lethal. True (doubt) False F10.6 Carbon monoxide is the leading killer of people in fires. True False F10.7 HCN is a narcotic gas. an irritant gas. a fuel vapor. F10.8 The hazard to humans from narcotic gases is a function of only the concentration of the gas. only the duration of exposure. the product of concentration and duration of exposure. F10.9 The effects on lethality of CO, HCN, and reduced O2 are additive. True False F10.10 Irritant gases typically cause post-exposure fatalities. True False F10.11 Visibility through smoke improves with increasing optical density. True False F10.12 Heat stress occurs when the skin is exposed to a heat flux of 1 kW/m2. the skin reaches a temperature of 45°C. the body’s core temperature reaches 41°C.

F7.10 The flame spread rate through porous solids increases with … Read More...
Transportation 1. What would be some major benefits to a city investing in mass transit? • Reduces congestion and fuel usage o 2011 – U.S. public transportation use saved 865 million hours in travel time and 450 million gallons of fuel in 498 urban areas o Decrease the need for road enhancements o Can be quicker to get to work when roads are congested o Incentivizes exercise o Mass transit can have less land use requirements • Provides economic opportunities o revitalization of cities o Provides jobs in transportation o City makes money off of transit revenue o More appealing to tourists • Air quality o Cuts carbon emissions by 37 million metric tons annually o Air quality improvement for the city (less smog) • Safety o Reduce the number of accidents 2. What would be some major benefits to the users of mass transit? • Traffic o Reduces frustration of driving in traffic o Reduces the need for gas in traffic o Reliable and predictable time of arrival o More options to travel o No waiting in DMV lines • Economics o Public transit vs. owning, driving, and parking a car = $803/month average savings (~$10,000 a year) o Connects people who don’t have a car to jobs, healthcare, home o Provides jobs in transportation o No longer have to pay car insurance • Social o Can interact/meet new people every day o Connects communities o Can do other things, like read, on the train or bus o Reduce in stress o • Safety o Reduce risk of accidents

Transportation 1. What would be some major benefits to a city investing in mass transit? • Reduces congestion and fuel usage o 2011 – U.S. public transportation use saved 865 million hours in travel time and 450 million gallons of fuel in 498 urban areas o Decrease the need for road enhancements o Can be quicker to get to work when roads are congested o Incentivizes exercise o Mass transit can have less land use requirements • Provides economic opportunities o revitalization of cities o Provides jobs in transportation o City makes money off of transit revenue o More appealing to tourists • Air quality o Cuts carbon emissions by 37 million metric tons annually o Air quality improvement for the city (less smog) • Safety o Reduce the number of accidents 2. What would be some major benefits to the users of mass transit? • Traffic o Reduces frustration of driving in traffic o Reduces the need for gas in traffic o Reliable and predictable time of arrival o More options to travel o No waiting in DMV lines • Economics o Public transit vs. owning, driving, and parking a car = $803/month average savings (~$10,000 a year) o Connects people who don’t have a car to jobs, healthcare, home o Provides jobs in transportation o No longer have to pay car insurance • Social o Can interact/meet new people every day o Connects communities o Can do other things, like read, on the train or bus o Reduce in stress o • Safety o Reduce risk of accidents

info@checkyourstudy.com
F6.1 Piloted ignition occurs when the lower flammable limit is reached in the gas phase in the vicinity of the ignition pilot. True False F6.2 The flashpoint of a liquid fuel is always lower than its boiling point. True False F6.3 The vapor concentration just above the surface of a boiling liquid is 100%. True False F6.4 The autoignition temperature of a liquid fuel is close to its boiling point. True False F6.5 Piloted ignition of solid fuels typically occurs at surface temperatures ranging from 250°C to 400°C, while autoignition temperatures usually exceed 500°C. True False F6.6 Except for very low heating conditions, the physical thickness of objects that exhibit “thin” piloted ignition behavior is typically of the order of 0.1-0.2 mm. 1-2 mm. 10-20 mm. F6.7 The time to piloted ignition of a “thin” object is proportional to the inverse of the net heat flux at its exposed surface. True False F6.8 The time to piloted ignition of a “thick” object is proportional to the inverse of the net heat flux at its exposed surface. True False

F6.1 Piloted ignition occurs when the lower flammable limit is reached in the gas phase in the vicinity of the ignition pilot. True False F6.2 The flashpoint of a liquid fuel is always lower than its boiling point. True False F6.3 The vapor concentration just above the surface of a boiling liquid is 100%. True False F6.4 The autoignition temperature of a liquid fuel is close to its boiling point. True False F6.5 Piloted ignition of solid fuels typically occurs at surface temperatures ranging from 250°C to 400°C, while autoignition temperatures usually exceed 500°C. True False F6.6 Except for very low heating conditions, the physical thickness of objects that exhibit “thin” piloted ignition behavior is typically of the order of 0.1-0.2 mm. 1-2 mm. 10-20 mm. F6.7 The time to piloted ignition of a “thin” object is proportional to the inverse of the net heat flux at its exposed surface. True False F6.8 The time to piloted ignition of a “thick” object is proportional to the inverse of the net heat flux at its exposed surface. True False

F6.1 Piloted ignition occurs when the lower flammable limit is … Read More...