Describe and discuss: . the significance of teaching for social justice.

Describe and discuss: . the significance of teaching for social justice.

By accepting that diverse societies have dissimilar cultures, they appreciate … Read More...
Read this article and answer this question in 2 pages : Answers should be from the below article only. What is the difference between “standards-based” and “standards-embedded” curriculum? what are the curricular implications of this difference? Article: In 2007, at the dawn of 21st century in education, it is impossible to talk about teaching, curriculum, schools, or education without discussing standards . standards-based v. standards-embedded curriculum We are in an age of accountability where our success as educators is determined by individual and group mastery of specific standards dem- onstrated by standardized test per- formance. Even before No Child Left Behind (NCLB), standards and measures were used to determine if schools and students were success- ful (McClure, 2005). But, NCLB has increased the pace, intensity, and high stakes of this trend. Gifted and talented students and their teach- ers are significantly impacted by these local or state proficiency stan- dards and grade-level assessments (VanTassel-Baska & Stambaugh, 2006). This article explores how to use these standards in the develop- ment of high-quality curriculum for gifted students. NCLB, High-Stakes State Testing, and Standards- Based Instruction There are a few potentially positive outcomes of this evolution to public accountability. All stakeholders have had to ask themselves, “Are students learning? If so, what are they learning and how do we know?” In cases where we have been allowed to thoughtfully evaluate curriculum and instruction, we have also asked, “What’s worth learning?” “When’s the best time to learn it?” and “Who needs to learn it?” Even though state achievement tests are only a single measure, citizens are now offered a yardstick, albeit a nar- row one, for comparing communities, schools, and in some cases, teachers. Some testing reports allow teachers to identify for parents what their chil- dren can do and what they can not do. Testing also has focused attention on the not-so-new observations that pov- erty, discrimination and prejudices, and language proficiency impacts learning. With enough ceiling (e.g., above-grade-level assessments), even gifted students’ actual achievement and readiness levels can be identi- fied and provide a starting point for appropriately differentiated instruc- tion (Tomlinson, 2001). Unfortunately, as a veteran teacher for more than three decades and as a teacher-educator, my recent observa- tions of and conversations with class- room and gifted teachers have usually revealed negative outcomes. For gifted children, their actual achievement level is often unrecognized by teachers because both the tests and the reporting of the results rarely reach above the student’s grade-level placement. Assessments also focus on a huge number of state stan- dards for a given school year that cre- ate “overload” (Tomlinson & McTighe, 2006) and have a devastating impact on the development and implementation of rich and relevant curriculum and instruction. In too many scenarios, I see teachers teach- ing directly to the test. And, in the worst cases, some teachers actually teach The Test. In those cases, The Test itself becomes the curriculum. Consistently I hear, “Oh, I used to teach a great unit on ________ but I can’t do it any- more because I have to teach the standards.” Or, “I have to teach my favorite units in April and May after testing.” If the outcomes can’t be boiled down to simple “I can . . .” state- ments that can be posted on a school’s walls, then teachers seem to omit poten- tially meaningful learning opportunities from the school year. In many cases, real education and learning are being trivial- ized. We seem to have lost sight of the more significant purpose of teaching and learning: individual growth and develop- ment. We also have surrendered much of the joy of learning, as the incidentals, the tangents, the “bird walks” are cut short or elimi- nated because teachers hear the con- stant ticking clock of the countdown to the state test and feel the pressure of the way-too-many standards that have to be covered in a mere 180 school days. The accountability movement has pushed us away from seeing the whole child: “Students are not machines, as the standards movement suggests; they are volatile, complicated, and paradoxical” (Cookson, 2001, p. 42). How does this impact gifted chil- dren? In many heterogeneous class- rooms, teachers have retreated to traditional subject delineations and traditional instruction in an effort to ensure direct standards-based instruc- tion even though “no solid basis exists in the research literature for the ways we currently develop, place, and align educational standards in school cur- ricula” (Zenger & Zenger, 2002, p. 212). Grade-level standards are often particularly inappropriate for the gifted and talented whose pace of learning, achievement levels, and depth of knowledge are significantly beyond their chronological peers. A broad-based, thematically rich, and challenging curriculum is the heart of education for the gifted. Virgil Ward, one of the earliest voices for a differen- tial education for the gifted, said, “It is insufficient to consider the curriculum for the gifted in terms of traditional subjects and instructional processes” (Ward, 1980, p. 5). VanTassel-Baska Standards-Based v. Standards-Embedded Curriculum gifted child today 45 Standards-Based v. Standards-Embedded Curriculum and Stambaugh (2006) described three dimensions of successful curriculum for gifted students: content mastery, pro- cess and product, and epistemological concept, “understanding and appre- ciating systems of knowledge rather than individual elements of those systems” (p. 9). Overemphasis on testing and grade-level standards limits all three and therefore limits learning for gifted students. Hirsch (2001) concluded that “broad gen- eral knowledge is the best entrée to deep knowledge” (p. 23) and that it is highly correlated with general ability to learn. He continued, “the best way to learn a subject is to learn its gen- eral principles and to study an ample number of diverse examples that illustrate those principles” (Hirsch, 2001, p. 23). Principle-based learn- ing applies to both gifted and general education children. In order to meet the needs of gifted and general education students, cur- riculum should be differentiated in ways that are relevant and engaging. Curriculum content, processes, and products should provide challenge, depth, and complexity, offering multiple opportunities for problem solving, creativity, and exploration. In specific content areas, the cur- riculum should reflect the elegance and sophistication unique to the discipline. Even with this expanded view of curriculum in mind, we still must find ways to address the current reality of state standards and assess- ments. Standards-Embedded Curriculum How can educators address this chal- lenge? As in most things, a change of perspective can be helpful. Standards- based curriculum as described above should be replaced with standards- embedded curriculum. Standards- embedded curriculum begins with broad questions and topics, either discipline specific or interdisciplinary. Once teachers have given thoughtful consideration to relevant, engaging, and important content and the con- nections that support meaning-making (Jensen, 1998), they next select stan- dards that are relevant to this content and to summative assessments. This process is supported by the backward planning advocated in Understanding by Design by Wiggins and McTighe (2005) and its predecessors, as well as current thinkers in other fields, such as Covey (Tomlinson & McTighe, 2006). It is a critical component of differenti- ating instruction for advanced learners (Tomlinson, 2001) and a significant factor in the Core Parallel in the Parallel Curriculum Model (Tomlinson et al., 2002). Teachers choose from standards in multiple disciplines at both above and below grade level depending on the needs of the students and the classroom or program structure. Preassessment data and the results of prior instruc- tion also inform this process of embed- ding appropriate standards. For gifted students, this formative assessment will result in “more advanced curricula available at younger ages, ensuring that all levels of the standards are traversed in the process” (VanTassel-Baska & Little, 2003, p. 3). Once the essential questions, key content, and relevant standards are selected and sequenced, they are embedded into a coherent unit design and instructional decisions (grouping, pacing, instructional methodology) can be made. For gifted students, this includes the identification of appropri- ate resources, often including advanced texts, mentors, and independent research, as appropriate to the child’s developmental level and interest. Applying Standards- Embedded Curriculum What does this look like in practice? In reading the possible class- room applications below, consider these three Ohio Academic Content Standards for third grade: 1. Math: “Read thermometers in both Fahrenheit and Celsius scales” (“Academic Content Standards: K–12 Mathematics,” n.d., p. 71). 2. Social Studies: “Compare some of the cultural practices and products of various groups of people who have lived in the local community including artistic expression, religion, language, and food. Compare the cultural practices and products of the local community with those of other communities in Ohio, the United States, and countries of the world” (Academic Content Standards: K–12 Social Studies, n.d., p. 122). 3. Life Science: “Observe and explore how fossils provide evidence about animals that lived long ago and the nature of the environment at that time” (Academic Content Standards: K–12 Science, n.d., p. 57). When students are fortunate to have a teacher who is dedicated to helping all of them make good use of their time, the gifted may have a preassessment opportunity where they can demonstrate their familiarity with the content and potential mastery of a standard at their grade level. Students who pass may get to read by them- selves for the brief period while the rest of the class works on the single outcome. Sometimes more experienced teachers will create opportunities for gifted and advanced students Standards-Based v. Standards-Embedded Curriculum to work on a standard in the same domain or strand at the next higher grade level (i.e., accelerate through the standards). For example, a stu- dent might be able to work on a Life Science standard for fourth grade that progresses to other communities such as ecosystems. These above-grade-level standards can provide rich material for differentiation, advanced problem solving, and more in-depth curriculum integration. In another classroom scenario, a teacher may focus on the math stan- dard above, identifying the standard number on his lesson plan. He creates or collects paper thermometers, some showing measurement in Celsius and some in Fahrenheit. He also has some real thermometers. He demonstrates thermometer use with boiling water and with freezing water and reads the different temperatures. Students complete a worksheet that has them read thermometers in Celsius and Fahrenheit. The more advanced students may learn how to convert between the two scales. Students then practice with several questions on the topic that are similar in structure and content to those that have been on past proficiency tests. They are coached in how to answer them so that the stan- dard, instruction, formative assess- ment, and summative assessment are all aligned. Then, each student writes a statement that says, “I can read a thermometer using either Celsius or Fahrenheit scales.” Both of these examples describe a standards-based environment, where the starting point is the standard. Direct instruction to that standard is followed by an observable student behavior that demonstrates specific mastery of that single standard. The standard becomes both the start- ing point and the ending point of the curriculum. Education, rather than opening up a student’s mind, becomes a series of closed links in a chain. Whereas the above lessons may be differentiated to some extent, they have no context; they may relate only to the next standard on the list, such as, “Telling time to the nearest minute and finding elapsed time using a cal- endar or a clock.” How would a “standards-embed- ded” model of curriculum design be different? It would begin with the development of an essential ques- tion such as, “Who or what lived here before me? How were they different from me? How were they the same? How do we know?” These questions might be more relevant to our con- temporary highly mobile students. It would involve place and time. Using this intriguing line of inquiry, students might work on the social studies stan- dard as part of the study of their home- town, their school, or even their house or apartment. Because where people live and what they do is influenced by the weather, students could look into weather patterns of their area and learn how to measure temperature using a Fahrenheit scale so they could see if it is similar now to what it was a century ago. Skipping ahead to consideration of the social studies standard, students could then choose another country, preferably one that uses Celsius, and do the same investigation of fossils, communities, and the like. Students could complete a weather comparison, looking at the temperature in Celsius as people in other parts of the world, such as those in Canada, do. Thus, learning is contextualized and connected, dem- onstrating both depth and complexity. This approach takes a lot more work and time. It is a sophisticated integrated view of curriculum devel- opment and involves in-depth knowl- edge of the content areas, as well as an understanding of the scope and sequence of the standards in each dis- cipline. Teachers who develop vital single-discipline units, as well as inter- disciplinary teaching units, begin with a central topic surrounded by subtopics and connections to other areas. Then they connect important terms, facts, or concepts to the subtopics. Next, the skilled teacher/curriculum devel- oper embeds relevant, multileveled standards and objectives appropriate to a given student or group of stu- dents into the unit. Finally, teachers select the instructional strategies and develop student assessments. These assessments include, but are not lim- ited to, the types of questions asked on standardized and state assessments. Comparing Standards- Based and Standards- Embedded Curriculum Design Following is an articulation of the differences between standards-based and standards-embedded curriculum design. (See Figure 1.) 1. The starting point. Standards- based curriculum begins with the grade-level standard and the underlying assumption that every student needs to master that stan- dard at that moment in time. In standards-embedded curriculum, the multifaceted essential ques- tion and students’ needs are the starting points. 2. Preassessment. In standards- based curriculum and teaching, if a preassessment is provided, it cov- ers a single standard or two. In a standards-embedded curriculum, preassessment includes a broader range of grade-level and advanced standards, as well as students’ knowledge of surrounding content such as background experiences with the subject, relevant skills (such as reading and writing), and continued on page ?? even learning style or interests. gifted child today 47 Standards-Based v. Standards-Embedded Curriculum Standards Based Standards Embedded Starting Points The grade-level standard. Whole class’ general skill level Essential questions and content relevant to individual students and groups. Preassessment Targeted to a single grade-level standard. Short-cycle assessments. Background knowledge. Multiple grade-level standards from multiple areas connected by the theme of the unit. Includes annual learning style and interest inventories. Acceleration/ Enrichment To next grade-level standard in the same strand. To above-grade-level standards, as well as into broader thematically connected content. Language Arts Divided into individual skills. Reading and writing skills often separated from real-world relevant contexts. The language arts are embedded in all units and themes and connected to differentiated processes and products across all content areas. Instruction Lesson planning begins with the standard as the objective. Sequential direct instruction progresses through the standards in each content area separately. Strategies are selected to introduce, practice, and demonstrate mastery of all grade-level standards in all content areas in one school year. Lesson planning begins with essential questions, topics, and significant themes. Integrated instruction is designed around connections among content areas and embeds all relevant standards. Assessment Format modeled after the state test. Variety of assessments including questions similar to the state test format. Teacher Role Monitor of standards mastery. Time manager. Facilitator of instructional design and student engagement with learning, as well as assessor of achievement. Student Self- Esteem “I can . . .” statements. Star Charts. Passing “the test.” Completed projects/products. Making personal connections to learning and the theme/topic. Figure 1. Standards based v. standards-embedded instruction and gifted students. and the potential political outcry of “stepping on the toes” of the next grade’s teacher. Few classroom teachers have been provided with the in-depth professional develop- ment and understanding of curric- ulum compacting that would allow them to implement this effectively. In standards-embedded curricu- lum, enrichment and extensions of learning are more possible and more interesting because ideas, top- ics, and questions lend themselves more easily to depth and complex- ity than isolated skills. 4. Language arts. In standards- based classrooms, the language arts have been redivided into sepa- rate skills, with reading separated from writing, and writing sepa- rated from grammar. To many concrete thinkers, whole-language approaches seem antithetical to teaching “to the standards.” In a standards-embedded classroom, integrated language arts skills (reading, writing, listening, speak- ing, presenting, and even pho- nics) are embedded into the study of every unit. Especially for the gifted, the communication and language arts are essential, regard- less of domain-specific talents (Ward, 1980) and should be com- ponents of all curriculum because they are the underpinnings of scholarship in all areas. 5. Instruction. A standards-based classroom lends itself to direct instruction and sequential pro- gression from one standard to the next. A standards-embedded class- room requires a variety of more open-ended instructional strate- gies and materials that extend and diversify learning rather than focus it narrowly. Creativity and differ- entiation in instruction and stu- dent performance are supported more effectively in a standards- embedded approach. 6. Assessment. A standards-based classroom uses targeted assess- ments focused on the structure and content of questions on the externally imposed standardized test (i.e., proficiency tests). A stan- dards-embedded classroom lends itself to greater use of authentic assessment and differentiated 3. Acceleration/Enrichment. In a standards-based curriculum, the narrow definition of the learning outcome (a test item) often makes acceleration or curriculum compact- ing the only path for differentiating instruction for gifted, talented, and/ or advanced learners. This rarely happens, however, because of lack of materials, knowledge, o

Read this article and answer this question in 2 pages : Answers should be from the below article only. What is the difference between “standards-based” and “standards-embedded” curriculum? what are the curricular implications of this difference? Article: In 2007, at the dawn of 21st century in education, it is impossible to talk about teaching, curriculum, schools, or education without discussing standards . standards-based v. standards-embedded curriculum We are in an age of accountability where our success as educators is determined by individual and group mastery of specific standards dem- onstrated by standardized test per- formance. Even before No Child Left Behind (NCLB), standards and measures were used to determine if schools and students were success- ful (McClure, 2005). But, NCLB has increased the pace, intensity, and high stakes of this trend. Gifted and talented students and their teach- ers are significantly impacted by these local or state proficiency stan- dards and grade-level assessments (VanTassel-Baska & Stambaugh, 2006). This article explores how to use these standards in the develop- ment of high-quality curriculum for gifted students. NCLB, High-Stakes State Testing, and Standards- Based Instruction There are a few potentially positive outcomes of this evolution to public accountability. All stakeholders have had to ask themselves, “Are students learning? If so, what are they learning and how do we know?” In cases where we have been allowed to thoughtfully evaluate curriculum and instruction, we have also asked, “What’s worth learning?” “When’s the best time to learn it?” and “Who needs to learn it?” Even though state achievement tests are only a single measure, citizens are now offered a yardstick, albeit a nar- row one, for comparing communities, schools, and in some cases, teachers. Some testing reports allow teachers to identify for parents what their chil- dren can do and what they can not do. Testing also has focused attention on the not-so-new observations that pov- erty, discrimination and prejudices, and language proficiency impacts learning. With enough ceiling (e.g., above-grade-level assessments), even gifted students’ actual achievement and readiness levels can be identi- fied and provide a starting point for appropriately differentiated instruc- tion (Tomlinson, 2001). Unfortunately, as a veteran teacher for more than three decades and as a teacher-educator, my recent observa- tions of and conversations with class- room and gifted teachers have usually revealed negative outcomes. For gifted children, their actual achievement level is often unrecognized by teachers because both the tests and the reporting of the results rarely reach above the student’s grade-level placement. Assessments also focus on a huge number of state stan- dards for a given school year that cre- ate “overload” (Tomlinson & McTighe, 2006) and have a devastating impact on the development and implementation of rich and relevant curriculum and instruction. In too many scenarios, I see teachers teach- ing directly to the test. And, in the worst cases, some teachers actually teach The Test. In those cases, The Test itself becomes the curriculum. Consistently I hear, “Oh, I used to teach a great unit on ________ but I can’t do it any- more because I have to teach the standards.” Or, “I have to teach my favorite units in April and May after testing.” If the outcomes can’t be boiled down to simple “I can . . .” state- ments that can be posted on a school’s walls, then teachers seem to omit poten- tially meaningful learning opportunities from the school year. In many cases, real education and learning are being trivial- ized. We seem to have lost sight of the more significant purpose of teaching and learning: individual growth and develop- ment. We also have surrendered much of the joy of learning, as the incidentals, the tangents, the “bird walks” are cut short or elimi- nated because teachers hear the con- stant ticking clock of the countdown to the state test and feel the pressure of the way-too-many standards that have to be covered in a mere 180 school days. The accountability movement has pushed us away from seeing the whole child: “Students are not machines, as the standards movement suggests; they are volatile, complicated, and paradoxical” (Cookson, 2001, p. 42). How does this impact gifted chil- dren? In many heterogeneous class- rooms, teachers have retreated to traditional subject delineations and traditional instruction in an effort to ensure direct standards-based instruc- tion even though “no solid basis exists in the research literature for the ways we currently develop, place, and align educational standards in school cur- ricula” (Zenger & Zenger, 2002, p. 212). Grade-level standards are often particularly inappropriate for the gifted and talented whose pace of learning, achievement levels, and depth of knowledge are significantly beyond their chronological peers. A broad-based, thematically rich, and challenging curriculum is the heart of education for the gifted. Virgil Ward, one of the earliest voices for a differen- tial education for the gifted, said, “It is insufficient to consider the curriculum for the gifted in terms of traditional subjects and instructional processes” (Ward, 1980, p. 5). VanTassel-Baska Standards-Based v. Standards-Embedded Curriculum gifted child today 45 Standards-Based v. Standards-Embedded Curriculum and Stambaugh (2006) described three dimensions of successful curriculum for gifted students: content mastery, pro- cess and product, and epistemological concept, “understanding and appre- ciating systems of knowledge rather than individual elements of those systems” (p. 9). Overemphasis on testing and grade-level standards limits all three and therefore limits learning for gifted students. Hirsch (2001) concluded that “broad gen- eral knowledge is the best entrée to deep knowledge” (p. 23) and that it is highly correlated with general ability to learn. He continued, “the best way to learn a subject is to learn its gen- eral principles and to study an ample number of diverse examples that illustrate those principles” (Hirsch, 2001, p. 23). Principle-based learn- ing applies to both gifted and general education children. In order to meet the needs of gifted and general education students, cur- riculum should be differentiated in ways that are relevant and engaging. Curriculum content, processes, and products should provide challenge, depth, and complexity, offering multiple opportunities for problem solving, creativity, and exploration. In specific content areas, the cur- riculum should reflect the elegance and sophistication unique to the discipline. Even with this expanded view of curriculum in mind, we still must find ways to address the current reality of state standards and assess- ments. Standards-Embedded Curriculum How can educators address this chal- lenge? As in most things, a change of perspective can be helpful. Standards- based curriculum as described above should be replaced with standards- embedded curriculum. Standards- embedded curriculum begins with broad questions and topics, either discipline specific or interdisciplinary. Once teachers have given thoughtful consideration to relevant, engaging, and important content and the con- nections that support meaning-making (Jensen, 1998), they next select stan- dards that are relevant to this content and to summative assessments. This process is supported by the backward planning advocated in Understanding by Design by Wiggins and McTighe (2005) and its predecessors, as well as current thinkers in other fields, such as Covey (Tomlinson & McTighe, 2006). It is a critical component of differenti- ating instruction for advanced learners (Tomlinson, 2001) and a significant factor in the Core Parallel in the Parallel Curriculum Model (Tomlinson et al., 2002). Teachers choose from standards in multiple disciplines at both above and below grade level depending on the needs of the students and the classroom or program structure. Preassessment data and the results of prior instruc- tion also inform this process of embed- ding appropriate standards. For gifted students, this formative assessment will result in “more advanced curricula available at younger ages, ensuring that all levels of the standards are traversed in the process” (VanTassel-Baska & Little, 2003, p. 3). Once the essential questions, key content, and relevant standards are selected and sequenced, they are embedded into a coherent unit design and instructional decisions (grouping, pacing, instructional methodology) can be made. For gifted students, this includes the identification of appropri- ate resources, often including advanced texts, mentors, and independent research, as appropriate to the child’s developmental level and interest. Applying Standards- Embedded Curriculum What does this look like in practice? In reading the possible class- room applications below, consider these three Ohio Academic Content Standards for third grade: 1. Math: “Read thermometers in both Fahrenheit and Celsius scales” (“Academic Content Standards: K–12 Mathematics,” n.d., p. 71). 2. Social Studies: “Compare some of the cultural practices and products of various groups of people who have lived in the local community including artistic expression, religion, language, and food. Compare the cultural practices and products of the local community with those of other communities in Ohio, the United States, and countries of the world” (Academic Content Standards: K–12 Social Studies, n.d., p. 122). 3. Life Science: “Observe and explore how fossils provide evidence about animals that lived long ago and the nature of the environment at that time” (Academic Content Standards: K–12 Science, n.d., p. 57). When students are fortunate to have a teacher who is dedicated to helping all of them make good use of their time, the gifted may have a preassessment opportunity where they can demonstrate their familiarity with the content and potential mastery of a standard at their grade level. Students who pass may get to read by them- selves for the brief period while the rest of the class works on the single outcome. Sometimes more experienced teachers will create opportunities for gifted and advanced students Standards-Based v. Standards-Embedded Curriculum to work on a standard in the same domain or strand at the next higher grade level (i.e., accelerate through the standards). For example, a stu- dent might be able to work on a Life Science standard for fourth grade that progresses to other communities such as ecosystems. These above-grade-level standards can provide rich material for differentiation, advanced problem solving, and more in-depth curriculum integration. In another classroom scenario, a teacher may focus on the math stan- dard above, identifying the standard number on his lesson plan. He creates or collects paper thermometers, some showing measurement in Celsius and some in Fahrenheit. He also has some real thermometers. He demonstrates thermometer use with boiling water and with freezing water and reads the different temperatures. Students complete a worksheet that has them read thermometers in Celsius and Fahrenheit. The more advanced students may learn how to convert between the two scales. Students then practice with several questions on the topic that are similar in structure and content to those that have been on past proficiency tests. They are coached in how to answer them so that the stan- dard, instruction, formative assess- ment, and summative assessment are all aligned. Then, each student writes a statement that says, “I can read a thermometer using either Celsius or Fahrenheit scales.” Both of these examples describe a standards-based environment, where the starting point is the standard. Direct instruction to that standard is followed by an observable student behavior that demonstrates specific mastery of that single standard. The standard becomes both the start- ing point and the ending point of the curriculum. Education, rather than opening up a student’s mind, becomes a series of closed links in a chain. Whereas the above lessons may be differentiated to some extent, they have no context; they may relate only to the next standard on the list, such as, “Telling time to the nearest minute and finding elapsed time using a cal- endar or a clock.” How would a “standards-embed- ded” model of curriculum design be different? It would begin with the development of an essential ques- tion such as, “Who or what lived here before me? How were they different from me? How were they the same? How do we know?” These questions might be more relevant to our con- temporary highly mobile students. It would involve place and time. Using this intriguing line of inquiry, students might work on the social studies stan- dard as part of the study of their home- town, their school, or even their house or apartment. Because where people live and what they do is influenced by the weather, students could look into weather patterns of their area and learn how to measure temperature using a Fahrenheit scale so they could see if it is similar now to what it was a century ago. Skipping ahead to consideration of the social studies standard, students could then choose another country, preferably one that uses Celsius, and do the same investigation of fossils, communities, and the like. Students could complete a weather comparison, looking at the temperature in Celsius as people in other parts of the world, such as those in Canada, do. Thus, learning is contextualized and connected, dem- onstrating both depth and complexity. This approach takes a lot more work and time. It is a sophisticated integrated view of curriculum devel- opment and involves in-depth knowl- edge of the content areas, as well as an understanding of the scope and sequence of the standards in each dis- cipline. Teachers who develop vital single-discipline units, as well as inter- disciplinary teaching units, begin with a central topic surrounded by subtopics and connections to other areas. Then they connect important terms, facts, or concepts to the subtopics. Next, the skilled teacher/curriculum devel- oper embeds relevant, multileveled standards and objectives appropriate to a given student or group of stu- dents into the unit. Finally, teachers select the instructional strategies and develop student assessments. These assessments include, but are not lim- ited to, the types of questions asked on standardized and state assessments. Comparing Standards- Based and Standards- Embedded Curriculum Design Following is an articulation of the differences between standards-based and standards-embedded curriculum design. (See Figure 1.) 1. The starting point. Standards- based curriculum begins with the grade-level standard and the underlying assumption that every student needs to master that stan- dard at that moment in time. In standards-embedded curriculum, the multifaceted essential ques- tion and students’ needs are the starting points. 2. Preassessment. In standards- based curriculum and teaching, if a preassessment is provided, it cov- ers a single standard or two. In a standards-embedded curriculum, preassessment includes a broader range of grade-level and advanced standards, as well as students’ knowledge of surrounding content such as background experiences with the subject, relevant skills (such as reading and writing), and continued on page ?? even learning style or interests. gifted child today 47 Standards-Based v. Standards-Embedded Curriculum Standards Based Standards Embedded Starting Points The grade-level standard. Whole class’ general skill level Essential questions and content relevant to individual students and groups. Preassessment Targeted to a single grade-level standard. Short-cycle assessments. Background knowledge. Multiple grade-level standards from multiple areas connected by the theme of the unit. Includes annual learning style and interest inventories. Acceleration/ Enrichment To next grade-level standard in the same strand. To above-grade-level standards, as well as into broader thematically connected content. Language Arts Divided into individual skills. Reading and writing skills often separated from real-world relevant contexts. The language arts are embedded in all units and themes and connected to differentiated processes and products across all content areas. Instruction Lesson planning begins with the standard as the objective. Sequential direct instruction progresses through the standards in each content area separately. Strategies are selected to introduce, practice, and demonstrate mastery of all grade-level standards in all content areas in one school year. Lesson planning begins with essential questions, topics, and significant themes. Integrated instruction is designed around connections among content areas and embeds all relevant standards. Assessment Format modeled after the state test. Variety of assessments including questions similar to the state test format. Teacher Role Monitor of standards mastery. Time manager. Facilitator of instructional design and student engagement with learning, as well as assessor of achievement. Student Self- Esteem “I can . . .” statements. Star Charts. Passing “the test.” Completed projects/products. Making personal connections to learning and the theme/topic. Figure 1. Standards based v. standards-embedded instruction and gifted students. and the potential political outcry of “stepping on the toes” of the next grade’s teacher. Few classroom teachers have been provided with the in-depth professional develop- ment and understanding of curric- ulum compacting that would allow them to implement this effectively. In standards-embedded curricu- lum, enrichment and extensions of learning are more possible and more interesting because ideas, top- ics, and questions lend themselves more easily to depth and complex- ity than isolated skills. 4. Language arts. In standards- based classrooms, the language arts have been redivided into sepa- rate skills, with reading separated from writing, and writing sepa- rated from grammar. To many concrete thinkers, whole-language approaches seem antithetical to teaching “to the standards.” In a standards-embedded classroom, integrated language arts skills (reading, writing, listening, speak- ing, presenting, and even pho- nics) are embedded into the study of every unit. Especially for the gifted, the communication and language arts are essential, regard- less of domain-specific talents (Ward, 1980) and should be com- ponents of all curriculum because they are the underpinnings of scholarship in all areas. 5. Instruction. A standards-based classroom lends itself to direct instruction and sequential pro- gression from one standard to the next. A standards-embedded class- room requires a variety of more open-ended instructional strate- gies and materials that extend and diversify learning rather than focus it narrowly. Creativity and differ- entiation in instruction and stu- dent performance are supported more effectively in a standards- embedded approach. 6. Assessment. A standards-based classroom uses targeted assess- ments focused on the structure and content of questions on the externally imposed standardized test (i.e., proficiency tests). A stan- dards-embedded classroom lends itself to greater use of authentic assessment and differentiated 3. Acceleration/Enrichment. In a standards-based curriculum, the narrow definition of the learning outcome (a test item) often makes acceleration or curriculum compact- ing the only path for differentiating instruction for gifted, talented, and/ or advanced learners. This rarely happens, however, because of lack of materials, knowledge, o

Standard based Curriculum In standard based curriculum, the initial point … Read More...
Problem 5: Physical Fitness versus Weight. You may have noticed from your analysis in Problem 4 that height does not explain 100% of the variation that we have observed in students’ heights. Is it possible that the amount of time students devote to physical fitness each week may help us to better understand their weights? a. Question 12 of the survey asked students, “About how much time per week (on average) do you devote to physical fitness?” We have named this variable FITNESS. Create a suitable graph to display the distribution of FITNESS and insert it here. b. What is the mode of this distribution? (Please underline one option.) Between 0 & 2 hours Between 2 & 5 hours Between 5 & 9 hours Between 9 & 15 hours Over 15 hours c. Create side-by-side boxplots to display students’ weights for the different levels of FITNESS. (Go to Graph > Boxplot > One Y with Groups > OK. Select WEIGHT for the “Graph variables” slot and FITNESS for the “Categorical variables for grouping” slot.) Insert your graph here. d. Use Minitab to calculate the basic statistics of WEIGHT for each level of FITNESS. Copy and paste the output here. e. With regard to FITNESS levels, which group of students has the lowest mean weight? (Please underline one option.) Between 0 & 2 hours Between 2 & 5 hours Between 5 & 9 hours Between 9 & 15 hours Over 15 hours f. Discuss the results: Describe the distributions of WEIGHT for the different levels of FITNESS as well as draw comparisons (i.e., What do they have in common?) and contrasts (i.e., How are they different?) between these distributions. Are there any surprises in the results? Explain why you think so, or why not. Problem 6 (Even): If your E number ends in an even number (0, 2, 4, 6, or 8) then do this question. (Omit this page/problem if your E# ends with an odd number.) Gender and Nuclear Safety. Question 5 in the survey asked students “How safe would you feel if a nuclear energy plant were built near where you live?” (Students could choose one of these options: Extremely safe, Very Safe, Moderately safe, Slightly safe, or Not at all safe.) Is there a relationship between gender and students’ opinions about nuclear safety? a. Create an appropriate graph to display the relationship between GENDER and NUCLEAR SAFETY. You don’t want to display information for students that didn’t answer both of these questions on the survey, so click on Data Options > Group Options and remove the checks in the boxes beside “Include missing as a group” and “Include empty cells.” Insert your graph here. b. Create an appropriate two-way table to summarize the data. Click on Options > Display missing values for… and put a dot in the circle beside “No variables.” Insert your table here. c. SUPPOSE WE SELECT ONE STUDENT AT RANDOM: (Calculate the following probabilities and show your work.) i. What is the probability that this student is a female and feels “very safe”? P = ii. What is the probability that this student is either a male or that he/she feels “very safe”? P = iii. What is the probability that this student feels “not at all safe” given that the student selected is a female? P = iv. What is the probability that this student is a male given that the student selected feels “not at all safe”? P = d. Do you think there may be an association between GENDER and NUCLEAR SAFETY? Why or why not? Explain your reasoning based on what you see in your graph.

Problem 5: Physical Fitness versus Weight. You may have noticed from your analysis in Problem 4 that height does not explain 100% of the variation that we have observed in students’ heights. Is it possible that the amount of time students devote to physical fitness each week may help us to better understand their weights? a. Question 12 of the survey asked students, “About how much time per week (on average) do you devote to physical fitness?” We have named this variable FITNESS. Create a suitable graph to display the distribution of FITNESS and insert it here. b. What is the mode of this distribution? (Please underline one option.) Between 0 & 2 hours Between 2 & 5 hours Between 5 & 9 hours Between 9 & 15 hours Over 15 hours c. Create side-by-side boxplots to display students’ weights for the different levels of FITNESS. (Go to Graph > Boxplot > One Y with Groups > OK. Select WEIGHT for the “Graph variables” slot and FITNESS for the “Categorical variables for grouping” slot.) Insert your graph here. d. Use Minitab to calculate the basic statistics of WEIGHT for each level of FITNESS. Copy and paste the output here. e. With regard to FITNESS levels, which group of students has the lowest mean weight? (Please underline one option.) Between 0 & 2 hours Between 2 & 5 hours Between 5 & 9 hours Between 9 & 15 hours Over 15 hours f. Discuss the results: Describe the distributions of WEIGHT for the different levels of FITNESS as well as draw comparisons (i.e., What do they have in common?) and contrasts (i.e., How are they different?) between these distributions. Are there any surprises in the results? Explain why you think so, or why not. Problem 6 (Even): If your E number ends in an even number (0, 2, 4, 6, or 8) then do this question. (Omit this page/problem if your E# ends with an odd number.) Gender and Nuclear Safety. Question 5 in the survey asked students “How safe would you feel if a nuclear energy plant were built near where you live?” (Students could choose one of these options: Extremely safe, Very Safe, Moderately safe, Slightly safe, or Not at all safe.) Is there a relationship between gender and students’ opinions about nuclear safety? a. Create an appropriate graph to display the relationship between GENDER and NUCLEAR SAFETY. You don’t want to display information for students that didn’t answer both of these questions on the survey, so click on Data Options > Group Options and remove the checks in the boxes beside “Include missing as a group” and “Include empty cells.” Insert your graph here. b. Create an appropriate two-way table to summarize the data. Click on Options > Display missing values for… and put a dot in the circle beside “No variables.” Insert your table here. c. SUPPOSE WE SELECT ONE STUDENT AT RANDOM: (Calculate the following probabilities and show your work.) i. What is the probability that this student is a female and feels “very safe”? P = ii. What is the probability that this student is either a male or that he/she feels “very safe”? P = iii. What is the probability that this student feels “not at all safe” given that the student selected is a female? P = iv. What is the probability that this student is a male given that the student selected feels “not at all safe”? P = d. Do you think there may be an association between GENDER and NUCLEAR SAFETY? Why or why not? Explain your reasoning based on what you see in your graph.

info@checkyourstudy.com
Some people criticize cooperative learning claiming that that heterogeneous grouping prevents gifted students from reaching their full potential. Do you agree or disagree? Why or why not?

Some people criticize cooperative learning claiming that that heterogeneous grouping prevents gifted students from reaching their full potential. Do you agree or disagree? Why or why not?

Disagree Advocates of collaborative learning assert that the vigorous switch … Read More...
Some people criticize cooperative learning claiming that that heterogeneous grouping prevents gifted students from reaching their full potential. Do you agree or disagree? Why or why not?

Some people criticize cooperative learning claiming that that heterogeneous grouping prevents gifted students from reaching their full potential. Do you agree or disagree? Why or why not?

I do not completely agree to the above statement. This … Read More...
For Day 14 Homework Cover Sheet Name:_________________________________________________ 1. Read Pages from 227-254, or watch the videos listed below  Factoring Whole Numbers http://www.youtube.com/watch?v=snMzQARfX_M (8 min)  Introduction to Factoring Polynomials http://www.youtube.com/watch?v=JR4rMAd0Mhg (13 min)  Adding and Subtracting Rational Expressions using Basic Factoring http://www.youtube.com/watch?v=p8tMoTPFyPI (5 min)  Factoring by Grouping Geometrically as Rectangles http://www.youtube.com/watch?v=JPWGp83_DUE (6 min)  Factoring by Grouping http://www.youtube.com/watch?v=yyMzSSw8KLQ (5 min)  Factoring Trinomials using Algebra Tiles http://www.youtube.com/watch?v=-Xy0zEGIb54 (11 min)  Factoring Trinomials Algebraically http://www.youtube.com/watch?v=Ib9eeHyxwm4 (10 min) 2. Attempt problems from workbook pages 67-74, ALEKS Intermediate Objective 3 at 90% Summary of the lectures you watched. List any parts of the video lecture (if there are any) that were unclear or you had trouble understanding. Please be specific and do not just say “All of it”. Questions you had difficulty with or felt stuck on- List the number for the ALEKS topics you were stuck on from the list at the end of the video logs-

For Day 14 Homework Cover Sheet Name:_________________________________________________ 1. Read Pages from 227-254, or watch the videos listed below  Factoring Whole Numbers http://www.youtube.com/watch?v=snMzQARfX_M (8 min)  Introduction to Factoring Polynomials http://www.youtube.com/watch?v=JR4rMAd0Mhg (13 min)  Adding and Subtracting Rational Expressions using Basic Factoring http://www.youtube.com/watch?v=p8tMoTPFyPI (5 min)  Factoring by Grouping Geometrically as Rectangles http://www.youtube.com/watch?v=JPWGp83_DUE (6 min)  Factoring by Grouping http://www.youtube.com/watch?v=yyMzSSw8KLQ (5 min)  Factoring Trinomials using Algebra Tiles http://www.youtube.com/watch?v=-Xy0zEGIb54 (11 min)  Factoring Trinomials Algebraically http://www.youtube.com/watch?v=Ib9eeHyxwm4 (10 min) 2. Attempt problems from workbook pages 67-74, ALEKS Intermediate Objective 3 at 90% Summary of the lectures you watched. List any parts of the video lecture (if there are any) that were unclear or you had trouble understanding. Please be specific and do not just say “All of it”. Questions you had difficulty with or felt stuck on- List the number for the ALEKS topics you were stuck on from the list at the end of the video logs-

No expert has answered this question yet. You can browse … Read More...
Microbial Homework 13 points Must be turned in through blackboard, typed, using a word process, and preferably using Microsoft Word. 1. (3pts) Are viruses alive? Justify your answer by indicating whether they meet the criteria of the each of the defining properties of life discussed in chapter 1. 2. (2pts)Explain why Kingdom Protista is considered an artificial grouping. 3. (3pts) Are fungi plants? How are fungi similar to and different from plants? 4.(5pts) Research a product (e.g. food or medicine) made using bacteria or fungus, and describe how the bacteria or fungus is involved in the process. (No more than three paragraphs long, get to the point). The products mentioned in the text (e.g. penicillin and cheese) and edible mushrooms do not count. CITE YOUR SOURCES!! Format doesn’t matter as long as all the necessary information is there.

Microbial Homework 13 points Must be turned in through blackboard, typed, using a word process, and preferably using Microsoft Word. 1. (3pts) Are viruses alive? Justify your answer by indicating whether they meet the criteria of the each of the defining properties of life discussed in chapter 1. 2. (2pts)Explain why Kingdom Protista is considered an artificial grouping. 3. (3pts) Are fungi plants? How are fungi similar to and different from plants? 4.(5pts) Research a product (e.g. food or medicine) made using bacteria or fungus, and describe how the bacteria or fungus is involved in the process. (No more than three paragraphs long, get to the point). The products mentioned in the text (e.g. penicillin and cheese) and edible mushrooms do not count. CITE YOUR SOURCES!! Format doesn’t matter as long as all the necessary information is there.

No expert has answered this question yet. You can browse … Read More...
1- At your university, students can take more than one class, and each class can have more than one student. This is an example of what kind of relationship? one-to-one one-to-many many-to-one many-to-many some-to-many 2- A _____ is a logical grouping of related records. byte field record file database 3- When customers access a website and make purchases, they generate _____. tracking cookies information clickstream data web data hyperlink data 4- You have moved to a different apartment, but your electricity bill continues to be sent to your old address. The post office in your town has which problem with its data management? Data redundancy Data inconsistency Data isolation Data security Data dependence 5- Data ___________ ensures applications cannot access data associated with other applications. Hermitting inconsistency isolation redundancy 6- True or false: The primary key is a field that uniquely and completely identifies a record. True False 7- A _____ represents a single character, such as a letter, number, or symbol. byte field record file database 8- A _____ is a logical grouping of characters into a word, a small group of words, or a complete number. byte field record file database 9- A _____ is a logical grouping of related fields. byte field record file database 10 – _____ are fields in a record that have some identifying information but typically do not identify the record with complete accuracy. Primary keys Secondary keys Duplicate keys Attribute keys Record keys

1- At your university, students can take more than one class, and each class can have more than one student. This is an example of what kind of relationship? one-to-one one-to-many many-to-one many-to-many some-to-many 2- A _____ is a logical grouping of related records. byte field record file database 3- When customers access a website and make purchases, they generate _____. tracking cookies information clickstream data web data hyperlink data 4- You have moved to a different apartment, but your electricity bill continues to be sent to your old address. The post office in your town has which problem with its data management? Data redundancy Data inconsistency Data isolation Data security Data dependence 5- Data ___________ ensures applications cannot access data associated with other applications. Hermitting inconsistency isolation redundancy 6- True or false: The primary key is a field that uniquely and completely identifies a record. True False 7- A _____ represents a single character, such as a letter, number, or symbol. byte field record file database 8- A _____ is a logical grouping of characters into a word, a small group of words, or a complete number. byte field record file database 9- A _____ is a logical grouping of related fields. byte field record file database 10 – _____ are fields in a record that have some identifying information but typically do not identify the record with complete accuracy. Primary keys Secondary keys Duplicate keys Attribute keys Record keys

1- At your university, students can take more than one … Read More...
You are to choose 2 websites, with different purposes, and review the websites based on the criteria listed below. 1. Starting Point a. Composition Matches Site Purpose b. Target Audience Apparent c. Composition Appropriate for Target Audience 2. Site design a. Consistency within site b. Consistency among pages 3. Visually Pleasing Composition 4. Visual Style in Web Design a. Consistency b. Distinctiveness 5. Focus and Emphasis a. What is emphasized? b. How is emphasis achieved? 6. Consistency a. Real World b. Internal 7. Navigation and Flow a. Home page identifiable throughout b. Location within site apparent c. Navigation consistent; rule-based; appropriate 8. Grouping a. Grouping with White Space b. Grouping with Borders c. Grouping with Backgrounds 9. Response time 10. Links a. Titled b. Incoming c. Outgoing d. Color 11. Detailed content a. Meaningful headings b. Plain language c. Page chunking d. Long blocks of text e. Scrolling f. Use of “within” page links 12. Articles a. Clear headings b. Plain language 13. Presenting Information Simply and Meaningfully a. Legibility b. Readability c. Information in Usable Form d. Visual Lines Clear 14. Legibility of content a. Font color b. Font size c. Font style d. Background color e. Background graphic 15. Documentation

You are to choose 2 websites, with different purposes, and review the websites based on the criteria listed below. 1. Starting Point a. Composition Matches Site Purpose b. Target Audience Apparent c. Composition Appropriate for Target Audience 2. Site design a. Consistency within site b. Consistency among pages 3. Visually Pleasing Composition 4. Visual Style in Web Design a. Consistency b. Distinctiveness 5. Focus and Emphasis a. What is emphasized? b. How is emphasis achieved? 6. Consistency a. Real World b. Internal 7. Navigation and Flow a. Home page identifiable throughout b. Location within site apparent c. Navigation consistent; rule-based; appropriate 8. Grouping a. Grouping with White Space b. Grouping with Borders c. Grouping with Backgrounds 9. Response time 10. Links a. Titled b. Incoming c. Outgoing d. Color 11. Detailed content a. Meaningful headings b. Plain language c. Page chunking d. Long blocks of text e. Scrolling f. Use of “within” page links 12. Articles a. Clear headings b. Plain language 13. Presenting Information Simply and Meaningfully a. Legibility b. Readability c. Information in Usable Form d. Visual Lines Clear 14. Legibility of content a. Font color b. Font size c. Font style d. Background color e. Background graphic 15. Documentation

http://www.physicsclassroom.com/ http://www.usa.gov/ 1.                  Starting Point a.       Composition Matches Site Purpose … Read More...
Human Computer Interaction You are to choose 2 websites, with different purposes, and review the websites based on the criteria listed below. 1. Starting Point a. Composition Matches Site Purpose b. Target Audience Apparent c. Composition Appropriate for Target Audience 2. Site design a. Consistency within site b. Consistency among pages 3. Visually Pleasing Composition 4. Visual Style in Web Design a. Consistency b. Distinctiveness 5. Focus and Emphasis a. What is emphasized? b. How is emphasis achieved? 6. Consistency a. Real World b. Internal 7. Navigation and Flow a. Home page identifiable throughout b. Location within site apparent c. Navigation consistent; rule-based; appropriate 8. Grouping a. Grouping with White Space b. Grouping with Borders c. Grouping with Backgrounds 9. Response time 10. Links a. Titled b. Incoming c. Outgoing d. Color 11. Detailed content a. Meaningful headings b. Plain language c. Page chunking d. Long blocks of text e. Scrolling f. Use of “within” page links 12. Articles a. Clear headings b. Plain language 13. Presenting Information Simply and Meaningfully a. Legibility b. Readability c. Information in Usable Form d. Visual Lines Clear 14. Legibility of content a. Font color b. Font size c. Font style d. Background color e. Background graphic 15. Documentation a. Included b. Searchable c. Links to difficult concepts/words 16. Multimedia a. Animation/Audio/Video/Still images b. Load time given c. Add-in required d. Quality e. Appropriateness of use 17. Scrolling and Paging a. Usage b. Appropriate? 18. Amount of Information Presented Appropriate 19. Other factors to note?

Human Computer Interaction You are to choose 2 websites, with different purposes, and review the websites based on the criteria listed below. 1. Starting Point a. Composition Matches Site Purpose b. Target Audience Apparent c. Composition Appropriate for Target Audience 2. Site design a. Consistency within site b. Consistency among pages 3. Visually Pleasing Composition 4. Visual Style in Web Design a. Consistency b. Distinctiveness 5. Focus and Emphasis a. What is emphasized? b. How is emphasis achieved? 6. Consistency a. Real World b. Internal 7. Navigation and Flow a. Home page identifiable throughout b. Location within site apparent c. Navigation consistent; rule-based; appropriate 8. Grouping a. Grouping with White Space b. Grouping with Borders c. Grouping with Backgrounds 9. Response time 10. Links a. Titled b. Incoming c. Outgoing d. Color 11. Detailed content a. Meaningful headings b. Plain language c. Page chunking d. Long blocks of text e. Scrolling f. Use of “within” page links 12. Articles a. Clear headings b. Plain language 13. Presenting Information Simply and Meaningfully a. Legibility b. Readability c. Information in Usable Form d. Visual Lines Clear 14. Legibility of content a. Font color b. Font size c. Font style d. Background color e. Background graphic 15. Documentation a. Included b. Searchable c. Links to difficult concepts/words 16. Multimedia a. Animation/Audio/Video/Still images b. Load time given c. Add-in required d. Quality e. Appropriateness of use 17. Scrolling and Paging a. Usage b. Appropriate? 18. Amount of Information Presented Appropriate 19. Other factors to note?

Human Computer Interaction You are to choose 2 websites, with … Read More...