Lab Report : The purpose of this experiment is to learn about uncertainty in measurement, and how to perform calculations with those uncertainties. The calculation of the density of a wooden block was used as an example.

Lab Report : The purpose of this experiment is to learn about uncertainty in measurement, and how to perform calculations with those uncertainties. The calculation of the density of a wooden block was used as an example.

info@checkyourstudy.com Lab Report : The purpose of this experiment is … Read More...
Consider a test you have taken. Did it measure what it was supposed to measure? If you had taken a different test over the same material, do you think you would have gotten the same score?

Consider a test you have taken. Did it measure what it was supposed to measure? If you had taken a different test over the same material, do you think you would have gotten the same score?

Most of the test, I have given, does not measure … Read More...
) A steel rod of radius 0.01 m and length 2. M is pulled on with a tensile force of 200,000 N, and the bar stretches to a length of 2.08 m. The radius of the bar is reduced to 0.0099 m. Determine the stress, strain, Young’ modulus (E), and Poisson’s ratio () from this test. Use the Young’s modulus and Poisson’s ratio to determine the Bulk Modulus and Shear Modulus, using the equations given in class.

) A steel rod of radius 0.01 m and length 2. M is pulled on with a tensile force of 200,000 N, and the bar stretches to a length of 2.08 m. The radius of the bar is reduced to 0.0099 m. Determine the stress, strain, Young’ modulus (E), and Poisson’s ratio () from this test. Use the Young’s modulus and Poisson’s ratio to determine the Bulk Modulus and Shear Modulus, using the equations given in class.

info@checkyourstudy.com A steel rod of radius 0.01 m and length … Read More...
A factory receives power at 480 Vrms @ 60 Hz. from the electric utility company. The factory’s electrical load can be simply represented by 2 loads. LOAD1 describes the manufacturing equipment on the assembly line. LOAD2 describes the power used in office rooms. From time to time, the assembly line shuts down thereby removing LOAD1 from the grid. SWITCH1 accounts for this effect in the equivalent circuit model shown above. Note that the 2 dependent sources represent a device called a “transformer” that steps the 480 Vrms down to 120 Vrms for use in the offices. (But don’t take my word for it; circuit analysis calculations will confirm this.) Given: Receiving End Voltage (with SWITCH1 closed): RV = 480 Vrms Wiring parameters: RW = 0.005 Ω, LW = 0.52052 mH Find: a) With SWITCH1 closed, find the value of C (in Farads) so that the total LOADt at the Receiving End has unity pf. Find the magnitude of the Sending End Voltage SV , and the magnitude of the “Office” load voltage, 2V. Note that RMS480VRV= for this case. b) With SWITCH1 open, using the value of C and SV found in part a), find the new values of the magnitudes of the Receiving End Voltage RV and Office Voltage 2V. Why will this be a problem for the office? How could you change the capacitor connection to avoid this problem? Hints: Note that no phase angles were given, and only magnitudes were asked for. You can choose one voltage or current to have 0 degree phase angle and then allow the calculations of any other voltages and currents be relative to that. In part b) RMS480VRV≠.

A factory receives power at 480 Vrms @ 60 Hz. from the electric utility company. The factory’s electrical load can be simply represented by 2 loads. LOAD1 describes the manufacturing equipment on the assembly line. LOAD2 describes the power used in office rooms. From time to time, the assembly line shuts down thereby removing LOAD1 from the grid. SWITCH1 accounts for this effect in the equivalent circuit model shown above. Note that the 2 dependent sources represent a device called a “transformer” that steps the 480 Vrms down to 120 Vrms for use in the offices. (But don’t take my word for it; circuit analysis calculations will confirm this.) Given: Receiving End Voltage (with SWITCH1 closed): RV = 480 Vrms Wiring parameters: RW = 0.005 Ω, LW = 0.52052 mH Find: a) With SWITCH1 closed, find the value of C (in Farads) so that the total LOADt at the Receiving End has unity pf. Find the magnitude of the Sending End Voltage SV , and the magnitude of the “Office” load voltage, 2V. Note that RMS480VRV= for this case. b) With SWITCH1 open, using the value of C and SV found in part a), find the new values of the magnitudes of the Receiving End Voltage RV and Office Voltage 2V. Why will this be a problem for the office? How could you change the capacitor connection to avoid this problem? Hints: Note that no phase angles were given, and only magnitudes were asked for. You can choose one voltage or current to have 0 degree phase angle and then allow the calculations of any other voltages and currents be relative to that. In part b) RMS480VRV≠.

A factory receives power at 480 Vrms @ 60 Hz. … Read More...
1 REQUIREMENTS You will need to complete the following tasks and deliver your finding in a written report by August 6th. Research the six scenarios given below in option 1 for added capacity to uncover any additional costs/benefits to society these options might pose. Write a two page summary describing each scenario. Discuss the pros and cons of each scenario, including such items as renewable sources of fuel, environmental factors, etc. Give examples of each type of project by name and location and indicate the sources of your information. Please use either IEEE or APA style. Do an economic analysis of the six scenarios. Use a 20-year period and assume an inflation rate of 4 percent. Include your calculations and any assumptions in the report. Also answer the following questions: Which scenario is the best from an economic basis? Are there any other considerations, such as environmental/health/social issues, which should be considered? Which scenario have you selected based on the answers to a and b? What is the estimated timeframe to implement the different options? (base your timelines on existing projects of similar size if possible, use MS Project/Project Libre to generate the timelines) Make a recommendation regarding the best option for the utility. 2 Situations A utility company in one of the western states is considering the addition of 50 megawatts of generating capacity to meet expected demands for electrical energy by the year 2025. The three options that the utility has are: Add generating capacity. Constructing one of the scenarios below would do this. Purchase power from Canada under terms of a 20-year contract. Do neither of the above. This assumes that brownouts will occur during high demand periods. The utility presently has 200 megawatts of installed capacity and generates an average of 1.2 billion kilowatt-hours annually. Maximum generation capability is 1.3 billion kW-hours. By the year 2025, this reserve of 100,000,000 kW-hours will be used. 2.1 OPTION 1 – ADD GENERATING CAPACITY For this option there are six possible scenarios: Hydroelectric dam. Initial cost is $ 50 million. Annual operating and maintenance cost is $ 1.7 million. Project life is 30 years before a major rebuild is required. Wind farm. Initial cost is $ 28 million. Annual operating and maintenance cost is $ 2.5 million. Project life is 12 years. At this time new equipment will be required. Solar power. Initial cost is $ 32 million. Annual operating and maintenance cost is $ 1.1 million. Project life is 10 years. Natural gas turbines. Initial cost is $ 14 million. Annual operating and maintenance cost is $2.0 million. Project life is 12 years. Nuclear plant. Initial cost is $ 70 million. Annual operating and maintenance cost is $ 2.0 million. Project life is 25 years. Coal-fired turbines. Initial cost is $ 35 million. Annual operating and maintenance cost is $ 2.7 million. Project life is 28 years. 2.2 OPTION 2 – BUY POWER FROM CANADA The annual additional energy requirement is 350,000,000 kilowatt-hours. The cost of energy from Canada is 1.48 cents per kilowatt-hour for the first year. The price will be escalated at 4 percent annually for the 20-year contract period. 2.3 OPTION 3 – DO NOTHING Local municipalities are very opposed to this option since companies may have to close down for short periods of time. Also, it would be very difficult to attract new businesses. If nothing is done, by the year 2025 it is anticipated that some companies will be without power for short periods of time during the summer months. These are known as brownouts. It is estimated, based on historical data that these outages will occur once a week during July and August for periods of 6 hours.

1 REQUIREMENTS You will need to complete the following tasks and deliver your finding in a written report by August 6th. Research the six scenarios given below in option 1 for added capacity to uncover any additional costs/benefits to society these options might pose. Write a two page summary describing each scenario. Discuss the pros and cons of each scenario, including such items as renewable sources of fuel, environmental factors, etc. Give examples of each type of project by name and location and indicate the sources of your information. Please use either IEEE or APA style. Do an economic analysis of the six scenarios. Use a 20-year period and assume an inflation rate of 4 percent. Include your calculations and any assumptions in the report. Also answer the following questions: Which scenario is the best from an economic basis? Are there any other considerations, such as environmental/health/social issues, which should be considered? Which scenario have you selected based on the answers to a and b? What is the estimated timeframe to implement the different options? (base your timelines on existing projects of similar size if possible, use MS Project/Project Libre to generate the timelines) Make a recommendation regarding the best option for the utility. 2 Situations A utility company in one of the western states is considering the addition of 50 megawatts of generating capacity to meet expected demands for electrical energy by the year 2025. The three options that the utility has are: Add generating capacity. Constructing one of the scenarios below would do this. Purchase power from Canada under terms of a 20-year contract. Do neither of the above. This assumes that brownouts will occur during high demand periods. The utility presently has 200 megawatts of installed capacity and generates an average of 1.2 billion kilowatt-hours annually. Maximum generation capability is 1.3 billion kW-hours. By the year 2025, this reserve of 100,000,000 kW-hours will be used. 2.1 OPTION 1 – ADD GENERATING CAPACITY For this option there are six possible scenarios: Hydroelectric dam. Initial cost is $ 50 million. Annual operating and maintenance cost is $ 1.7 million. Project life is 30 years before a major rebuild is required. Wind farm. Initial cost is $ 28 million. Annual operating and maintenance cost is $ 2.5 million. Project life is 12 years. At this time new equipment will be required. Solar power. Initial cost is $ 32 million. Annual operating and maintenance cost is $ 1.1 million. Project life is 10 years. Natural gas turbines. Initial cost is $ 14 million. Annual operating and maintenance cost is $2.0 million. Project life is 12 years. Nuclear plant. Initial cost is $ 70 million. Annual operating and maintenance cost is $ 2.0 million. Project life is 25 years. Coal-fired turbines. Initial cost is $ 35 million. Annual operating and maintenance cost is $ 2.7 million. Project life is 28 years. 2.2 OPTION 2 – BUY POWER FROM CANADA The annual additional energy requirement is 350,000,000 kilowatt-hours. The cost of energy from Canada is 1.48 cents per kilowatt-hour for the first year. The price will be escalated at 4 percent annually for the 20-year contract period. 2.3 OPTION 3 – DO NOTHING Local municipalities are very opposed to this option since companies may have to close down for short periods of time. Also, it would be very difficult to attract new businesses. If nothing is done, by the year 2025 it is anticipated that some companies will be without power for short periods of time during the summer months. These are known as brownouts. It is estimated, based on historical data that these outages will occur once a week during July and August for periods of 6 hours.

1 REQUIREMENTS You will need to complete the following tasks … Read More...
A monochromatic electromagnetic wave has electric and magnetic fields given by and respectively. What is the direction in which the wave propagates? A. z coordinate direction B. x coordinate direction C. at 45 degrees in y-z plane D. y coordinate direction + E. at 45 degrees in x-y plane

A monochromatic electromagnetic wave has electric and magnetic fields given by and respectively. What is the direction in which the wave propagates? A. z coordinate direction B. x coordinate direction C. at 45 degrees in y-z plane D. y coordinate direction + E. at 45 degrees in x-y plane

info@checkyourstudy.com A monochromatic electromagnetic wave has electric and magnetic fields … Read More...
Which of the following statements about radioactive isotopes is true? Radioactive elements are natural and therefore not harmful. The energy emitted by radioactive isotopes can break chemical bonds and cause molecular damage in cells. When given a choice between radioactive and nonradioactive isotopes of the same atom, living cells are more likely to incorporate the radioactive isotopes into their structures. The nuclei of radioactive isotopes are unusually stable, but the atoms tend to lose electrons.

Which of the following statements about radioactive isotopes is true? Radioactive elements are natural and therefore not harmful. The energy emitted by radioactive isotopes can break chemical bonds and cause molecular damage in cells. When given a choice between radioactive and nonradioactive isotopes of the same atom, living cells are more likely to incorporate the radioactive isotopes into their structures. The nuclei of radioactive isotopes are unusually stable, but the atoms tend to lose electrons.

The energy emitted by radioactive isotopes can break chemical bonds … Read More...
Faculty of Science Technology and Engineering Department of Physics Senior Laboratory Current balance Objectives When a steady electric current flows perpendicularly across a uniform magnetic field it experiences a force. This experiment aims to investigate this effect, and to determine the direction of the force relative to the current and magnetic field. You will design and perform a series of experiments to show how the magnitude of the force depends upon the current and the length of the conductor that is in the field. Task You are provided with a current balance apparatus (Figure 1), power supply and a magnet. This current balance consists of five loops of conducting wire supported on a pivoted aluminium frame. Current may be made to flow in one or up to five of the loops at a time in either direction. If the end of the loop is situated in a perpendicular magnetic field, when the current is switched on, the magnetic force on the current will unbalance the apparatus. By moving the sliding weights to rebalance it, the magnitude of this magnetic force may be measured. A scale is etched on one arm of the balance, so that the distance moved by the slider can be measured. The circuitry of the balance cannot cope currents greater than 5 Amps, so please do not exceed this level of current. Figure 1: Schematic diagram of current balance apparatus and circuitry. Start by familiarising yourself with the apparatus. Use the two sliding weights to balance the apparatus, then apply a magnetic field to either end of the loop. Pass a current through just one of the conducting loops and observe the direction of the resulting magnetic force, relative to the direction of the current and the applied field. Change the magnitude and direction of the current, observe qualitatively the effect this has on the magnetic force. Having familiarised yourself with the apparatus, you should design and perform a series of quantitative experiments aiming to: (1) determine how the size of the magnetic force is dependant on the size of the current flowing in the conductor. (2) determine how the size of the force is dependant on the length of the conductor which is in the field. (3) measure the value (in Tesla) of the field of the magnet provided. For each of these, the balance should be set up with the magnet positioned at the end of the arm that has the distance scale, and orientated so that the magnetic force will be directed upwards when a current is passed through the conductor. The sliding weight on this arm should be positioned at the zero-mark. The weight on the opposite arm should be adjusted to balance the apparatus in the absence of a current. When a current is applied, you should re-balance the apparatus by moving the weight on the scaled arm outwards, while keeping the opposite weight fixed in position. The distance moved by the weight is directly proportional to the force applied by the magnetic field to the end of the balance. In your report, make sure you discuss why this is the case. Use the position of the sliding weight to quantify the magnetic force as a function of the current applied to the conductor, and of the number of conducting loops through which the current flows. For tasks (1) and (2) you can use the position of the sliding weight as a measure of the force. Look up the relationship that relates the force to the applied field, current and length of conductor in the field. Is this consistent with your data? To complete task (3) you need to determine the magnitude (in Newtons) of the magnetic force from the measurement of the position of the sliding weight. To do this, what other information do you need to know? When you have determined a value for the field, you can measure the field directly using the laboratory’s Gaussmeter for comparison.

Faculty of Science Technology and Engineering Department of Physics Senior Laboratory Current balance Objectives When a steady electric current flows perpendicularly across a uniform magnetic field it experiences a force. This experiment aims to investigate this effect, and to determine the direction of the force relative to the current and magnetic field. You will design and perform a series of experiments to show how the magnitude of the force depends upon the current and the length of the conductor that is in the field. Task You are provided with a current balance apparatus (Figure 1), power supply and a magnet. This current balance consists of five loops of conducting wire supported on a pivoted aluminium frame. Current may be made to flow in one or up to five of the loops at a time in either direction. If the end of the loop is situated in a perpendicular magnetic field, when the current is switched on, the magnetic force on the current will unbalance the apparatus. By moving the sliding weights to rebalance it, the magnitude of this magnetic force may be measured. A scale is etched on one arm of the balance, so that the distance moved by the slider can be measured. The circuitry of the balance cannot cope currents greater than 5 Amps, so please do not exceed this level of current. Figure 1: Schematic diagram of current balance apparatus and circuitry. Start by familiarising yourself with the apparatus. Use the two sliding weights to balance the apparatus, then apply a magnetic field to either end of the loop. Pass a current through just one of the conducting loops and observe the direction of the resulting magnetic force, relative to the direction of the current and the applied field. Change the magnitude and direction of the current, observe qualitatively the effect this has on the magnetic force. Having familiarised yourself with the apparatus, you should design and perform a series of quantitative experiments aiming to: (1) determine how the size of the magnetic force is dependant on the size of the current flowing in the conductor. (2) determine how the size of the force is dependant on the length of the conductor which is in the field. (3) measure the value (in Tesla) of the field of the magnet provided. For each of these, the balance should be set up with the magnet positioned at the end of the arm that has the distance scale, and orientated so that the magnetic force will be directed upwards when a current is passed through the conductor. The sliding weight on this arm should be positioned at the zero-mark. The weight on the opposite arm should be adjusted to balance the apparatus in the absence of a current. When a current is applied, you should re-balance the apparatus by moving the weight on the scaled arm outwards, while keeping the opposite weight fixed in position. The distance moved by the weight is directly proportional to the force applied by the magnetic field to the end of the balance. In your report, make sure you discuss why this is the case. Use the position of the sliding weight to quantify the magnetic force as a function of the current applied to the conductor, and of the number of conducting loops through which the current flows. For tasks (1) and (2) you can use the position of the sliding weight as a measure of the force. Look up the relationship that relates the force to the applied field, current and length of conductor in the field. Is this consistent with your data? To complete task (3) you need to determine the magnitude (in Newtons) of the magnetic force from the measurement of the position of the sliding weight. To do this, what other information do you need to know? When you have determined a value for the field, you can measure the field directly using the laboratory’s Gaussmeter for comparison.

Abstract   The present experiment aims to investigate the effect … Read More...
Calculate the ratio of the highest to lowest frequencies of electromagnetic waves the eye can see, given the wavelength range of visible light is from 380 to 760 nm. A. 3 B. 4 C. 2 + D. 6 E. 7

Calculate the ratio of the highest to lowest frequencies of electromagnetic waves the eye can see, given the wavelength range of visible light is from 380 to 760 nm. A. 3 B. 4 C. 2 + D. 6 E. 7

info@checkyourstudy.com Calculate the ratio of the highest to lowest frequencies … Read More...