2. Career development process is complex and rapidly evolving and new theories are continually developing presenting challenges to traditional understandings. Discuss why an understanding of career development processes is critical to management, employee and organizational success.

2. Career development process is complex and rapidly evolving and new theories are continually developing presenting challenges to traditional understandings. Discuss why an understanding of career development processes is critical to management, employee and organizational success.

Studies are at the present extrapolative huge employment income in … Read More...
In case the body stay in lower temperature for short period (less than 20 minutes), explain how the body response to it.

In case the body stay in lower temperature for short period (less than 20 minutes), explain how the body response to it.

Sweat stops being formed. The minute muscles under the exterior … Read More...
A circular loop of wire, 8.0 cm in diameter and having 600 turns is placed outside and close to one end of a relatively large solenoid with variable current. The solenoid is sufficiently large such that the magnetic field it generates is homogeneous over the area of the loop. Two ends of the loop are connected to a voltmeter that measures the voltage induced inside the loop. When the solenoid is powered up the magnetic field changes from zero to final steady value of 0.5 T. How quickly must the magnetic field be switched on so that the induced voltage in the lop does no exceed 12 V.

A circular loop of wire, 8.0 cm in diameter and having 600 turns is placed outside and close to one end of a relatively large solenoid with variable current. The solenoid is sufficiently large such that the magnetic field it generates is homogeneous over the area of the loop. Two ends of the loop are connected to a voltmeter that measures the voltage induced inside the loop. When the solenoid is powered up the magnetic field changes from zero to final steady value of 0.5 T. How quickly must the magnetic field be switched on so that the induced voltage in the lop does no exceed 12 V.

info@checkyourstudy.com A circular loop of wire, 8.0 cm in diameter … Read More...
Chapter 7 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, March 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Book on a Table A book weighing 5 N rests on top of a table. Part A A downward force of magnitude 5 N is exerted on the book by the force of ANSWER: Part B An upward force of magnitude _____ is exerted on the _____ by the table. the table gravity inertia . ANSWER: Part C Do the downward force in Part A and the upward force in Part B constitute a 3rd law pair? You did not open hints for this part. ANSWER: Part D The reaction to the force in Part A is a force of magnitude _____, exerted on the _____ by the _____. Its direction is _____ . You did not open hints for this part. ANSWER: 6 N / table 5 N / table 5 N / book 6 N / book yes no Part E The reaction to the force in Part B is a force of magnitude _____, exerted on the _____ by the _____. Its direction is _____. ANSWER: Part F Which of Newton’s laws dictates that the forces in Parts A and B are equal and opposite? ANSWER: Part G Which of Newton’s laws dictates that the forces in Parts B and E are equal and opposite? ANSWER: 5 N / earth / book / upward 5 N / book / table / upward 5 N / book / earth / upward 5 N / earth / book / downward 5 N / table / book / upward 5 N / table / earth / upward 5 N / book / table / upward 5 N / table / book / downward 5 N / earth / book / downward Newton’s 1st or 2nd law Newton’s 3rd law Blocks in an Elevator Ranking Task Three blocks are stacked on top of each other inside an elevator as shown in the figure. Answer the following questions with reference to the eight forces defined as follows. the force of the 3 block on the 2 block, , the force of the 2 block on the 3 block, , the force of the 3 block on the 1 block, , the force of the 1 block on the 3 block, , the force of the 2 block on the 1 block, , the force of the 1 block on the 2 block, , the force of the 1 block on the floor, , and the force of the floor on the 1 block, . Part A Assume the elevator is at rest. Rank the magnitude of the forces. Rank from largest to smallest. To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: Newton’s 1st or 2nd law Newton’s 3rd law kg kg F3 on 2 kg kg F2 on 3 kg kg F3 on 1 kg kg F1 on 3 kg kg F2 on 1 kg kg F1 on 2 kg F1 on floor kg Ffloor on 1 Part B This question will be shown after you complete previous question(s). Newton’s 3rd Law Discussed Learning Goal: To understand Newton’s 3rd law, which states that a physical interaction always generates a pair of forces on the two interacting bodies. In Principia, Newton wrote: To every action there is always opposed an equal reaction: or, the mutual actions of two bodies upon each other are always equal, and directed to contrary parts. (translation by Cajori) The phrase after the colon (often omitted from textbooks) makes it clear that this is a statement about the nature of force. The central idea is that physical interactions (e.g., due to gravity, bodies touching, or electric forces) cause forces to arise between pairs of bodies. Each pairwise interaction produces a pair of opposite forces, one acting on each body. In summary, each physical interaction between two bodies generates a pair of forces. Whatever the physical cause of the interaction, the force on body A from body B is equal in magnitude and opposite in direction to the force on body B from body A. Incidentally, Newton states that the word “action” denotes both (a) the force due to an interaction and (b) the changes in momentum that it imparts to the two interacting bodies. If you haven’t learned about momentum, don’t worry; for now this is just a statement about the origin of forces. Mark each of the following statements as true or false. If a statement refers to “two bodies” interacting via some force, you are not to assume that these two bodies have the same mass. Part A Every force has one and only one 3rd law pair force. ANSWER: Part B The two forces in each pair act in opposite directions. ANSWER: Part C The two forces in each pair can either both act on the same body or they can act on different bodies. ANSWER: true false true false Part D The two forces in each pair may have different physical origins (for instance, one of the forces could be due to gravity, and its pair force could be due to friction or electric charge). ANSWER: Part E The two forces of a 3rd law pair always act on different bodies. ANSWER: Part F Given that two bodies interact via some force, the accelerations of these two bodies have the same magnitude but opposite directions. (Assume no other forces act on either body.) You did not open hints for this part. ANSWER: true false true false true false Part G According to Newton’s 3rd law, the force on the (smaller) moon due to the (larger) earth is ANSWER: Pulling Three Blocks Three identical blocks connected by ideal strings are being pulled along a horizontal frictionless surface by a horizontal force . The magnitude of the tension in the string between blocks B and C is = 3.00 . Assume that each block has mass = 0.400 . true false greater in magnitude and antiparallel to the force on the earth due to the moon. greater in magnitude and parallel to the force on the earth due to the moon. equal in magnitude but antiparallel to the force on the earth due to the moon. equal in magnitude and parallel to the force on the earth due to the moon. smaller in magnitude and antiparallel to the force on the earth due to the moon. smaller in magnitude and parallel to the force on the earth due to the moon. F T N m kg Part A What is the magnitude of the force? Express your answer numerically in newtons. You did not open hints for this part. ANSWER: Part B What is the tension in the string between block A and block B? Express your answer numerically in newtons You did not open hints for this part. ANSWER: Pulling Two Blocks In the situation shown in the figure, a person is pulling with a constant, nonzero force on string 1, which is attached to block A. Block A is also attached to block B via string 2, as shown. For this problem, assume that neither string stretches and that friction is negligible. Both blocks have finite (nonzero) mass. F F = N TAB TAB = N F Part A Which one of the following statements correctly descibes the relationship between the accelerations of blocks A and B? You did not open hints for this part. ANSWER: Part B How does the magnitude of the tension in string 1, , compare with the tension in string 2, ? You did not open hints for this part. Block A has a larger acceleration than block B. Block B has a larger acceleration than block A. Both blocks have the same acceleration. More information is needed to determine the relationship between the accelerations. T1 T2 ANSWER: Tension in a Massless Rope Learning Goal: To understand the concept of tension and the relationship between tension and force. This problem introduces the concept of tension. The example is a rope, oriented vertically, that is being pulled from both ends. Let and (with u for up and d for down) represent the magnitude of the forces acting on the top and bottom of the rope, respectively. Assume that the rope is massless, so that its weight is negligible compared with the tension. (This is not a ridiculous approximation–modern rope materials such as Kevlar can carry tensions thousands of times greater than the weight of tens of meters of such rope.) Consider the three sections of rope labeled a, b, and c in the figure. At point 1, a downward force of magnitude acts on section a. At point 1, an upward force of magnitude acts on section b. At point 1, the tension in the rope is . At point 2, a downward force of magnitude acts on section b. At point 2, an upward force of magnitude acts on section c. At point 2, the tension in the rope is . Assume, too, that the rope is at equilibrium. Part A What is the magnitude of the downward force on section a? Express your answer in terms of the tension . ANSWER: More information is needed to determine the relationship between and . T1 > T2 T1 = T2 T1 < T2 T1 T2 Fu Fd Fad Fbu T1 Fbd Fcu T2 Fad T1 Part B What is the magnitude of the upward force on section b? Express your answer in terms of the tension . ANSWER: Part C The magnitude of the upward force on c, , and the magnitude of the downward force on b, , are equal because of which of Newton's laws? ANSWER: Part D The magnitude of the force is ____ . ANSWER: Fad = Fbu T1 Fbu = Fcu Fbd 1st 2nd 3rd Fbu Fbd Part E Now consider the forces on the ends of the rope. What is the relationship between the magnitudes of these two forces? You did not open hints for this part. ANSWER: Part F The ends of a massless rope are attached to two stationary objects (e.g., two trees or two cars) so that the rope makes a straight line. For this situation, which of the following statements are true? Check all that apply. ANSWER: less than greater than equal to Fu > Fd Fu = Fd Fu < Fd The tension in the rope is everywhere the same. The magnitudes of the forces exerted on the two objects by the rope are the same. The forces exerted on the two objects by the rope must be in opposite directions. The forces exerted on the two objects by the rope must be in the direction of the rope. Two Hanging Masses Two blocks with masses and hang one under the other. For this problem, take the positive direction to be upward, and use for the magnitude of the acceleration due to gravity. Case 1: Blocks at rest For Parts A and B assume the blocks are at rest. Part A Find , the tension in the lower rope. Express your answer in terms of some or all of the variables , , and . You did not open hints for this part. ANSWER: M1 M2 g T2 M1 M2 g Part B Find , the tension in the upper rope. Express your answer in terms of some or all of the variables , , and . You did not open hints for this part. ANSWER: Case 2: Accelerating blocks For Parts C and D the blocks are now accelerating upward (due to the tension in the strings) with acceleration of magnitude . Part C Find , the tension in the lower rope. Express your answer in terms of some or all of the variables , , , and . You did not open hints for this part. ANSWER: T2 = T1 M1 M2 g T1 = a T2 M1 M2 a g Part D Find , the tension in the upper rope. Express your answer in terms of some or all of the variables , , , and . You did not open hints for this part. ANSWER: Video Tutor: Suspended Balls: Which String Breaks? First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the question at right. You can watch the video again at any point. T2 = T1 M1 M2 a g T1 = Part A A heavy crate is attached to the wall by a light rope, as shown in the figure. Another rope hangs off the opposite edge of the box. If you slowly increase the force on the free rope by pulling on it in a horizontal direction, which rope will break? Ignore friction and the mass of the ropes. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The rope attached to the wall will break. The rope that you are pulling on will break. Both ropes are equally likely to break.

Chapter 7 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, March 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Book on a Table A book weighing 5 N rests on top of a table. Part A A downward force of magnitude 5 N is exerted on the book by the force of ANSWER: Part B An upward force of magnitude _____ is exerted on the _____ by the table. the table gravity inertia . ANSWER: Part C Do the downward force in Part A and the upward force in Part B constitute a 3rd law pair? You did not open hints for this part. ANSWER: Part D The reaction to the force in Part A is a force of magnitude _____, exerted on the _____ by the _____. Its direction is _____ . You did not open hints for this part. ANSWER: 6 N / table 5 N / table 5 N / book 6 N / book yes no Part E The reaction to the force in Part B is a force of magnitude _____, exerted on the _____ by the _____. Its direction is _____. ANSWER: Part F Which of Newton’s laws dictates that the forces in Parts A and B are equal and opposite? ANSWER: Part G Which of Newton’s laws dictates that the forces in Parts B and E are equal and opposite? ANSWER: 5 N / earth / book / upward 5 N / book / table / upward 5 N / book / earth / upward 5 N / earth / book / downward 5 N / table / book / upward 5 N / table / earth / upward 5 N / book / table / upward 5 N / table / book / downward 5 N / earth / book / downward Newton’s 1st or 2nd law Newton’s 3rd law Blocks in an Elevator Ranking Task Three blocks are stacked on top of each other inside an elevator as shown in the figure. Answer the following questions with reference to the eight forces defined as follows. the force of the 3 block on the 2 block, , the force of the 2 block on the 3 block, , the force of the 3 block on the 1 block, , the force of the 1 block on the 3 block, , the force of the 2 block on the 1 block, , the force of the 1 block on the 2 block, , the force of the 1 block on the floor, , and the force of the floor on the 1 block, . Part A Assume the elevator is at rest. Rank the magnitude of the forces. Rank from largest to smallest. To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: Newton’s 1st or 2nd law Newton’s 3rd law kg kg F3 on 2 kg kg F2 on 3 kg kg F3 on 1 kg kg F1 on 3 kg kg F2 on 1 kg kg F1 on 2 kg F1 on floor kg Ffloor on 1 Part B This question will be shown after you complete previous question(s). Newton’s 3rd Law Discussed Learning Goal: To understand Newton’s 3rd law, which states that a physical interaction always generates a pair of forces on the two interacting bodies. In Principia, Newton wrote: To every action there is always opposed an equal reaction: or, the mutual actions of two bodies upon each other are always equal, and directed to contrary parts. (translation by Cajori) The phrase after the colon (often omitted from textbooks) makes it clear that this is a statement about the nature of force. The central idea is that physical interactions (e.g., due to gravity, bodies touching, or electric forces) cause forces to arise between pairs of bodies. Each pairwise interaction produces a pair of opposite forces, one acting on each body. In summary, each physical interaction between two bodies generates a pair of forces. Whatever the physical cause of the interaction, the force on body A from body B is equal in magnitude and opposite in direction to the force on body B from body A. Incidentally, Newton states that the word “action” denotes both (a) the force due to an interaction and (b) the changes in momentum that it imparts to the two interacting bodies. If you haven’t learned about momentum, don’t worry; for now this is just a statement about the origin of forces. Mark each of the following statements as true or false. If a statement refers to “two bodies” interacting via some force, you are not to assume that these two bodies have the same mass. Part A Every force has one and only one 3rd law pair force. ANSWER: Part B The two forces in each pair act in opposite directions. ANSWER: Part C The two forces in each pair can either both act on the same body or they can act on different bodies. ANSWER: true false true false Part D The two forces in each pair may have different physical origins (for instance, one of the forces could be due to gravity, and its pair force could be due to friction or electric charge). ANSWER: Part E The two forces of a 3rd law pair always act on different bodies. ANSWER: Part F Given that two bodies interact via some force, the accelerations of these two bodies have the same magnitude but opposite directions. (Assume no other forces act on either body.) You did not open hints for this part. ANSWER: true false true false true false Part G According to Newton’s 3rd law, the force on the (smaller) moon due to the (larger) earth is ANSWER: Pulling Three Blocks Three identical blocks connected by ideal strings are being pulled along a horizontal frictionless surface by a horizontal force . The magnitude of the tension in the string between blocks B and C is = 3.00 . Assume that each block has mass = 0.400 . true false greater in magnitude and antiparallel to the force on the earth due to the moon. greater in magnitude and parallel to the force on the earth due to the moon. equal in magnitude but antiparallel to the force on the earth due to the moon. equal in magnitude and parallel to the force on the earth due to the moon. smaller in magnitude and antiparallel to the force on the earth due to the moon. smaller in magnitude and parallel to the force on the earth due to the moon. F T N m kg Part A What is the magnitude of the force? Express your answer numerically in newtons. You did not open hints for this part. ANSWER: Part B What is the tension in the string between block A and block B? Express your answer numerically in newtons You did not open hints for this part. ANSWER: Pulling Two Blocks In the situation shown in the figure, a person is pulling with a constant, nonzero force on string 1, which is attached to block A. Block A is also attached to block B via string 2, as shown. For this problem, assume that neither string stretches and that friction is negligible. Both blocks have finite (nonzero) mass. F F = N TAB TAB = N F Part A Which one of the following statements correctly descibes the relationship between the accelerations of blocks A and B? You did not open hints for this part. ANSWER: Part B How does the magnitude of the tension in string 1, , compare with the tension in string 2, ? You did not open hints for this part. Block A has a larger acceleration than block B. Block B has a larger acceleration than block A. Both blocks have the same acceleration. More information is needed to determine the relationship between the accelerations. T1 T2 ANSWER: Tension in a Massless Rope Learning Goal: To understand the concept of tension and the relationship between tension and force. This problem introduces the concept of tension. The example is a rope, oriented vertically, that is being pulled from both ends. Let and (with u for up and d for down) represent the magnitude of the forces acting on the top and bottom of the rope, respectively. Assume that the rope is massless, so that its weight is negligible compared with the tension. (This is not a ridiculous approximation–modern rope materials such as Kevlar can carry tensions thousands of times greater than the weight of tens of meters of such rope.) Consider the three sections of rope labeled a, b, and c in the figure. At point 1, a downward force of magnitude acts on section a. At point 1, an upward force of magnitude acts on section b. At point 1, the tension in the rope is . At point 2, a downward force of magnitude acts on section b. At point 2, an upward force of magnitude acts on section c. At point 2, the tension in the rope is . Assume, too, that the rope is at equilibrium. Part A What is the magnitude of the downward force on section a? Express your answer in terms of the tension . ANSWER: More information is needed to determine the relationship between and . T1 > T2 T1 = T2 T1 < T2 T1 T2 Fu Fd Fad Fbu T1 Fbd Fcu T2 Fad T1 Part B What is the magnitude of the upward force on section b? Express your answer in terms of the tension . ANSWER: Part C The magnitude of the upward force on c, , and the magnitude of the downward force on b, , are equal because of which of Newton's laws? ANSWER: Part D The magnitude of the force is ____ . ANSWER: Fad = Fbu T1 Fbu = Fcu Fbd 1st 2nd 3rd Fbu Fbd Part E Now consider the forces on the ends of the rope. What is the relationship between the magnitudes of these two forces? You did not open hints for this part. ANSWER: Part F The ends of a massless rope are attached to two stationary objects (e.g., two trees or two cars) so that the rope makes a straight line. For this situation, which of the following statements are true? Check all that apply. ANSWER: less than greater than equal to Fu > Fd Fu = Fd Fu < Fd The tension in the rope is everywhere the same. The magnitudes of the forces exerted on the two objects by the rope are the same. The forces exerted on the two objects by the rope must be in opposite directions. The forces exerted on the two objects by the rope must be in the direction of the rope. Two Hanging Masses Two blocks with masses and hang one under the other. For this problem, take the positive direction to be upward, and use for the magnitude of the acceleration due to gravity. Case 1: Blocks at rest For Parts A and B assume the blocks are at rest. Part A Find , the tension in the lower rope. Express your answer in terms of some or all of the variables , , and . You did not open hints for this part. ANSWER: M1 M2 g T2 M1 M2 g Part B Find , the tension in the upper rope. Express your answer in terms of some or all of the variables , , and . You did not open hints for this part. ANSWER: Case 2: Accelerating blocks For Parts C and D the blocks are now accelerating upward (due to the tension in the strings) with acceleration of magnitude . Part C Find , the tension in the lower rope. Express your answer in terms of some or all of the variables , , , and . You did not open hints for this part. ANSWER: T2 = T1 M1 M2 g T1 = a T2 M1 M2 a g Part D Find , the tension in the upper rope. Express your answer in terms of some or all of the variables , , , and . You did not open hints for this part. ANSWER: Video Tutor: Suspended Balls: Which String Breaks? First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the question at right. You can watch the video again at any point. T2 = T1 M1 M2 a g T1 = Part A A heavy crate is attached to the wall by a light rope, as shown in the figure. Another rope hangs off the opposite edge of the box. If you slowly increase the force on the free rope by pulling on it in a horizontal direction, which rope will break? Ignore friction and the mass of the ropes. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The rope attached to the wall will break. The rope that you are pulling on will break. Both ropes are equally likely to break.

please email info@checkyourstudy.com
Question 2 (1 point) Which of the following is correct about interpreting the results of statistical tests? Question 2 options: 1) Obtaining a probability value of .05 tells us the difference between groups is definitely not caused by chance fluctuation. 2) If a probability value falls above .05, then the results will have to be replicated before we can have confidence in them. 3) Obtaining a probability value of .05 gives us confidence that the findings are not the result of chance, but does not eliminate this possibility. 4) A .05 probability value means there is a 5 percent chance the finding reflects a real difference. Question 3 (1 point) Which of the following statements is true about theories of personality? Question 3 options: 1) They provide only a part of the picture of human personality. 2) They support the expert’s viewpoint. 3) Theories are predicted from one hypothesis or another. 4) They are directly tested using empirical methods. Question 4 (1 point) Which of the following statements is correct about hypothetical constructs? Question 4 options: 1) They are useful inventions by researchers that have no physical reality. 2) They are easier to measure than personality variables. 3) They cannot be measured with personality tests. 4) They have poor reliability and validity. Question 5 (1 point) According to the “law of parsimony,” Question 5 options: 1) a good theory generates a large number of hypotheses. 2) the best theory is the one that explains a phenomenon with the fewest constructs. 3) hypotheses are generated from theories. 4) theories should require as few studies as possible to support them. ________________________________________ Question 6 (1 point) Which of the following does a correlation coefficient not tell us? Question 6 options: 1) If the difference between two means reflects a real difference or can be attributed tochancefluctuation. 2) The strength of a relationship between two measures. 3) The direction of a relationship between two measures. 4) How well a score on one measure can be predicted by a score on another measure. Question 7 (1 point) A researcher finds that males make fewer errors than females when working in a competitive situation. However, women make fewer errors than men when working in acooperative situation. This is an example of Question 7 options: 1) a confound. 2) two manipulated independent variables. 3) an interaction. 4) a failure to replicate.

Question 2 (1 point) Which of the following is correct about interpreting the results of statistical tests? Question 2 options: 1) Obtaining a probability value of .05 tells us the difference between groups is definitely not caused by chance fluctuation. 2) If a probability value falls above .05, then the results will have to be replicated before we can have confidence in them. 3) Obtaining a probability value of .05 gives us confidence that the findings are not the result of chance, but does not eliminate this possibility. 4) A .05 probability value means there is a 5 percent chance the finding reflects a real difference. Question 3 (1 point) Which of the following statements is true about theories of personality? Question 3 options: 1) They provide only a part of the picture of human personality. 2) They support the expert’s viewpoint. 3) Theories are predicted from one hypothesis or another. 4) They are directly tested using empirical methods. Question 4 (1 point) Which of the following statements is correct about hypothetical constructs? Question 4 options: 1) They are useful inventions by researchers that have no physical reality. 2) They are easier to measure than personality variables. 3) They cannot be measured with personality tests. 4) They have poor reliability and validity. Question 5 (1 point) According to the “law of parsimony,” Question 5 options: 1) a good theory generates a large number of hypotheses. 2) the best theory is the one that explains a phenomenon with the fewest constructs. 3) hypotheses are generated from theories. 4) theories should require as few studies as possible to support them. ________________________________________ Question 6 (1 point) Which of the following does a correlation coefficient not tell us? Question 6 options: 1) If the difference between two means reflects a real difference or can be attributed tochancefluctuation. 2) The strength of a relationship between two measures. 3) The direction of a relationship between two measures. 4) How well a score on one measure can be predicted by a score on another measure. Question 7 (1 point) A researcher finds that males make fewer errors than females when working in a competitive situation. However, women make fewer errors than men when working in acooperative situation. This is an example of Question 7 options: 1) a confound. 2) two manipulated independent variables. 3) an interaction. 4) a failure to replicate.

No expert has answered this question yet. You can browse … Read More...
1 Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 3.1 Laboratory Objective The objective of this laboratory is to understand the basic properties of sinusoids and sinusoid measurements. 3.2 Educational Objectives After performing this experiment, students should be able to: 1. Understand the properties of sinusoids. 2. Understand sinusoidal manipulation 3. Use a function generator 4. Obtain measurements using an oscilloscope 3.3 Background Sinusoids are sine or cosine waveforms that can describe many engineering phenomena. Any oscillatory motion can be described using sinusoids. Many types of electrical signals such as square, triangle, and sawtooth waves are modeled using sinusoids. Their manipulation incurs the understanding of certain quantities that describe sinusoidal behavior. These quantities are described below. 3.3.1 Sinusoid Characteristics Amplitude The amplitude A of a sine wave describes the height of the hills and valleys of a sinusoid. It carries the physical units of what the sinusoid is describing (volts, amps, meters, etc.). Frequency There are two types of frequencies that can describe a sinusoid. The normal frequency f is how many times the sinusoid repeats per unit time. It has units of cycles per second (s-1) or Hertz (Hz). The angular frequency ω is how many radians pass per second. Consequently, ω has units of radians per second. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 2 Period The period T is how long a sinusoid takes to repeat one complete cycle. The period is measured in seconds. Phase The phase φ of a sinusoid causes a horizontal shift along the t-axis. The phase has units of radians. TimeShift The time shift ts of a sinusoid is a horizontal shift along the t-axis and is a time measurement of the phase. The time shift has units of seconds. NOTE: A sine wave and a cosine wave only differ by a phase shift of 90° or ?2 radians. In reality, they are the same waveform but with a different φ value. 3.3.2 Sinusoidal Relationships Figure 3.1: Sinusoid The general equation of a sinusoid is given below and refers to Figure 3.1. ?(?) = ????(?? +?) (3.1) The angular frequency is related to the normal frequency by Equation 3.2. ?= 2?? (3.2) The angular frequency is also related to the period by Equation 3.3. ?=2?? (3.3) By inspection, the normal frequency is related to the period by Equation 3.4. ? =1? (3.4) ?? Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 3 The time shift is related to the phase (radians) and the frequency by Equation 3.5. ??= ∅2?? (3.5) 3.3.3 Equipment 3.3.3.1 Inductors Inductors are electrical components that resist a change in the flow of current passing through them. They are essentially coils of wire. Inductors are electromagnets too. They are represented in schematics using the following symbol and physically using the following equipment (with or without exposed wire): Figure 3.2: Symbol and Physical Example for Inductors 3.3.3.2 Capacitors Capacitors are electrical components that store energy. This enables engineers to store electrical energy from an input source such as a battery. Some capacitors are polarized and therefore have a negative and positive plate. One plate is straight, representing the positive terminal on the device, and the other is curved, representing the negative one. Polarized capacitors are represented in schematics using the following symbol and physically using the following equipment: Figure 3.3: Symbol and Physical Example for Capacitors 3.3.3.3 Function Generator A function generator is used to create different types of electrical waveforms over a wide range of frequencies. It generates standard sine, square, and triangle waveforms and uses the analog output channel. 3.3.3.5 Oscilloscope An oscilloscope is a type of electronic test instrument that allows observation of constantly varying voltages, usually as a two-dimensional plot of one or more signals as a function of time. It displays voltage data over time for the analysis of one or two voltage measurements taken from the analog input channels of the Oscilloscope. The observed waveform can be analyzed for amplitude, frequency, time interval and more. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 4 3.4 Procedure Follow the steps outlined below after the instructor has explained how to use the laboratory equipment 3.4.1 Sinusoidal Measurements 1. Connect the output channel of the Function Generator to the channel one of the Oscilloscope. 2. Complete Table 3.1 using the given values for voltage and frequency. Table 3.1: Sinusoid Measurements Function Generator Oscilloscope (Measured) Calculated Voltage Amplitude, A (V ) Frequency (Hz) 2*A (Vp−p ) f (Hz) T (sec) ω (rad/sec) T (sec) 2.5 1000 3 5000 3.4.2 Circuit Measurements 1. Connect the circuit in figure 3.4 below with the given resistor and capacitor NOTE: Vs from the circuit comes from the Function Generator using a BNC connector. Figure 3.4: RC Circuit Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 5 2. Using the alligator to BNC cables, connect channel one of the Oscilloscope across the capacitor and complete Table 3.2 Table 3.2: Capacitor Sinusoid Function Generator Oscilloscope (Measured) Calculated Vs (Volts) Frequency (Hz) Vc (volts) f (Hz) T (sec) ω (rad/sec) 2.5 100 3. Disconnect channel one and connect channel two of the oscilloscope across the resistor and complete table 3.3. Table 3.3: Resistor Sinusoid Function Generator Oscilloscope (Measured) Calculated Vs (Volts) Frequency (Hz) VR (volts) f (Hz) T (sec) ω (rad/sec) 2.5 100 4. Leaving channel two connected across the resistor, clip the positive lead to the positive side of the capacitor and complete table 3.4 Table 3.4: Phase Difference Function Generator Oscilloscope (Measured) Calculated Vs (volts) Frequency (Hz) Divisions Time/Div (sec) ts (sec) ɸ (rad) ɸ (degrees) 2.5 100 5. Using the data from Tables 3.2, 3.3, and 3.4, plot the capacitor sinusoidal equation and the resistor sinusoidal equation on the same graph using MATLAB. HINT: Plot over one period. 6. Kirchoff’s Voltage Law states that ??(?)=??(?)+??(?). Calculate Vs by hand using the following equation and Tables 3.2 and 3.3 ??(?)=√??2+??2???(??−???−1(????)) Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 6 3.5 New MATLAB Commands hold on  This command allows multiple graphs to be placed on the same XY axis and is placed after the first plot statement. legend (’string 1’, ’string2’, ‘string3’)  This command adds a legend to the plot. Strings must be placed in the order as the plots were generated. plot (x, y, ‘line specifiers’)  This command plots the data and uses line specifiers to differentiate between different plots on the same XY axis. In this lab, only use different line styles from the table below. Table 3.5: Line specifiers for the plot() command sqrt(X)  This command produces the square root of the elements of X. NOTE: The “help” command in MATLAB can be used to find a description and example for functions such as input.  For example, type “help input” in the command window to learn more about the input function. NOTE: Refer to section the “MATLAB Commands” sections from prior labs for previously discussed material that you may also need in order to complete this assignment. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 7 3.6 Lab Report Requirements 1. Complete Tables 3.1, 3.2, 3.3, 3.4 (5 points each) 2. Show hand calculations for all four tables. Insert after this page (5 points each) 3. Draw the two sinusoids by hand from table 3.1. Label amplitude, period, and phase. Insert after this page. (5 points) 4. Insert MATLAB plot of Vc and VR as obtained from data in Tables 3.2 and 3.3 after this page. (5 points each) 5. Show hand calculations for Vs(t). Insert after this page. (5 points) 6. Using the data from the Tables, write: (10 points) a) Vc(t) = b) VR(t) = 7. Also, ???(?)=2.5???(628?). Write your Vs below and give reasons why they are different. (10 points) a) Vs(t) = b) Reasons: 8. Write an executive summary for this lab describing what you have done, and learned. (20 points)

1 Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 3.1 Laboratory Objective The objective of this laboratory is to understand the basic properties of sinusoids and sinusoid measurements. 3.2 Educational Objectives After performing this experiment, students should be able to: 1. Understand the properties of sinusoids. 2. Understand sinusoidal manipulation 3. Use a function generator 4. Obtain measurements using an oscilloscope 3.3 Background Sinusoids are sine or cosine waveforms that can describe many engineering phenomena. Any oscillatory motion can be described using sinusoids. Many types of electrical signals such as square, triangle, and sawtooth waves are modeled using sinusoids. Their manipulation incurs the understanding of certain quantities that describe sinusoidal behavior. These quantities are described below. 3.3.1 Sinusoid Characteristics Amplitude The amplitude A of a sine wave describes the height of the hills and valleys of a sinusoid. It carries the physical units of what the sinusoid is describing (volts, amps, meters, etc.). Frequency There are two types of frequencies that can describe a sinusoid. The normal frequency f is how many times the sinusoid repeats per unit time. It has units of cycles per second (s-1) or Hertz (Hz). The angular frequency ω is how many radians pass per second. Consequently, ω has units of radians per second. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 2 Period The period T is how long a sinusoid takes to repeat one complete cycle. The period is measured in seconds. Phase The phase φ of a sinusoid causes a horizontal shift along the t-axis. The phase has units of radians. TimeShift The time shift ts of a sinusoid is a horizontal shift along the t-axis and is a time measurement of the phase. The time shift has units of seconds. NOTE: A sine wave and a cosine wave only differ by a phase shift of 90° or ?2 radians. In reality, they are the same waveform but with a different φ value. 3.3.2 Sinusoidal Relationships Figure 3.1: Sinusoid The general equation of a sinusoid is given below and refers to Figure 3.1. ?(?) = ????(?? +?) (3.1) The angular frequency is related to the normal frequency by Equation 3.2. ?= 2?? (3.2) The angular frequency is also related to the period by Equation 3.3. ?=2?? (3.3) By inspection, the normal frequency is related to the period by Equation 3.4. ? =1? (3.4) ?? Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 3 The time shift is related to the phase (radians) and the frequency by Equation 3.5. ??= ∅2?? (3.5) 3.3.3 Equipment 3.3.3.1 Inductors Inductors are electrical components that resist a change in the flow of current passing through them. They are essentially coils of wire. Inductors are electromagnets too. They are represented in schematics using the following symbol and physically using the following equipment (with or without exposed wire): Figure 3.2: Symbol and Physical Example for Inductors 3.3.3.2 Capacitors Capacitors are electrical components that store energy. This enables engineers to store electrical energy from an input source such as a battery. Some capacitors are polarized and therefore have a negative and positive plate. One plate is straight, representing the positive terminal on the device, and the other is curved, representing the negative one. Polarized capacitors are represented in schematics using the following symbol and physically using the following equipment: Figure 3.3: Symbol and Physical Example for Capacitors 3.3.3.3 Function Generator A function generator is used to create different types of electrical waveforms over a wide range of frequencies. It generates standard sine, square, and triangle waveforms and uses the analog output channel. 3.3.3.5 Oscilloscope An oscilloscope is a type of electronic test instrument that allows observation of constantly varying voltages, usually as a two-dimensional plot of one or more signals as a function of time. It displays voltage data over time for the analysis of one or two voltage measurements taken from the analog input channels of the Oscilloscope. The observed waveform can be analyzed for amplitude, frequency, time interval and more. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 4 3.4 Procedure Follow the steps outlined below after the instructor has explained how to use the laboratory equipment 3.4.1 Sinusoidal Measurements 1. Connect the output channel of the Function Generator to the channel one of the Oscilloscope. 2. Complete Table 3.1 using the given values for voltage and frequency. Table 3.1: Sinusoid Measurements Function Generator Oscilloscope (Measured) Calculated Voltage Amplitude, A (V ) Frequency (Hz) 2*A (Vp−p ) f (Hz) T (sec) ω (rad/sec) T (sec) 2.5 1000 3 5000 3.4.2 Circuit Measurements 1. Connect the circuit in figure 3.4 below with the given resistor and capacitor NOTE: Vs from the circuit comes from the Function Generator using a BNC connector. Figure 3.4: RC Circuit Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 5 2. Using the alligator to BNC cables, connect channel one of the Oscilloscope across the capacitor and complete Table 3.2 Table 3.2: Capacitor Sinusoid Function Generator Oscilloscope (Measured) Calculated Vs (Volts) Frequency (Hz) Vc (volts) f (Hz) T (sec) ω (rad/sec) 2.5 100 3. Disconnect channel one and connect channel two of the oscilloscope across the resistor and complete table 3.3. Table 3.3: Resistor Sinusoid Function Generator Oscilloscope (Measured) Calculated Vs (Volts) Frequency (Hz) VR (volts) f (Hz) T (sec) ω (rad/sec) 2.5 100 4. Leaving channel two connected across the resistor, clip the positive lead to the positive side of the capacitor and complete table 3.4 Table 3.4: Phase Difference Function Generator Oscilloscope (Measured) Calculated Vs (volts) Frequency (Hz) Divisions Time/Div (sec) ts (sec) ɸ (rad) ɸ (degrees) 2.5 100 5. Using the data from Tables 3.2, 3.3, and 3.4, plot the capacitor sinusoidal equation and the resistor sinusoidal equation on the same graph using MATLAB. HINT: Plot over one period. 6. Kirchoff’s Voltage Law states that ??(?)=??(?)+??(?). Calculate Vs by hand using the following equation and Tables 3.2 and 3.3 ??(?)=√??2+??2???(??−???−1(????)) Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 6 3.5 New MATLAB Commands hold on  This command allows multiple graphs to be placed on the same XY axis and is placed after the first plot statement. legend (’string 1’, ’string2’, ‘string3’)  This command adds a legend to the plot. Strings must be placed in the order as the plots were generated. plot (x, y, ‘line specifiers’)  This command plots the data and uses line specifiers to differentiate between different plots on the same XY axis. In this lab, only use different line styles from the table below. Table 3.5: Line specifiers for the plot() command sqrt(X)  This command produces the square root of the elements of X. NOTE: The “help” command in MATLAB can be used to find a description and example for functions such as input.  For example, type “help input” in the command window to learn more about the input function. NOTE: Refer to section the “MATLAB Commands” sections from prior labs for previously discussed material that you may also need in order to complete this assignment. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 7 3.6 Lab Report Requirements 1. Complete Tables 3.1, 3.2, 3.3, 3.4 (5 points each) 2. Show hand calculations for all four tables. Insert after this page (5 points each) 3. Draw the two sinusoids by hand from table 3.1. Label amplitude, period, and phase. Insert after this page. (5 points) 4. Insert MATLAB plot of Vc and VR as obtained from data in Tables 3.2 and 3.3 after this page. (5 points each) 5. Show hand calculations for Vs(t). Insert after this page. (5 points) 6. Using the data from the Tables, write: (10 points) a) Vc(t) = b) VR(t) = 7. Also, ???(?)=2.5???(628?). Write your Vs below and give reasons why they are different. (10 points) a) Vs(t) = b) Reasons: 8. Write an executive summary for this lab describing what you have done, and learned. (20 points)

info@checkyourstudy.com
After reading the supplement article on Business Analytics linked to the week 1 schedule, write an essay on how business analytics impacts you today, or its potential role in your chosen career path. Do research for your paper, or interview someone who works in your area. The goals of this paper are two-fold: (1) focus on high quality writing, using the COBE Writing Styles Guide for writing help and citations. (2) consider the importance of BI from a personal/work/career perspective.

After reading the supplement article on Business Analytics linked to the week 1 schedule, write an essay on how business analytics impacts you today, or its potential role in your chosen career path. Do research for your paper, or interview someone who works in your area. The goals of this paper are two-fold: (1) focus on high quality writing, using the COBE Writing Styles Guide for writing help and citations. (2) consider the importance of BI from a personal/work/career perspective.

  Business analytics importance and its potential     Introduction … Read More...