Essay list

Essay list

      Some students have a background or story … Read More...
1-Two notions serve as the basis for all torts: wrongs and compensation. True False 2-The goal of tort law is to put a defendant in the position that he or she would have been in had the tort occurred to the defendant. True False 3-Hayley is injured in an accident precipitated by Isolde. Hayley files a tort action against Isolde, seeking to recover for the damage suffered. Damages that are intended to compensate or reimburse a plaintiff for actual losses are: compensatory damages. reimbursement damages. actual damages. punitive damages. 4-Ladd throws a rock intending to hit Minh but misses and hits Nasir instead. On the basis of the tort of battery, Nasir can sue: Ladd. Minh. the rightful owner of the rock. no one. 4-Luella trespasses on Merchandise Mart’s property. Through the use of reasonable force, Merchandise Mart’s security guard detains Luella until the police arrive. Merchandise Mart is liable for: assault. battery. false imprisonment. none of the choice 6-The extreme risk of an activity is a defense against imposing strict liability. True False 7-Misrepresentation in an ad is enough to show an intent to induce the reliance of anyone who may use the product. True False 8-Luke is playing a video game on a defective disk that melts in his game player, starting a fire that injures his hands. Luke files a suit against Mystic Maze, Inc., the game’s maker under the doctrine of strict liability. A significant application of this doctrine is in the area of: cyber torts. intentional torts. product liability. unintentional torts 9-More than two hundred years ago, the Declaration of Independence recognized the importance of protecting creative works. True False 10-n 2014, Cloud Computing Corporation registers its trademark as provided by federal law. After the first renewal, this registration: is renewable every ten years. is renewable every twenty years. runs for life of the corporation plus seventy years. runs forever. 11-Wendy works as a weather announcer for a TV station under the character name Weather Wendy. Wendy can register her character’s name as: a certification mark. a trade name. a service mark. none of the choices 12-Much of the material on the Internet, including software and database information, is not copyrighted. True False 13-In a criminal case, the state must prove its case by a preponderance of the evidence. True False 14-Under the Fourth Amendmentt, general searches through a person’s belongings are permissible. True False 15-Maura enters a gas station and points a gun at the clerk Nate. She then forces Nate to open the cash register and give her all the money. Maura can be charged with: burglary. robbery. larceny. receiving stolen property. 16-Reno, driving while intoxicated, causes a car accident that results in the death of Santo. Reno is arrested and charged with a felony. A felony is a crime punishable by death or imprisonment for: any period of time. more than one year. more than six months. more than ten days. 17-Corporate officers and directors may be held criminally liable for the actions of employees under their supervision. True False 18-Sal assures Tom that she will deliver a truckload of hay to his cattle ranch. A person’s declaration to do a certain act is part of the definition of: an expectation. a moral obligation. a prediction. a promise. 19-Lark promises to buy Mac’s used textbook for $60. Lark is: an offeror. an offeree a promisee. a promisor. 20-Casey offers to sell a certain used forklift to DIY Lumber Outlet, but Casey dies before DIY accepts. Most likely, Casey’s death: did not affect the offer. shortened the time of the offer but did not terminated it. extended the time of the offer. terminated the offer.

1-Two notions serve as the basis for all torts: wrongs and compensation. True False 2-The goal of tort law is to put a defendant in the position that he or she would have been in had the tort occurred to the defendant. True False 3-Hayley is injured in an accident precipitated by Isolde. Hayley files a tort action against Isolde, seeking to recover for the damage suffered. Damages that are intended to compensate or reimburse a plaintiff for actual losses are: compensatory damages. reimbursement damages. actual damages. punitive damages. 4-Ladd throws a rock intending to hit Minh but misses and hits Nasir instead. On the basis of the tort of battery, Nasir can sue: Ladd. Minh. the rightful owner of the rock. no one. 4-Luella trespasses on Merchandise Mart’s property. Through the use of reasonable force, Merchandise Mart’s security guard detains Luella until the police arrive. Merchandise Mart is liable for: assault. battery. false imprisonment. none of the choice 6-The extreme risk of an activity is a defense against imposing strict liability. True False 7-Misrepresentation in an ad is enough to show an intent to induce the reliance of anyone who may use the product. True False 8-Luke is playing a video game on a defective disk that melts in his game player, starting a fire that injures his hands. Luke files a suit against Mystic Maze, Inc., the game’s maker under the doctrine of strict liability. A significant application of this doctrine is in the area of: cyber torts. intentional torts. product liability. unintentional torts 9-More than two hundred years ago, the Declaration of Independence recognized the importance of protecting creative works. True False 10-n 2014, Cloud Computing Corporation registers its trademark as provided by federal law. After the first renewal, this registration: is renewable every ten years. is renewable every twenty years. runs for life of the corporation plus seventy years. runs forever. 11-Wendy works as a weather announcer for a TV station under the character name Weather Wendy. Wendy can register her character’s name as: a certification mark. a trade name. a service mark. none of the choices 12-Much of the material on the Internet, including software and database information, is not copyrighted. True False 13-In a criminal case, the state must prove its case by a preponderance of the evidence. True False 14-Under the Fourth Amendmentt, general searches through a person’s belongings are permissible. True False 15-Maura enters a gas station and points a gun at the clerk Nate. She then forces Nate to open the cash register and give her all the money. Maura can be charged with: burglary. robbery. larceny. receiving stolen property. 16-Reno, driving while intoxicated, causes a car accident that results in the death of Santo. Reno is arrested and charged with a felony. A felony is a crime punishable by death or imprisonment for: any period of time. more than one year. more than six months. more than ten days. 17-Corporate officers and directors may be held criminally liable for the actions of employees under their supervision. True False 18-Sal assures Tom that she will deliver a truckload of hay to his cattle ranch. A person’s declaration to do a certain act is part of the definition of: an expectation. a moral obligation. a prediction. a promise. 19-Lark promises to buy Mac’s used textbook for $60. Lark is: an offeror. an offeree a promisee. a promisor. 20-Casey offers to sell a certain used forklift to DIY Lumber Outlet, but Casey dies before DIY accepts. Most likely, Casey’s death: did not affect the offer. shortened the time of the offer but did not terminated it. extended the time of the offer. terminated the offer.

1-Two notions serve as the basis for all torts: wrongs … Read More...
A total of 800 students responded to the MATH1530 class survey during the spring semester of 2015. The name of the data file is Sp15Math1530CSTPData.MTW. The Minitab worksheet is set up as follows: C1: ID (an identification number given to each student in the data file) C2: GENDER C3: AGE (yrs) C4: WEIGHT (lbs) C5: HEIGHT (in) C6: NUCLEAR SAFETY C7: TALK POLITICS C8: WASH HANDS C9: L E CAMERAS C10: CLOTHING ARTICLES C11: CLOTHING PURCHASE ($) C12: LOWEST GAS PRICE ($) C13: FITNESS C14: SEXUAL PREDATOR MATH-1530 CAPSTONE TECHNOLOGY PROJECT SPRING SEMESTER 2015 Problem 1: Identify Variable Type. Which of these questions from the class survey measured variables that are categorical and which are quantitative? Use your word processor to underline the best option (or you may highlight in yellow if you are using a color printer). a. AGE Categorical Quantitative Neither b. NUCLEAR SAFETY Categorical Quantitative Neither c. WASH HANDS Categorical Quantitative Neither d. CLOTHING PURCHASE Categorical Quantitative Neither e. FITNESS Categorical Quantitative Neither Problem 2: Sampling. In the survey data, the variable “AGE” is the current age reported by each student. a. Type the first 10 observations from the column representing the variable AGE into the table below, and use this as your sample data for part (a). Then calculate the mean age of these first 10 observations and report the value below. n 1 2 3 4 5 6 7 8 9 10 AGE (yrs) The mean age of the first 10 students is years. (Type the value into the space provided) Identify the type of sampling method you have just used: b. Next, select a random sample of size n = 10 (Go to Calc > Random Data > Sample from Columns). Type the number 10 in the “Number of rows to Sample” slot. Enter the variable “ID” and “AGE” into the “From columns” slot. Enter C17-C18 into the “Store samples in” slot. Record the data for your sample in the table below. n 1 2 3 4 5 6 7 8 9 10 ID AGE (yrs) Calculate and report the mean age for your random sample of 10 students. The sample mean age is years. Identify the type of sampling method you have just used: c. Let’s treat all the students who responded to the survey as a population for the purposes of this problem. Use Minitab to calculate the mean age for all 800 observations included in the data set and report this value below. The mean age of the population is years. d. Compare the population mean you found in Part (c) to the sample means you found in Parts (a) and (b). Which sample provided a closer estimate of the population mean age in this case?

A total of 800 students responded to the MATH1530 class survey during the spring semester of 2015. The name of the data file is Sp15Math1530CSTPData.MTW. The Minitab worksheet is set up as follows: C1: ID (an identification number given to each student in the data file) C2: GENDER C3: AGE (yrs) C4: WEIGHT (lbs) C5: HEIGHT (in) C6: NUCLEAR SAFETY C7: TALK POLITICS C8: WASH HANDS C9: L E CAMERAS C10: CLOTHING ARTICLES C11: CLOTHING PURCHASE ($) C12: LOWEST GAS PRICE ($) C13: FITNESS C14: SEXUAL PREDATOR MATH-1530 CAPSTONE TECHNOLOGY PROJECT SPRING SEMESTER 2015 Problem 1: Identify Variable Type. Which of these questions from the class survey measured variables that are categorical and which are quantitative? Use your word processor to underline the best option (or you may highlight in yellow if you are using a color printer). a. AGE Categorical Quantitative Neither b. NUCLEAR SAFETY Categorical Quantitative Neither c. WASH HANDS Categorical Quantitative Neither d. CLOTHING PURCHASE Categorical Quantitative Neither e. FITNESS Categorical Quantitative Neither Problem 2: Sampling. In the survey data, the variable “AGE” is the current age reported by each student. a. Type the first 10 observations from the column representing the variable AGE into the table below, and use this as your sample data for part (a). Then calculate the mean age of these first 10 observations and report the value below. n 1 2 3 4 5 6 7 8 9 10 AGE (yrs) The mean age of the first 10 students is years. (Type the value into the space provided) Identify the type of sampling method you have just used: b. Next, select a random sample of size n = 10 (Go to Calc > Random Data > Sample from Columns). Type the number 10 in the “Number of rows to Sample” slot. Enter the variable “ID” and “AGE” into the “From columns” slot. Enter C17-C18 into the “Store samples in” slot. Record the data for your sample in the table below. n 1 2 3 4 5 6 7 8 9 10 ID AGE (yrs) Calculate and report the mean age for your random sample of 10 students. The sample mean age is years. Identify the type of sampling method you have just used: c. Let’s treat all the students who responded to the survey as a population for the purposes of this problem. Use Minitab to calculate the mean age for all 800 observations included in the data set and report this value below. The mean age of the population is years. d. Compare the population mean you found in Part (c) to the sample means you found in Parts (a) and (b). Which sample provided a closer estimate of the population mean age in this case?

info@checkyourstudy.com
5 { GRAVITATION Last Updated: July 16, 2012 Problem List 5.1 Total mass of a shell 5.2 Tunnel through the moon 5.3 Gravitational eld above the center of a thin hoop 5.4 Gravitational force near a metal-cored planet surrounded by a gaseous cloud 5.5 Sphere with linearly increasing mass density 5.6 Jumping o Vesta 5.7 Gravitational force between two massive rods 5.8 Potential energy { Check your answer! 5.9 Ways of solving gravitational problems 5.10 Rod with linearly increasing mass density 5.11 Sphere with constant internal gravitational eld 5.12 Throwing a rock o the moon These problems are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Un- ported License. Please share and/or modify. Back to Problem List 1 5 { GRAVITATION Last Updated: July 16, 2012 5.1 Total mass of a shell Given: Marino { Fall 2011 Consider a spherical shell that extends from r = R to r = 2R with a non-uniform density (r) = 0r. What is the total mass of the shell? Back to Problem List 2 5 { GRAVITATION Last Updated: July 16, 2012 5.2 Tunnel through the moon Given: Marino { Fall 2011 Imagine that NASA digs a straight tunnel through the center of the moon (see gure) to access the Moon’s 3He deposits. An astronaut places a rock in the tunnel at the surface of the moon, and releases it (from rest). Show that the rock obeys the force law for a mass connected to a spring. What is the spring constant? Find the oscillation period for this motion if you assume that Moon has a mass of 7.351022 kg and a radius of 1.74106 m. Assume the moon’s density is uniform throughout its volume, and ignore the moon’s rotation. Given: Pollock { Spring 2011 Imagine (in a parallel universe of unlimited budgets) that NASA digs a straight tunnel through the center of the moon (see gure). A robot place a rock in the tunnel at position r = r0 from the center of the moon, and releases it (from rest). Use Newton’s second law to write the equation of motion of the rock and solve for r(t). Explain in words the rock’s motion. Does the rock return to its initial position at any later time? If so, how long does it takes to return to it? (Give a formula, and a number.) Assume the moon’s density is uniform throughout its volume, and ignore the moon’s rotation. Given: Pollock { Spring 2012 Now lets consider our (real) planet Earth, with total mass M and radius R which we will approximate as a uniform mass density, (r) = 0. (a) Neglecting rotational and frictional e ects, show that a particle dropped into a hole drilled straight through the center of the earth all the way to the far side will oscillate between the two endpoints. (Hint: you will need to set up, and solve, an ODE for the motion) (b) Find the period of the oscillation of this motion. Get a number (in minutes) as a nal result, using data for the earth’s size and mass. (How does that compare to ying to Perth and back?!) Extra Credit: OK, even with unlimited budgets, digging a tunnel through the center of the earth is preposterous. But, suppose instead that the tunnel is a straight-line \chord” through the earth, say directly from New York to Los Angeles. Show that your nal answer for the time taken does not depend on the location of that chord! This is rather remarkable – look again at the time for a free-fall trip (no energy required, except perhaps to compensate for friction) How long would that trip take? Could this work?! Back to Problem List 3 5 { GRAVITATION Last Updated: July 16, 2012 5.3 Gravitational eld above the center of a thin hoop Given: Pollock { Spring 2011, Spring 2012 Consider a very (in nitesimally!) thin but massive loop, radius R (total mass M), centered around the origin, sitting in the x-y plane. Assume it has a uniform linear mass density  (which has units of kg/m) all around it. (So, it’s like a skinny donut that is mostly hole, centered around the z-axis) (a) What is  in terms of M and R? What is the direction of the gravitational eld generated by this mass distribution at a point in space a distance z above the center of the donut, i.e. at (0; 0; z) Explain your reasoning for the direction carefully, try not to simply \wave your hands.” (The answer is extremely intuitive, but can you justify that it is correct?) (b) Compute the gravitational eld, ~g, at the point (0; 0; z) by directly integrating Newton’s law of gravity, summing over all in nitesimal \chunks” of mass along the loop. (c) Compute the gravitational potential at the point (0; 0; z) by directly integrating ?Gdm=r, sum- ming over all in nitesimal \chunks” dm along the loop. Then, take the z-component of the gradient of this potential to check that you agree with your result from the previous part. (d) In the two separate limits z << R and z >> R, Taylor expand your g- eld (in the z-direction)out only to the rst non-zero term, and convince us that both limits make good physical sense. (e) Can you use Gauss’ law to gure out the gravitational potential at the point (0; 0; z)? (If so, do it and check your previous answers. If not, why not?) Extra credit: If you place a small mass a small distance z away from the center, use your Taylor limit for z << R above to write a simple ODE for the equation of motion. Solve it, and discuss the motion Back to Problem List 4 5 { GRAVITATION Last Updated: July 16, 2012 5.4 Gravitational force near a metal-cored planet surrounded by a gaseous cloud Given: Pollock { Spring 2011 Jupiter is composed of a dense spherical core (of liquid metallic hydrogen!) of radius Rc. It is sur- rounded by a spherical cloud of gaseous hydrogen of radius Rg, where Rg > Rc. Let’s assume that the core is of uniform density c and the gaseous cloud is also of uniform density g. What is the gravitational force on an object of mass m that is located at a radius r from the center of Jupiter? Note that you must consider the cases where the object is inside the core, within the gas layer, and outside of the planet. Back to Problem List 5 5 { GRAVITATION Last Updated: July 16, 2012 5.5 Sphere with linearly increasing mass density Given: Pollock { Spring 2011 A planet of mass M and radius R has a nonuniform density that varies with r, the distance from the center according to  = Ar for 0  r  R. (a) What is the constant A in terms of M and R? Does this density pro le strike you as physically plausible, or is just designed as a mathematical exercise? (Brie y, explain) (b) Determine the gravitational force on a satellite of mass m orbiting this planet. In words, please outline the method you plan to use for your solution. (Use the easiest method you can come up with!) In your calculation, you will need to argue that the magnitude of ~g(r; ; ) depends only on r. Be very explicit about this – how do you know that it doesn’t, in fact, depend on  or ? (c) Determine the gravitational force felt by a rock of mass m inside the planet, located at radius r < R. (If the method you use is di erent than in part b, explain why you switched. If not, just proceed!) Explicitly check your result for this part by considering the limits r ! 0 and r ! R. Back to Problem List 6 5 { GRAVITATION Last Updated: July 16, 2012 5.6 Jumping o Vesta Given: Pollock { Spring 2011 You are stranded on the surface of the asteroid Vesta. If the mass of the asteroid is M and its radius is R, how fast would you have to jump o its surface to be able to escape from its gravitational eld? (Your estimate should be based on parameters that characterize the asteroid, not parameters that describe your jumping ability.) Given your formula, look up the approximate mass and radius of the asteroid Vesta 3 and determine a numerical value of the escape velocity. Could you escape in this way? (Brie y, explain) If so, roughly how big in radius is the maximum the asteroid could be, for you to still escape this way? If not, estimate how much smaller an asteroid you would need, to escape from it in this way? Figure 1: Back to Problem List 7 5 { GRAVITATION Last Updated: July 16, 2012 5.7 Gravitational force between two massive rods Given: Pollock { Spring 2011 Consider two identical uniform rods of length L and mass m lying along the same line and having their closest points separated by a distance d as shown in the gure (a) Calculate the mutual force between these rods, both its direction and magnitude. (b) Now do several checks. First, make sure the units worked out (!) The, nd the magnitude of the force in the limit L ! 0. What do you expect? Brie y, discuss. Lastly, nd the magnitude of the force in the limit d ! 1 ? Again, is it what you expect? Brie y, discuss. Figure 2: Given: Pollock { Spring 2012 Determining the gravitational force between two rods: (a) Consider a thin, uniform rod of mass m and length L (and negligible other dimensions) lying on the x axis (from x=-L to 0), as shown in g 1a. Derive a formula for the gravitational eld \g" at any arbitrary point x to the right of the origin (but still on the x-axis!) due to this rod. (b) Now suppose a second rod of length L and mass m sits on the x axis as shown in g 1b, with the left edge a distance \d" away. Calculate the mutual gravitational force between these rods. (c) Let's do some checks! Show that the units work out in parts a and b. Find the magnitude of the force in part a, in the limit x >> L: What do you expect? Brie y, discuss! Finally, verify that your answer to part b gives what you expect in the limit d >> L. ( Hint: This is a bit harder! You need to consistently expand everything to second order, not just rst, because of some interesting cancellations) Fig 1a Fig 1b L m +x x=0 L x=0 x=d m Fig 1a Fig 1b L m +x x=0 L +x x=0 x=d L m m Back to Problem List 8 5 { GRAVITATION Last Updated: July 16, 2012 5.8 Potential energy { Check your answer! Given: Pollock { Spring 2011 On the last exam, we had a problem with a at ring, uniform mass per unit area of , inner radius of R, outer radius of 2R. A satellite (mass m) sat a distance z above the center of the ring. We asked for the gravitational potential energy, and the answer was U(z) = ?2Gm( p 4R2 + z2 ? p R2 + z2) (1) (a) If you are far from the disk (on the z axis), what do you expect for the formula for U(z)? (Don’t say \0″ – as usual, we want the functional form of U(z) as you move far away. Also, explicitly state what we mean by \far away”. (Please don’t compare something with units to something without units!) (b) Show explicitly that the formula above does indeed give precisely the functional dependence you expect. Back to Problem List 9 5 { GRAVITATION Last Updated: July 16, 2012 5.9 Ways of solving gravitational problems Given: Pollock { Spring 2011, Spring 2012 Infinite cylinder ρ=cr x z (a) Half-infinite line mass, uniform linear mass density, λ x (b) R z  P Figure 3: (a) An in nite cylinder of radius R centered on the z-axis, with non-uniform volume mass density  = cr, where r is the radius in cylindrical coordinates. (b) A half-in nite line of mass on the x-axis extending from x = 0 to x = +1, with uniform linear mass density . There are two general methods we use to solve gravitational problems (i.e. nd ~g given some distribution of mass). (a) Describe these two methods. We claim one of these methods is easiest to solve for ~g of mass distribution (a) above, and the other method is easiest to solve for ~g of the mass distribution (b) above. Which method goes with which mass distribution? Please justify your answer. (b) Find ~g of the mass distribution (a) above for any arbitrary point outside the cylinder. (c) Find the x component of the gravitational acceleration, gx, generated by the mass distribution labeled (b) above, at a point P a given distance z up the positive z-axis (as shown). Back to Problem List 10 5 { GRAVITATION Last Updated: July 16, 2012 5.10 Rod with linearly increasing mass density Given: Pollock { Spring 2012 Consider a very (in nitesimally!) thin but massive rod, length L (total mass M), centered around the origin, sitting along the x-axis. (So the left end is at (-L/2, 0,0) and the right end is at (+L/2,0,0) Assume the mass density  (which has units of kg/m)is not uniform, but instead varies linearly with distance from the origin, (x) = cjxj. (a) What is that constant \c” in terms of M and L? What is the direction of the gravitational eld generated by this mass distribution at a point in space a distance z above the center of the rod, i.e. at (0; 0; z) Explain your reasoning for the direction carefully, try not to simply \wave your hands.” (The answer is extremely intuitive, but can you justify that it is correct?) (b) Compute the gravitational eld, ~g, at the point (0; 0; z) by directly integrating Newton’s law of gravity, summing over all in nitesimal \chunks” of mass along the rod. (c) Compute the gravitational potential at the point (0; 0; z) by directly integrating ?Gdm=r, sum- ming over all in nitesimal \chunks” dm along the rod. Then, take the z-component of the gradient of this potential to check that you agree with your result from the previous part. (d) In the limit of large z what do you expect for the functional form for gravitational potential? (Hint: Don’t just say it goes to zero! It’s a rod of mass M, when you’re far away what does it look like? How does it go to zero?) What does \large z” mean here? Use the binomial (or Taylor) expansion to verify that your formula does indeed give exactly what you expect. (Hint: you cannot Taylor expand in something BIG, you have to Taylor expand in something small.) (e) Can you use Gauss’ law to gure out the gravitational potential at the point (0; 0; z)? (If so, do it and check your previous answers. If not, why not?) Back to Problem List 11 5 { GRAVITATION Last Updated: July 16, 2012 5.11 Sphere with constant internal gravitational eld Given: Pollock { Spring 2012 (a) Imagine a planet of total mass M and radius R which has a nonuniform mass density that varies just with r, the distance from the center. For this (admittedly very unusual!) planet, suppose the gravitational eld strength inside the planet turns out to be independent of the radial distance within the sphere. Find the function describing the mass density  = (r) of this planet. (Your nal answer should be written in terms of the given constants.) (b) Now, determine the gravitational force on a satellite of mass m orbiting this planet at distance r > R. (Use the easiest method you can come up with!) Explain your work in words as well as formulas. For instance, in your calculation, you will need to argue that the magnitude of ~g(r; ; ) depends only on r. Be explicit about this – how do you know that it doesn’t, in fact, depend on  or ? (c) As a nal check, explicitly show that your solutions inside and outside the planet (parts a and b) are consistent when r = R. Please also comment on whether this density pro le strikes you as physically plausible, or is it just designed as a mathematical exercise? Defend your reasoning. Back to Problem List 12 5 { GRAVITATION Last Updated: July 16, 2012 5.12 Throwing a rock o the moon Given: Pollock { Spring 2012 Assuming that asteroids have roughly the same mass density as the moon, make an estimate of the largest asteroid that an astronaut could be standing on, and still have a chance of throwing a small object (with their arms, no machinery!) so that it completely escapes the asteroid’s gravitational eld. (This minimum speed is called \escape velocity”) Is the size you computed typical for asteroids in our solar system? Back to Problem List 13

5 { GRAVITATION Last Updated: July 16, 2012 Problem List 5.1 Total mass of a shell 5.2 Tunnel through the moon 5.3 Gravitational eld above the center of a thin hoop 5.4 Gravitational force near a metal-cored planet surrounded by a gaseous cloud 5.5 Sphere with linearly increasing mass density 5.6 Jumping o Vesta 5.7 Gravitational force between two massive rods 5.8 Potential energy { Check your answer! 5.9 Ways of solving gravitational problems 5.10 Rod with linearly increasing mass density 5.11 Sphere with constant internal gravitational eld 5.12 Throwing a rock o the moon These problems are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Un- ported License. Please share and/or modify. Back to Problem List 1 5 { GRAVITATION Last Updated: July 16, 2012 5.1 Total mass of a shell Given: Marino { Fall 2011 Consider a spherical shell that extends from r = R to r = 2R with a non-uniform density (r) = 0r. What is the total mass of the shell? Back to Problem List 2 5 { GRAVITATION Last Updated: July 16, 2012 5.2 Tunnel through the moon Given: Marino { Fall 2011 Imagine that NASA digs a straight tunnel through the center of the moon (see gure) to access the Moon’s 3He deposits. An astronaut places a rock in the tunnel at the surface of the moon, and releases it (from rest). Show that the rock obeys the force law for a mass connected to a spring. What is the spring constant? Find the oscillation period for this motion if you assume that Moon has a mass of 7.351022 kg and a radius of 1.74106 m. Assume the moon’s density is uniform throughout its volume, and ignore the moon’s rotation. Given: Pollock { Spring 2011 Imagine (in a parallel universe of unlimited budgets) that NASA digs a straight tunnel through the center of the moon (see gure). A robot place a rock in the tunnel at position r = r0 from the center of the moon, and releases it (from rest). Use Newton’s second law to write the equation of motion of the rock and solve for r(t). Explain in words the rock’s motion. Does the rock return to its initial position at any later time? If so, how long does it takes to return to it? (Give a formula, and a number.) Assume the moon’s density is uniform throughout its volume, and ignore the moon’s rotation. Given: Pollock { Spring 2012 Now lets consider our (real) planet Earth, with total mass M and radius R which we will approximate as a uniform mass density, (r) = 0. (a) Neglecting rotational and frictional e ects, show that a particle dropped into a hole drilled straight through the center of the earth all the way to the far side will oscillate between the two endpoints. (Hint: you will need to set up, and solve, an ODE for the motion) (b) Find the period of the oscillation of this motion. Get a number (in minutes) as a nal result, using data for the earth’s size and mass. (How does that compare to ying to Perth and back?!) Extra Credit: OK, even with unlimited budgets, digging a tunnel through the center of the earth is preposterous. But, suppose instead that the tunnel is a straight-line \chord” through the earth, say directly from New York to Los Angeles. Show that your nal answer for the time taken does not depend on the location of that chord! This is rather remarkable – look again at the time for a free-fall trip (no energy required, except perhaps to compensate for friction) How long would that trip take? Could this work?! Back to Problem List 3 5 { GRAVITATION Last Updated: July 16, 2012 5.3 Gravitational eld above the center of a thin hoop Given: Pollock { Spring 2011, Spring 2012 Consider a very (in nitesimally!) thin but massive loop, radius R (total mass M), centered around the origin, sitting in the x-y plane. Assume it has a uniform linear mass density  (which has units of kg/m) all around it. (So, it’s like a skinny donut that is mostly hole, centered around the z-axis) (a) What is  in terms of M and R? What is the direction of the gravitational eld generated by this mass distribution at a point in space a distance z above the center of the donut, i.e. at (0; 0; z) Explain your reasoning for the direction carefully, try not to simply \wave your hands.” (The answer is extremely intuitive, but can you justify that it is correct?) (b) Compute the gravitational eld, ~g, at the point (0; 0; z) by directly integrating Newton’s law of gravity, summing over all in nitesimal \chunks” of mass along the loop. (c) Compute the gravitational potential at the point (0; 0; z) by directly integrating ?Gdm=r, sum- ming over all in nitesimal \chunks” dm along the loop. Then, take the z-component of the gradient of this potential to check that you agree with your result from the previous part. (d) In the two separate limits z << R and z >> R, Taylor expand your g- eld (in the z-direction)out only to the rst non-zero term, and convince us that both limits make good physical sense. (e) Can you use Gauss’ law to gure out the gravitational potential at the point (0; 0; z)? (If so, do it and check your previous answers. If not, why not?) Extra credit: If you place a small mass a small distance z away from the center, use your Taylor limit for z << R above to write a simple ODE for the equation of motion. Solve it, and discuss the motion Back to Problem List 4 5 { GRAVITATION Last Updated: July 16, 2012 5.4 Gravitational force near a metal-cored planet surrounded by a gaseous cloud Given: Pollock { Spring 2011 Jupiter is composed of a dense spherical core (of liquid metallic hydrogen!) of radius Rc. It is sur- rounded by a spherical cloud of gaseous hydrogen of radius Rg, where Rg > Rc. Let’s assume that the core is of uniform density c and the gaseous cloud is also of uniform density g. What is the gravitational force on an object of mass m that is located at a radius r from the center of Jupiter? Note that you must consider the cases where the object is inside the core, within the gas layer, and outside of the planet. Back to Problem List 5 5 { GRAVITATION Last Updated: July 16, 2012 5.5 Sphere with linearly increasing mass density Given: Pollock { Spring 2011 A planet of mass M and radius R has a nonuniform density that varies with r, the distance from the center according to  = Ar for 0  r  R. (a) What is the constant A in terms of M and R? Does this density pro le strike you as physically plausible, or is just designed as a mathematical exercise? (Brie y, explain) (b) Determine the gravitational force on a satellite of mass m orbiting this planet. In words, please outline the method you plan to use for your solution. (Use the easiest method you can come up with!) In your calculation, you will need to argue that the magnitude of ~g(r; ; ) depends only on r. Be very explicit about this – how do you know that it doesn’t, in fact, depend on  or ? (c) Determine the gravitational force felt by a rock of mass m inside the planet, located at radius r < R. (If the method you use is di erent than in part b, explain why you switched. If not, just proceed!) Explicitly check your result for this part by considering the limits r ! 0 and r ! R. Back to Problem List 6 5 { GRAVITATION Last Updated: July 16, 2012 5.6 Jumping o Vesta Given: Pollock { Spring 2011 You are stranded on the surface of the asteroid Vesta. If the mass of the asteroid is M and its radius is R, how fast would you have to jump o its surface to be able to escape from its gravitational eld? (Your estimate should be based on parameters that characterize the asteroid, not parameters that describe your jumping ability.) Given your formula, look up the approximate mass and radius of the asteroid Vesta 3 and determine a numerical value of the escape velocity. Could you escape in this way? (Brie y, explain) If so, roughly how big in radius is the maximum the asteroid could be, for you to still escape this way? If not, estimate how much smaller an asteroid you would need, to escape from it in this way? Figure 1: Back to Problem List 7 5 { GRAVITATION Last Updated: July 16, 2012 5.7 Gravitational force between two massive rods Given: Pollock { Spring 2011 Consider two identical uniform rods of length L and mass m lying along the same line and having their closest points separated by a distance d as shown in the gure (a) Calculate the mutual force between these rods, both its direction and magnitude. (b) Now do several checks. First, make sure the units worked out (!) The, nd the magnitude of the force in the limit L ! 0. What do you expect? Brie y, discuss. Lastly, nd the magnitude of the force in the limit d ! 1 ? Again, is it what you expect? Brie y, discuss. Figure 2: Given: Pollock { Spring 2012 Determining the gravitational force between two rods: (a) Consider a thin, uniform rod of mass m and length L (and negligible other dimensions) lying on the x axis (from x=-L to 0), as shown in g 1a. Derive a formula for the gravitational eld \g" at any arbitrary point x to the right of the origin (but still on the x-axis!) due to this rod. (b) Now suppose a second rod of length L and mass m sits on the x axis as shown in g 1b, with the left edge a distance \d" away. Calculate the mutual gravitational force between these rods. (c) Let's do some checks! Show that the units work out in parts a and b. Find the magnitude of the force in part a, in the limit x >> L: What do you expect? Brie y, discuss! Finally, verify that your answer to part b gives what you expect in the limit d >> L. ( Hint: This is a bit harder! You need to consistently expand everything to second order, not just rst, because of some interesting cancellations) Fig 1a Fig 1b L m +x x=0 L x=0 x=d m Fig 1a Fig 1b L m +x x=0 L +x x=0 x=d L m m Back to Problem List 8 5 { GRAVITATION Last Updated: July 16, 2012 5.8 Potential energy { Check your answer! Given: Pollock { Spring 2011 On the last exam, we had a problem with a at ring, uniform mass per unit area of , inner radius of R, outer radius of 2R. A satellite (mass m) sat a distance z above the center of the ring. We asked for the gravitational potential energy, and the answer was U(z) = ?2Gm( p 4R2 + z2 ? p R2 + z2) (1) (a) If you are far from the disk (on the z axis), what do you expect for the formula for U(z)? (Don’t say \0″ – as usual, we want the functional form of U(z) as you move far away. Also, explicitly state what we mean by \far away”. (Please don’t compare something with units to something without units!) (b) Show explicitly that the formula above does indeed give precisely the functional dependence you expect. Back to Problem List 9 5 { GRAVITATION Last Updated: July 16, 2012 5.9 Ways of solving gravitational problems Given: Pollock { Spring 2011, Spring 2012 Infinite cylinder ρ=cr x z (a) Half-infinite line mass, uniform linear mass density, λ x (b) R z  P Figure 3: (a) An in nite cylinder of radius R centered on the z-axis, with non-uniform volume mass density  = cr, where r is the radius in cylindrical coordinates. (b) A half-in nite line of mass on the x-axis extending from x = 0 to x = +1, with uniform linear mass density . There are two general methods we use to solve gravitational problems (i.e. nd ~g given some distribution of mass). (a) Describe these two methods. We claim one of these methods is easiest to solve for ~g of mass distribution (a) above, and the other method is easiest to solve for ~g of the mass distribution (b) above. Which method goes with which mass distribution? Please justify your answer. (b) Find ~g of the mass distribution (a) above for any arbitrary point outside the cylinder. (c) Find the x component of the gravitational acceleration, gx, generated by the mass distribution labeled (b) above, at a point P a given distance z up the positive z-axis (as shown). Back to Problem List 10 5 { GRAVITATION Last Updated: July 16, 2012 5.10 Rod with linearly increasing mass density Given: Pollock { Spring 2012 Consider a very (in nitesimally!) thin but massive rod, length L (total mass M), centered around the origin, sitting along the x-axis. (So the left end is at (-L/2, 0,0) and the right end is at (+L/2,0,0) Assume the mass density  (which has units of kg/m)is not uniform, but instead varies linearly with distance from the origin, (x) = cjxj. (a) What is that constant \c” in terms of M and L? What is the direction of the gravitational eld generated by this mass distribution at a point in space a distance z above the center of the rod, i.e. at (0; 0; z) Explain your reasoning for the direction carefully, try not to simply \wave your hands.” (The answer is extremely intuitive, but can you justify that it is correct?) (b) Compute the gravitational eld, ~g, at the point (0; 0; z) by directly integrating Newton’s law of gravity, summing over all in nitesimal \chunks” of mass along the rod. (c) Compute the gravitational potential at the point (0; 0; z) by directly integrating ?Gdm=r, sum- ming over all in nitesimal \chunks” dm along the rod. Then, take the z-component of the gradient of this potential to check that you agree with your result from the previous part. (d) In the limit of large z what do you expect for the functional form for gravitational potential? (Hint: Don’t just say it goes to zero! It’s a rod of mass M, when you’re far away what does it look like? How does it go to zero?) What does \large z” mean here? Use the binomial (or Taylor) expansion to verify that your formula does indeed give exactly what you expect. (Hint: you cannot Taylor expand in something BIG, you have to Taylor expand in something small.) (e) Can you use Gauss’ law to gure out the gravitational potential at the point (0; 0; z)? (If so, do it and check your previous answers. If not, why not?) Back to Problem List 11 5 { GRAVITATION Last Updated: July 16, 2012 5.11 Sphere with constant internal gravitational eld Given: Pollock { Spring 2012 (a) Imagine a planet of total mass M and radius R which has a nonuniform mass density that varies just with r, the distance from the center. For this (admittedly very unusual!) planet, suppose the gravitational eld strength inside the planet turns out to be independent of the radial distance within the sphere. Find the function describing the mass density  = (r) of this planet. (Your nal answer should be written in terms of the given constants.) (b) Now, determine the gravitational force on a satellite of mass m orbiting this planet at distance r > R. (Use the easiest method you can come up with!) Explain your work in words as well as formulas. For instance, in your calculation, you will need to argue that the magnitude of ~g(r; ; ) depends only on r. Be explicit about this – how do you know that it doesn’t, in fact, depend on  or ? (c) As a nal check, explicitly show that your solutions inside and outside the planet (parts a and b) are consistent when r = R. Please also comment on whether this density pro le strikes you as physically plausible, or is it just designed as a mathematical exercise? Defend your reasoning. Back to Problem List 12 5 { GRAVITATION Last Updated: July 16, 2012 5.12 Throwing a rock o the moon Given: Pollock { Spring 2012 Assuming that asteroids have roughly the same mass density as the moon, make an estimate of the largest asteroid that an astronaut could be standing on, and still have a chance of throwing a small object (with their arms, no machinery!) so that it completely escapes the asteroid’s gravitational eld. (This minimum speed is called \escape velocity”) Is the size you computed typical for asteroids in our solar system? Back to Problem List 13

On the first day of kindergarten, Terry’s teacher responds to the students every time they ask her a question. By the end of the first week, the teacher will only respond to students who are sitting quietly at their desks. At the end of the second week, the teacher will only respond to students’ questions if they are quietly seated, raise their hands, and wait to be called on before asking their questions. Terry’s teacher is using ________ to change the students’ behavior. habituation shaping punishment secondary conditioning

On the first day of kindergarten, Terry’s teacher responds to the students every time they ask her a question. By the end of the first week, the teacher will only respond to students who are sitting quietly at their desks. At the end of the second week, the teacher will only respond to students’ questions if they are quietly seated, raise their hands, and wait to be called on before asking their questions. Terry’s teacher is using ________ to change the students’ behavior. habituation shaping punishment secondary conditioning

On the first day of kindergarten, Terry’s teacher responds to … Read More...
PHY-102: Energy and Circular Motion Exercises Complete the following exercises. 1. A rifle with a longer barrel can fire bullets with a larger velocity than a rifle with a shorter barrel. a. Explain this using the impulse-momentum theorem. b. Explain this using the work-energy theorem 2. Use physics terms to explain the benefits of crumple zones in modern cars. 3. When a gun is fired at the shooting range, the gun recoils (moves backward). Explain this using the law of conservation of momentum. 4. Rank the following in terms of increasing inertia: A. A 10,000 kg train car at rest B. A 100 kg person running at 5 m/s C. A 1200 kg car going 15 m/s D. A 15 kg meteor going at a speed of 1000 m/s 5. Rank the following in terms of increasing momentum: A. A 10,000 kg train car at rest B. A 100 kg person running at 5 m/s C. A 1200 kg car going 15 m/s D. A 15 kg meteor going at a speed of 1000 m/s 6. Rank the following in terms of increasing kinetic energy: A. A 1200 kg car going 15 m/s B. A 10,000 kg train car at rest C. A 15 kg meteor going at a speed of 1000 m/s D. A 100 kg person running at 5 m/s 7. Ben (55 kg) is standing on very slippery ice when Junior (25 kg) bumps into him. Junior was moving at a speed of 8 m/s before the collision and Ben and Junior embrace after the collision. Find the speed of Ben and Junior as they move across the ice after the collision. Give the answer in m/s. Describe the work you did to get the answer. 8. Identical marbles are released from the same height on each of the following four frictionless ramps. Compare the speed of the marbles at the end of each ramp. Explain your reasoning. 9. A force of only 150 N can lift a 600 N sack of flour to a height of 0.50 m when using a lever as shown in the diagram below. a. Find the work done on the sack of flour (in J). b. Find the distance you must push with the 150 N force on the left side (in m). c. Briefly explain the benefit of using a lever to lift a heavy object. 10. Rank the following in terms of increasing power. A. Doing 100 J of work in 10 seconds. B. Doing 100 J of work in 5 seconds. C. Doing 200 J of work in 5 seconds. D. Doing 400 J of work in 30 seconds. 11. A student lifts a 25 kg mass a vertical distance of 1.6 m in a time of 2.0 seconds. a. Find the force needed to lift the mass (in N). b. Find the work done by the student (in J). c. Find the power exerted by the student (in W). 12. A satellite is put into an orbit at a distance from the center of the Earth equal to twice the distance from the center of the Earth to the surface. If the satellite had a weight at the surface of 4000 N, what is the force of gravity (weight) of the satellite when it is in its orbit? Give your answer in newtons, N. 13. Consider a satellite in a circular orbit around the Earth. a. Why is it important to give a satellite a horizontal speed when placing it in orbit? b. What will happen if the horizontal speed is too small? c. What will happen if the horizontal speed is too large? 14. If you drop an object from a distance of 1 meter above the ground, where would it fall to the ground in the shortest time: Atop Mt. Everest or in New York? 15. Why do the astronauts aboard the space station appear to be weightless? 16. Why do the passengers on a high-flying airplane not appear weightless, similar to the astronauts on the space station? 17. A ranger needs to capture a monkey hanging on a tree branch. The ranger aims his dart gun directly at the monkey and fires the tranquilizer dart. However, the monkey lets go of the branch at exactly the same time as the ranger fires the dart. Will the monkey get hit or will it avoid the dart? The remaining questions are multiple-choice questions: 18. Compared to its weight on Earth, a 5 kg object on the moon will weigh A. the same amount. B. less. C. more. 19. Compared to its mass on Earth, a 5 kg object on the moon will have A. the same mass. B. less mass. C. more mass. 20. The reason padded dashboards are used in cars is that they A. look nice and feel good. B. decrease the impulse in a collision. C. increase the force of impact in a collision. D. decrease the momentum of a collision. E. increase the time of impact in a collision. 21. Suppose you are standing on a frozen lake where there is no friction between your feet and the ice. What can you do to get off the lake? A. Bend over touching the ice in front of you and then bring you feet to your hands. B. Walk very slowly on tiptoe. C. Get on your hands and knees and crawl off the ice. D. Throw something in the direction opposite to the way you want to go. 22. A car travels in a circle with constant speed. Which of the following is true? A. The net force on the car is zero because the car is not accelerating. B. The net force on the car is directed forward, in the direction of travel. C. The net force on the car is directed inward, toward the center of the curve. D. The net force on the car is directed outward, away from the center of the curve. 23. A job is done slowly, and an identical job is done quickly. Which of the following is true? a. They require the same amount of force, but different amounts of work. b. They require the same amount of work, but different amounts of power. c. They require the same amounts of power, but different amounts of work. d. They require the same amounts of work, but different amounts of energy. 24. How many joules of work are done on a box when a force of 60 N pushes it 5 m in 3 seconds? a. 300 J b. 12 J c. 100 J d. 36 J e. 4 J 25. A 1 kg cart moving with a speed of 3 m/s collides with a 2 kg cart at rest. If the carts stick together after the collision, with what speed will they move after the collision? a. 3 m/s b. 1.5 m/s c. 1 m/s d. 2 m/s

PHY-102: Energy and Circular Motion Exercises Complete the following exercises. 1. A rifle with a longer barrel can fire bullets with a larger velocity than a rifle with a shorter barrel. a. Explain this using the impulse-momentum theorem. b. Explain this using the work-energy theorem 2. Use physics terms to explain the benefits of crumple zones in modern cars. 3. When a gun is fired at the shooting range, the gun recoils (moves backward). Explain this using the law of conservation of momentum. 4. Rank the following in terms of increasing inertia: A. A 10,000 kg train car at rest B. A 100 kg person running at 5 m/s C. A 1200 kg car going 15 m/s D. A 15 kg meteor going at a speed of 1000 m/s 5. Rank the following in terms of increasing momentum: A. A 10,000 kg train car at rest B. A 100 kg person running at 5 m/s C. A 1200 kg car going 15 m/s D. A 15 kg meteor going at a speed of 1000 m/s 6. Rank the following in terms of increasing kinetic energy: A. A 1200 kg car going 15 m/s B. A 10,000 kg train car at rest C. A 15 kg meteor going at a speed of 1000 m/s D. A 100 kg person running at 5 m/s 7. Ben (55 kg) is standing on very slippery ice when Junior (25 kg) bumps into him. Junior was moving at a speed of 8 m/s before the collision and Ben and Junior embrace after the collision. Find the speed of Ben and Junior as they move across the ice after the collision. Give the answer in m/s. Describe the work you did to get the answer. 8. Identical marbles are released from the same height on each of the following four frictionless ramps. Compare the speed of the marbles at the end of each ramp. Explain your reasoning. 9. A force of only 150 N can lift a 600 N sack of flour to a height of 0.50 m when using a lever as shown in the diagram below. a. Find the work done on the sack of flour (in J). b. Find the distance you must push with the 150 N force on the left side (in m). c. Briefly explain the benefit of using a lever to lift a heavy object. 10. Rank the following in terms of increasing power. A. Doing 100 J of work in 10 seconds. B. Doing 100 J of work in 5 seconds. C. Doing 200 J of work in 5 seconds. D. Doing 400 J of work in 30 seconds. 11. A student lifts a 25 kg mass a vertical distance of 1.6 m in a time of 2.0 seconds. a. Find the force needed to lift the mass (in N). b. Find the work done by the student (in J). c. Find the power exerted by the student (in W). 12. A satellite is put into an orbit at a distance from the center of the Earth equal to twice the distance from the center of the Earth to the surface. If the satellite had a weight at the surface of 4000 N, what is the force of gravity (weight) of the satellite when it is in its orbit? Give your answer in newtons, N. 13. Consider a satellite in a circular orbit around the Earth. a. Why is it important to give a satellite a horizontal speed when placing it in orbit? b. What will happen if the horizontal speed is too small? c. What will happen if the horizontal speed is too large? 14. If you drop an object from a distance of 1 meter above the ground, where would it fall to the ground in the shortest time: Atop Mt. Everest or in New York? 15. Why do the astronauts aboard the space station appear to be weightless? 16. Why do the passengers on a high-flying airplane not appear weightless, similar to the astronauts on the space station? 17. A ranger needs to capture a monkey hanging on a tree branch. The ranger aims his dart gun directly at the monkey and fires the tranquilizer dart. However, the monkey lets go of the branch at exactly the same time as the ranger fires the dart. Will the monkey get hit or will it avoid the dart? The remaining questions are multiple-choice questions: 18. Compared to its weight on Earth, a 5 kg object on the moon will weigh A. the same amount. B. less. C. more. 19. Compared to its mass on Earth, a 5 kg object on the moon will have A. the same mass. B. less mass. C. more mass. 20. The reason padded dashboards are used in cars is that they A. look nice and feel good. B. decrease the impulse in a collision. C. increase the force of impact in a collision. D. decrease the momentum of a collision. E. increase the time of impact in a collision. 21. Suppose you are standing on a frozen lake where there is no friction between your feet and the ice. What can you do to get off the lake? A. Bend over touching the ice in front of you and then bring you feet to your hands. B. Walk very slowly on tiptoe. C. Get on your hands and knees and crawl off the ice. D. Throw something in the direction opposite to the way you want to go. 22. A car travels in a circle with constant speed. Which of the following is true? A. The net force on the car is zero because the car is not accelerating. B. The net force on the car is directed forward, in the direction of travel. C. The net force on the car is directed inward, toward the center of the curve. D. The net force on the car is directed outward, away from the center of the curve. 23. A job is done slowly, and an identical job is done quickly. Which of the following is true? a. They require the same amount of force, but different amounts of work. b. They require the same amount of work, but different amounts of power. c. They require the same amounts of power, but different amounts of work. d. They require the same amounts of work, but different amounts of energy. 24. How many joules of work are done on a box when a force of 60 N pushes it 5 m in 3 seconds? a. 300 J b. 12 J c. 100 J d. 36 J e. 4 J 25. A 1 kg cart moving with a speed of 3 m/s collides with a 2 kg cart at rest. If the carts stick together after the collision, with what speed will they move after the collision? a. 3 m/s b. 1.5 m/s c. 1 m/s d. 2 m/s

info@checkyourstudy.com
In the article, “The Moral Person” it talks about Lawrence Kohlberg’s stages of moral development. Briefly explain the 3 Conventional levels (pre-conventional, conventional, and post-conventional). How may these stages impact one’s ethics? Think about how culture or the social environment affects our framework for coming up with any moral or ethical answer. (Hei Lam Kwan) In the article, they talked about a push for a “global ethic” or “one world”. Do you think this is possible? Besides the Golden Rule are there any other examples of shared ethics around the world? (Nicole Thompson) The article explained that often people know the distinction between right and wrong, but still do the wrong thing. If people know what is morally right, why do they act in ways that are morally wrong? (Nicole Thompson) In McLaren’s reading, he gives us a description on an idea of personhood to help us understand a moral person. He mentions a quote from the philosopher, Sarvepalli Rhadakrishnan that caught my interest. He says, “The self is not an object which we can find in knowledge, for it is the very condition of knowledge. It is different from all objects, the body, the senses, the empirical self itself (36)”. In your opinion, what exactly does he mean by stating that? Does thinking of yourself this way help you morally? (Maggy Ergun) Video: In the video, Damon Horowitz talks about the different approaches to figuring out what is right and what is wrong. Some of them included Plato, who believed that he could uncover the “truths about Justice”, Aristotle, who thought that people should use their current knowledge to make the right decision of here and now to their best ability, and Utilitarianism, who thought it was about measuring out the options to see which one had the most benefit for the greatest amount of people. Which approach do you think is best? Would you suggest another approach? (Nicole Thompson) Damon Horowitz explains the huge power we have and that is knowledge and data we receive from technology. With all this power in our hands, you can have any information you would like to obtain whether it’s on an object or human being. And as technology keeps rising, the more advanced it keeps getting. When it comes to privacy and dignity, do you think it is fair for one another to have this huge power on us? Will this be better for our future or worse? (Maggy Ergun) Horowitz describes how we rely more on our smart devices then actual moral thinking. (Mobile operating system then moral operating system) If we were to create a moral operating system, do you think that will help provoke people from making bad/evil decisions and guide us to better? Or do those bad decisions just come instantly without much thought? (Maggy Ergun) In the video it states, “what we need is a moral operating system.” What are the possible flaws in relying on a machine/software for answering ethical problems? Discuss and list at least one problem we may encounter from relying on such a system for an ethical solution. (Hei Lam Kwan) Reviewing the answers to the previous questions given, do you think there is only one right answer to any ethical question and why? (Hei Lam Kwan) http://www.ted.com/talks/damon_horowitz?language=en this is the video

In the article, “The Moral Person” it talks about Lawrence Kohlberg’s stages of moral development. Briefly explain the 3 Conventional levels (pre-conventional, conventional, and post-conventional). How may these stages impact one’s ethics? Think about how culture or the social environment affects our framework for coming up with any moral or ethical answer. (Hei Lam Kwan) In the article, they talked about a push for a “global ethic” or “one world”. Do you think this is possible? Besides the Golden Rule are there any other examples of shared ethics around the world? (Nicole Thompson) The article explained that often people know the distinction between right and wrong, but still do the wrong thing. If people know what is morally right, why do they act in ways that are morally wrong? (Nicole Thompson) In McLaren’s reading, he gives us a description on an idea of personhood to help us understand a moral person. He mentions a quote from the philosopher, Sarvepalli Rhadakrishnan that caught my interest. He says, “The self is not an object which we can find in knowledge, for it is the very condition of knowledge. It is different from all objects, the body, the senses, the empirical self itself (36)”. In your opinion, what exactly does he mean by stating that? Does thinking of yourself this way help you morally? (Maggy Ergun) Video: In the video, Damon Horowitz talks about the different approaches to figuring out what is right and what is wrong. Some of them included Plato, who believed that he could uncover the “truths about Justice”, Aristotle, who thought that people should use their current knowledge to make the right decision of here and now to their best ability, and Utilitarianism, who thought it was about measuring out the options to see which one had the most benefit for the greatest amount of people. Which approach do you think is best? Would you suggest another approach? (Nicole Thompson) Damon Horowitz explains the huge power we have and that is knowledge and data we receive from technology. With all this power in our hands, you can have any information you would like to obtain whether it’s on an object or human being. And as technology keeps rising, the more advanced it keeps getting. When it comes to privacy and dignity, do you think it is fair for one another to have this huge power on us? Will this be better for our future or worse? (Maggy Ergun) Horowitz describes how we rely more on our smart devices then actual moral thinking. (Mobile operating system then moral operating system) If we were to create a moral operating system, do you think that will help provoke people from making bad/evil decisions and guide us to better? Or do those bad decisions just come instantly without much thought? (Maggy Ergun) In the video it states, “what we need is a moral operating system.” What are the possible flaws in relying on a machine/software for answering ethical problems? Discuss and list at least one problem we may encounter from relying on such a system for an ethical solution. (Hei Lam Kwan) Reviewing the answers to the previous questions given, do you think there is only one right answer to any ethical question and why? (Hei Lam Kwan) http://www.ted.com/talks/damon_horowitz?language=en this is the video

info@checkyourstudy.com
1000 words Total. Answer each question in paragraph form https://www.youtube.com/watch?v=wzicXbnmllc In the video, presented by Brooke Deterline, talks about creating ethical cultures in a business. One of Brooke’s main point was courage. She defines courage as our ability to act from our hearts in the face of fear and is a skill that we can build with practice. Brooke gives an example of life without courage and shows us many scenarios where it is still happening today, 10 years after the ENRON scandal. Courage is something that lacks in social situations where wrong is being done. She states that we all are vulnerable to situation influence all the time and that it is natural human wiring. It seems that most of us, including myself, can become a bystander to follow a leader or a group that we know is doing wrong because we want to be accepted. (1) Why do you think that the most ethical and compassionate among us can easily betray our values, in the face of challenging situations? What challenges does one face when they are presented with a difficult situation? (2) Do you believe that with practice we can retrain our brains to override our natural fear response when we are put in these challenging situations? Managers sometimes face business problems that raise difficult questions. When being faced with these problems they must choose between two ways of resolving it. Each of these alternatives is the right thing to do, but they can not do both ways. Badaracco characterizes right-versus-right dilemmas as “dirty-hands problems,” where managers or any employee often have to “get their hands dirty” by making tough choices between competing virtues such as honesty, fairness, respect, objectivity, and responsibility. He shows us three managers that face different right- versus-right conflicts. We see that these managers have the responsibilities to live up to the commitments they have made and the standards by which they want live by. However, it is not that simple to choose from wanting to be a successful manager and a decent, responsible person. (3) After reading the three different extremes of right- versus- right, why do you think that Badaracco emphasizes on the statement made by Oliver Wendell Holmes, “I do not give a fig for the simplicity on the this side complexity, but i would give my life for the simplicity on the other side of complexity,” and what do you think it means? A manager often encounters right-versus-right dilemmas where professional responsibilities conflict with personal values. For example, a senior manager may have knowledge of plans to lay off an employee-friend who is planning the purchase of a new home. Warning the friend about the upcoming layoff would certainly help the friend avoid the difficulty of paying for a new home without a job, but it may also violate an agreement with senior management and shareholders to keep such plans confidential until these plans are properly implemented. (4) In a challenging situation like this, should mangers rely on fundamental ethical principles and the company’s mission statement to help them decide what to do or should they consult their own moral instincts and intuitions?

1000 words Total. Answer each question in paragraph form https://www.youtube.com/watch?v=wzicXbnmllc In the video, presented by Brooke Deterline, talks about creating ethical cultures in a business. One of Brooke’s main point was courage. She defines courage as our ability to act from our hearts in the face of fear and is a skill that we can build with practice. Brooke gives an example of life without courage and shows us many scenarios where it is still happening today, 10 years after the ENRON scandal. Courage is something that lacks in social situations where wrong is being done. She states that we all are vulnerable to situation influence all the time and that it is natural human wiring. It seems that most of us, including myself, can become a bystander to follow a leader or a group that we know is doing wrong because we want to be accepted. (1) Why do you think that the most ethical and compassionate among us can easily betray our values, in the face of challenging situations? What challenges does one face when they are presented with a difficult situation? (2) Do you believe that with practice we can retrain our brains to override our natural fear response when we are put in these challenging situations? Managers sometimes face business problems that raise difficult questions. When being faced with these problems they must choose between two ways of resolving it. Each of these alternatives is the right thing to do, but they can not do both ways. Badaracco characterizes right-versus-right dilemmas as “dirty-hands problems,” where managers or any employee often have to “get their hands dirty” by making tough choices between competing virtues such as honesty, fairness, respect, objectivity, and responsibility. He shows us three managers that face different right- versus-right conflicts. We see that these managers have the responsibilities to live up to the commitments they have made and the standards by which they want live by. However, it is not that simple to choose from wanting to be a successful manager and a decent, responsible person. (3) After reading the three different extremes of right- versus- right, why do you think that Badaracco emphasizes on the statement made by Oliver Wendell Holmes, “I do not give a fig for the simplicity on the this side complexity, but i would give my life for the simplicity on the other side of complexity,” and what do you think it means? A manager often encounters right-versus-right dilemmas where professional responsibilities conflict with personal values. For example, a senior manager may have knowledge of plans to lay off an employee-friend who is planning the purchase of a new home. Warning the friend about the upcoming layoff would certainly help the friend avoid the difficulty of paying for a new home without a job, but it may also violate an agreement with senior management and shareholders to keep such plans confidential until these plans are properly implemented. (4) In a challenging situation like this, should mangers rely on fundamental ethical principles and the company’s mission statement to help them decide what to do or should they consult their own moral instincts and intuitions?

Chapter 4 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, February 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Advice for the Quarterback A quarterback is set up to throw the football to a receiver who is running with a constant velocity directly away from the quarterback and is now a distance away from the quarterback. The quarterback figures that the ball must be thrown at an angle to the horizontal and he estimates that the receiver must catch the ball a time interval after it is thrown to avoid having opposition players prevent the receiver from making the catch. In the following you may assume that the ball is thrown and caught at the same height above the level playing field. Assume that the y coordinate of the ball at the instant it is thrown or caught is and that the horizontal position of the quaterback is . Use for the magnitude of the acceleration due to gravity, and use the pictured inertial coordinate system when solving the problem. Part A Find , the vertical component of the velocity of the ball when the quarterback releases it. Express in terms of and . Hint 1. Equation of motion in y direction What is the expression for , the height of the ball as a function of time? Answer in terms of , , and . v r D  tc y = 0 x = 0 g v0y v0y tc g y(t) t g v0y ANSWER: Incorrect; Try Again Hint 2. Height at which the ball is caught, Remember that after time the ball was caught at the same height as it had been released. That is, . ANSWER: Answer Requested Part B Find , the initial horizontal component of velocity of the ball. Express your answer for in terms of , , and . Hint 1. Receiver’s position Find , the receiver’s position before he catches the ball. Answer in terms of , , and . ANSWER: Football’s position y(t) = v0yt− g 1 2 t2 y(tc) tc y(tc) = y0 = 0 v0y = gtc 2 v0x v0x D tc vr xr D vr tc xr = D + vrtc Typesetting math: 100% Find , the horizontal distance that the ball travels before reaching the receiver. Answer in terms of and . ANSWER: ANSWER: Answer Requested Part C Find the speed with which the quarterback must throw the ball. Answer in terms of , , , and . Hint 1. How to approach the problem Remember that velocity is a vector; from solving Parts A and B you have the two components, from which you can find the magnitude of this vector. ANSWER: Answer Requested Part D xc v0x tc xc = v0xtc v0x = + D tc vr v0 D tc vr g v0 = ( + ) + D tc vr 2 ( ) gtc 2 2 −−−−−−−−−−−−−−−−−−−  Typesetting math: 100% Assuming that the quarterback throws the ball with speed , find the angle above the horizontal at which he should throw it. Your solution should contain an inverse trig function (entered as asin, acos, or atan). Give your answer in terms of already known quantities, , , and . Hint 1. Find angle from and Think of velocity as a vector with Cartesian coordinates and . Find the angle that this vector would make with the x axis using the results of Parts A and B. ANSWER: Answer Requested Direction of Velocity at Various Times in Flight for Projectile Motion Conceptual Question For each of the motions described below, determine the algebraic sign (positive, negative, or zero) of the x component and y component of velocity of the object at the time specified. For all of the motions, the positive x axis points to the right and the positive y axis points upward. Alex, a mountaineer, must leap across a wide crevasse. The other side of the crevasse is below the point from which he leaps, as shown in the figure. Alex leaps horizontally and successfully makes the jump. v0  v0x v0y v0  v0x v0y v0xx^ v0yy^   = atan( ) v0y v0x Typesetting math: 100% Part A Determine the algebraic sign of Alex’s x velocity and y velocity at the instant he leaves the ground at the beginning of the jump. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Typesetting math: 100% Hint 1. Algebraic sign of velocity The algebraic sign of the velocity is determined solely by comparing the direction in which the object is moving with the direction that is defined to be positive. In this example, to the right is defined to be the positive x direction and upward the positive y direction. Therefore, any object moving to the right, whether speeding up, slowing down, or even simultaneously moving upward or downward, has a positive x velocity. Similarly, if the object is moving downward, regardless of any other aspect of its motion, its y velocity is negative. Hint 2. Sketch Alex’s initial velocity On the diagram below, sketch the vector representing Alex’s velocity the instant after he leaves the ground at the beginning of the jump. ANSWER: ANSWER: Typesetting math: 100% Answer Requested Part B Determine the algebraic signs of Alex’s x velocity and y velocity the instant before he lands at the end of the jump. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Typesetting math: 100% Hint 1. Sketch Alex’s final velocity On the diagram below, sketch the vector representing Alex’s velocity the instant before he safely lands on the other side of the crevasse. ANSWER: Answer Requested ANSWER: Answer Requested Typesetting math: 100% At the buzzer, a basketball player shoots a desperation shot. The ball goes in! Part C Determine the algebraic signs of the ball’s x velocity and y velocity the instant after it leaves the player’s hands. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Hint 1. Sketch the basketball’s initial velocity On the diagram below, sketch the vector representing the velocity of the basketball the instant after it leaves the player’s hands. ANSWER: Typesetting math: 100% ANSWER: Correct Part D Determine the algebraic signs of the ball’s x velocity and y velocity at the ball’s maximum height. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Hint 1. Sketch the basketball’s velocity at maximum height Typesetting math: 100% On the diagram below, sketch the vector representing the velocity of the basketball the instant it reaches its maximum height. ANSWER: ANSWER: Answer Requested PSS 4.1 Projectile Motion Problems Learning Goal: Typesetting math: 100% To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 9.00 and launch angle 30.0 (above the horizontal) travels a horizontal distance of = 17.0 before hitting the ground. From what height was the rock thrown? Use the value = 9.810 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Make simplifying assumptions, such as treating the object as a particle. Is it reasonable to ignore air resistance? VISUALIZE: Use a pictorial representation. Establish a coordinate system with the x axis horizontal and the y axis vertical. Show important points in the motion on a sketch. Define symbols, and identify what you are trying to find. SOLVE: The acceleration is known: and . Thus, the problem becomes one of two-dimensional kinematics. The kinematic equations are , . is the same for the horizontal and vertical components of the motion. Find from one component, and then use that value for the other component. ASSESS: Check that your result has the correct units, is reasonable, and answers the question. Model Start by making simplifying assumptions: Model the rock as a particle in free fall. You can ignore air resistance because the rock is a relatively heavy object moving relatively slowly. Visualize Part A Which diagram represents an accurate sketch of the rock’s trajectory? Hint 1. The launch angle In a projectile’s motion, the angle of the initial velocity above the horizontal is called the launch angle. ANSWER: m/s  d m g m/s2 ax = 0 ay = −g xf = xi +vixt, yf = yi +viyt− g(t 1 2 )2 vfx = vix = constant, and vfy = viy − gt t t v i Typesetting math: 100% Typesetting math: 100% Correct Part B As stated in the strategy, choose a coordinate system where the x axis is horizontal and the y axis is vertical. Note that in the strategy, the y component of the projectile’s acceleration, , is taken to be negative. This implies that the positive y axis is upward. Use the same convention for your y axis, and take the positive x axis to be to the right. Where you choose your origin doesn’t change the answer to the question, but choosing an origin can make a problem easier to solve (even if only a bit). Usually it is nice if the majority of the quantities you are given and the quantity you are trying to solve for take positive values relative to your chosen origin. Given this goal, what location for the origin of the coordinate system would make this problem easiest? ANSWER: ay At ground level below the point where the rock is launched At the point where the rock strikes the ground At the peak of the trajectory At the point where the rock is released At ground level below the peak of the trajectory Typesetting math: 100% Correct It’s best to place the origin of the coordinate system at ground level below the launching point because in this way all the points of interest (the launching point and the landing point) will have positive coordinates. (Based on your experience, you know that it’s generally easier to work with positive coordinates.) Keep in mind, however, that this is an arbitrary choice. The correct solution of the problem will not depend on the location of the origin of your coordinate system. Now, define symbols representing initial and final position, velocity, and time. Your target variable is , the initial y coordinate of the rock. Your pictorial representation should be complete now, and similar to the picture below: Solve Part C Find the height from which the rock was launched. Express your answer in meters to three significant figures. yi yi Typesetting math: 100% Hint 1. How to approach the problem The time needed to move horizontally to the final position = 17.0 is the same time needed for the rock to rise from the initial position to the peak of its trajectory and then fall to the ground. Use the information you have about motion in the horizontal direction to solve for . Knowing this time will allow you to use the equations of motion for the vertical direction to solve for . Hint 2. Find the time spent in the air How long ( ) is the rock in the air? Express your answer in seconds to three significant figures. Hint 1. Determine which equation to use Which of the equations given in the strategy and shown below is the most appropriate to calculate the time the rock spent in the air? ANSWER: Hint 2. Find the x component of the initial velocity What is the x component of the rock’s initial velocity? Express your answer in meters per second to three significant figures. ANSWER: ANSWER: t xf = d m yi t yi t t xf = xi + vixt yf = yi + viyt− g(t 1 2 )2 vfy = viy − gt vix = 7.79 m/s Typesetting math: 100% Hint 3. Find the y component of the initial velocity What is the y component of the rock’s initial velocity? Express your answer in meters per second to three significant figures. ANSWER: ANSWER: Answer Requested Assess Part D A second rock is thrown straight upward with a speed 4.500 . If this rock takes 2.181 to fall to the ground, from what height was it released? Express your answer in meters to three significant figures. Hint 1. Identify the known variables What are the values of , , , and for the second rock? Take the positive y axis to be upward and the origin to be located on the ground where the rock lands. Express your answers to four significant figures in the units shown to the right, separated by commas. ANSWER: t = 2.18 s viy = 4.50 m/s yi = 13.5 m m/s s H yf viy t a Typesetting math: 100% Answer Requested Hint 2. Determine which equation to use to find the height Which equation should you use to find ? Keep in mind that if the positive y axis is upward and the origin is located on the ground, . ANSWER: ANSWER: Answer Requested Projectile motion is made up of two independent motions: uniform motion at constant velocity in the horizontal direction and free-fall motion in the vertical direction. Because both rocks were thrown with the same initial vertical velocity, 4.500 , and fell the same vertical distance of 13.5 , they were in the air for the same amount of time. This result was expected and helps to confirm that you did the calculation in Part C correctly. ± Arrow Hits Apple An arrow is shot at an angle of above the horizontal. The arrow hits a tree a horizontal distance away, at the same height above the ground as it was shot. Use for the magnitude of the acceleration due to gravity. Part A , , , = 0,4.500,2.181,-yf viy t a 9.810 m, m/s, s, m/s2 H yi = H yf = yi + viyt− g(t 1 2 )2 vfy = viy − gt = − 2g( − ) v2f y v2i y yf yi H = 13.5 m viy = m/s m  = 45 D = 220 m g = 9.8 m/s2 Typesetting math: 100% Find , the time that the arrow spends in the air. Answer numerically in seconds, to two significant figures. Hint 1. Find the initial upward component of velocity in terms of D. Introduce the (unknown) variables and for the initial components of velocity. Then use kinematics to relate them and solve for . What is the vertical component of the initial velocity? Express your answer symbolically in terms of and . Hint 1. Find Find the horizontal component of the initial velocity. Express your answer symbolically in terms of and given symbolic quantities. ANSWER: Hint 2. Find What is the vertical component of the initial velocity? Express your answer symbolically in terms of . ANSWER: ANSWER: ta vy0 vx0 ta vy0 ta D vx0 vx0 ta vx0 = D ta vy0 vy0 vx0 vy0 = vx0 vy0 = D ta Typesetting math: 100% Hint 2. Find the time of flight in terms of the initial vertical component of velocity. From the change in the vertical component of velocity, you should be able to find in terms of and . Give your answer in terms of and . Hint 1. Find When applied to the y-component of velocity, in this problem the formula for with constant acceleration is What is , the vertical component of velocity when the arrow hits the tree? Answer symbolically in terms of only. ANSWER: ANSWER: Hint 3. Put the algebra together to find symbolically. If you have an expression for the initial vertical velocity component in terms in terms of and , and another in terms of and , you should be able to eliminate this initial component to find an expression for Express your answer symbolically in terms of given variables. ANSWER: ta vy0 g vy0 g vy(ta) v(t) −g vy(t) = vy0 − g t vy(ta ) vy0 vy(ta) = −vy0 ta = 2vy0 g ta D ta g ta ta2 t2 = a 2D g Typesetting math: 100% ANSWER: Answer Requested Suppose someone drops an apple from a vertical distance of 6.0 meters, directly above the point where the arrow hits the tree. Part B How long after the arrow was shot should the apple be dropped, in order for the arrow to pierce the apple as the arrow hits the tree? Express your answer numerically in seconds, to two significant figures. Hint 1. When should the apple be dropped The apple should be dropped at the time equal to the total time it takes the arrow to reach the tree minus the time it takes the apple to fall 6.0 meters. Hint 2. Find the time it takes for the apple to fall 6.0 meters How long does it take an apple to fall 6.0 meters? Express your answer numerically in seconds, to two significant figures. ANSWER: Answer Requested ANSWER: ta = 6.7 s tf = 1.1 s td = 5.6 s Typesetting math: 100% Answer Requested Video Tutor: Ball Fired Upward from Accelerating Cart First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the questions at right. You can watch the video again at any point. Part A Consider the video you just watched. Suppose we replace the original launcher with one that fires the ball upward at twice the speed. We make no other changes. How far behind the cart will the ball land, compared to the distance in the original experiment? Hint 1. Determine how long the ball is in the air How will doubling the initial upward speed of the ball change the time the ball spends in the air? A kinematic equation may be helpful here. The time in the air will ANSWER: be cut in half. stay the same. double. quadruple. Typesetting math: 100% Hint 2. Determine the appropriate kinematic expression Which of the following kinematic equations correctly describes the horizontal distance between the ball and the cart at the moment the ball lands? The cart’s initial horizontal velocity is , its horizontal acceleration is , and is the time elapsed between launch and impact. ANSWER: ANSWER: Correct The ball will spend twice as much time in the air ( , where is the ball’s initial upward velocity), so it will land four times farther behind the cart: (where is the cart’s horizontal acceleration). Video Tutor: Ball Fired Upward from Moving Cart First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the questions at right. You can watch the video again at any point. d v0x ax t d = v0x t d = 1 2 axv0x t2 d = v0x t+ 1 2 axt2 d = 1 2 axt2 the same distance twice as far half as far four times as far by a factor not listed above t = 2v0y/g v0y d = 1 2 axt2 ax Typesetting math: 100% Part A The crew of a cargo plane wishes to drop a crate of supplies on a target below. To hit the target, when should the crew drop the crate? Ignore air resistance. Hint 1. How to approach the problem While the crate is on the plane, it shares the plane’s velocity. What is the crate’s velocity immediately after it is released? Hint 2. What affects the motion of the crate? Gravity will accelerate the crate downward. What, if anything, affects the crate’s horizontal motion? (Keep in mind that we are told to ignore air resistance, even though that’s not very realistic in this situation.) ANSWER: Correct At the moment it is released, the crate shares the plane’s horizontal velocity. In the absence of air resistance, the crate would remain directly below the plane as it fell. Score Summary: Your score on this assignment is 0%. Before the plane is directly over the target After the plane has flown over the target When the plane is directly over the target Typesetting math: 100% You received 0 out of a possible total of 0 points. Typesetting math: 100%

Chapter 4 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, February 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Advice for the Quarterback A quarterback is set up to throw the football to a receiver who is running with a constant velocity directly away from the quarterback and is now a distance away from the quarterback. The quarterback figures that the ball must be thrown at an angle to the horizontal and he estimates that the receiver must catch the ball a time interval after it is thrown to avoid having opposition players prevent the receiver from making the catch. In the following you may assume that the ball is thrown and caught at the same height above the level playing field. Assume that the y coordinate of the ball at the instant it is thrown or caught is and that the horizontal position of the quaterback is . Use for the magnitude of the acceleration due to gravity, and use the pictured inertial coordinate system when solving the problem. Part A Find , the vertical component of the velocity of the ball when the quarterback releases it. Express in terms of and . Hint 1. Equation of motion in y direction What is the expression for , the height of the ball as a function of time? Answer in terms of , , and . v r D  tc y = 0 x = 0 g v0y v0y tc g y(t) t g v0y ANSWER: Incorrect; Try Again Hint 2. Height at which the ball is caught, Remember that after time the ball was caught at the same height as it had been released. That is, . ANSWER: Answer Requested Part B Find , the initial horizontal component of velocity of the ball. Express your answer for in terms of , , and . Hint 1. Receiver’s position Find , the receiver’s position before he catches the ball. Answer in terms of , , and . ANSWER: Football’s position y(t) = v0yt− g 1 2 t2 y(tc) tc y(tc) = y0 = 0 v0y = gtc 2 v0x v0x D tc vr xr D vr tc xr = D + vrtc Typesetting math: 100% Find , the horizontal distance that the ball travels before reaching the receiver. Answer in terms of and . ANSWER: ANSWER: Answer Requested Part C Find the speed with which the quarterback must throw the ball. Answer in terms of , , , and . Hint 1. How to approach the problem Remember that velocity is a vector; from solving Parts A and B you have the two components, from which you can find the magnitude of this vector. ANSWER: Answer Requested Part D xc v0x tc xc = v0xtc v0x = + D tc vr v0 D tc vr g v0 = ( + ) + D tc vr 2 ( ) gtc 2 2 −−−−−−−−−−−−−−−−−−−  Typesetting math: 100% Assuming that the quarterback throws the ball with speed , find the angle above the horizontal at which he should throw it. Your solution should contain an inverse trig function (entered as asin, acos, or atan). Give your answer in terms of already known quantities, , , and . Hint 1. Find angle from and Think of velocity as a vector with Cartesian coordinates and . Find the angle that this vector would make with the x axis using the results of Parts A and B. ANSWER: Answer Requested Direction of Velocity at Various Times in Flight for Projectile Motion Conceptual Question For each of the motions described below, determine the algebraic sign (positive, negative, or zero) of the x component and y component of velocity of the object at the time specified. For all of the motions, the positive x axis points to the right and the positive y axis points upward. Alex, a mountaineer, must leap across a wide crevasse. The other side of the crevasse is below the point from which he leaps, as shown in the figure. Alex leaps horizontally and successfully makes the jump. v0  v0x v0y v0  v0x v0y v0xx^ v0yy^   = atan( ) v0y v0x Typesetting math: 100% Part A Determine the algebraic sign of Alex’s x velocity and y velocity at the instant he leaves the ground at the beginning of the jump. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Typesetting math: 100% Hint 1. Algebraic sign of velocity The algebraic sign of the velocity is determined solely by comparing the direction in which the object is moving with the direction that is defined to be positive. In this example, to the right is defined to be the positive x direction and upward the positive y direction. Therefore, any object moving to the right, whether speeding up, slowing down, or even simultaneously moving upward or downward, has a positive x velocity. Similarly, if the object is moving downward, regardless of any other aspect of its motion, its y velocity is negative. Hint 2. Sketch Alex’s initial velocity On the diagram below, sketch the vector representing Alex’s velocity the instant after he leaves the ground at the beginning of the jump. ANSWER: ANSWER: Typesetting math: 100% Answer Requested Part B Determine the algebraic signs of Alex’s x velocity and y velocity the instant before he lands at the end of the jump. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Typesetting math: 100% Hint 1. Sketch Alex’s final velocity On the diagram below, sketch the vector representing Alex’s velocity the instant before he safely lands on the other side of the crevasse. ANSWER: Answer Requested ANSWER: Answer Requested Typesetting math: 100% At the buzzer, a basketball player shoots a desperation shot. The ball goes in! Part C Determine the algebraic signs of the ball’s x velocity and y velocity the instant after it leaves the player’s hands. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Hint 1. Sketch the basketball’s initial velocity On the diagram below, sketch the vector representing the velocity of the basketball the instant after it leaves the player’s hands. ANSWER: Typesetting math: 100% ANSWER: Correct Part D Determine the algebraic signs of the ball’s x velocity and y velocity at the ball’s maximum height. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Hint 1. Sketch the basketball’s velocity at maximum height Typesetting math: 100% On the diagram below, sketch the vector representing the velocity of the basketball the instant it reaches its maximum height. ANSWER: ANSWER: Answer Requested PSS 4.1 Projectile Motion Problems Learning Goal: Typesetting math: 100% To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 9.00 and launch angle 30.0 (above the horizontal) travels a horizontal distance of = 17.0 before hitting the ground. From what height was the rock thrown? Use the value = 9.810 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Make simplifying assumptions, such as treating the object as a particle. Is it reasonable to ignore air resistance? VISUALIZE: Use a pictorial representation. Establish a coordinate system with the x axis horizontal and the y axis vertical. Show important points in the motion on a sketch. Define symbols, and identify what you are trying to find. SOLVE: The acceleration is known: and . Thus, the problem becomes one of two-dimensional kinematics. The kinematic equations are , . is the same for the horizontal and vertical components of the motion. Find from one component, and then use that value for the other component. ASSESS: Check that your result has the correct units, is reasonable, and answers the question. Model Start by making simplifying assumptions: Model the rock as a particle in free fall. You can ignore air resistance because the rock is a relatively heavy object moving relatively slowly. Visualize Part A Which diagram represents an accurate sketch of the rock’s trajectory? Hint 1. The launch angle In a projectile’s motion, the angle of the initial velocity above the horizontal is called the launch angle. ANSWER: m/s  d m g m/s2 ax = 0 ay = −g xf = xi +vixt, yf = yi +viyt− g(t 1 2 )2 vfx = vix = constant, and vfy = viy − gt t t v i Typesetting math: 100% Typesetting math: 100% Correct Part B As stated in the strategy, choose a coordinate system where the x axis is horizontal and the y axis is vertical. Note that in the strategy, the y component of the projectile’s acceleration, , is taken to be negative. This implies that the positive y axis is upward. Use the same convention for your y axis, and take the positive x axis to be to the right. Where you choose your origin doesn’t change the answer to the question, but choosing an origin can make a problem easier to solve (even if only a bit). Usually it is nice if the majority of the quantities you are given and the quantity you are trying to solve for take positive values relative to your chosen origin. Given this goal, what location for the origin of the coordinate system would make this problem easiest? ANSWER: ay At ground level below the point where the rock is launched At the point where the rock strikes the ground At the peak of the trajectory At the point where the rock is released At ground level below the peak of the trajectory Typesetting math: 100% Correct It’s best to place the origin of the coordinate system at ground level below the launching point because in this way all the points of interest (the launching point and the landing point) will have positive coordinates. (Based on your experience, you know that it’s generally easier to work with positive coordinates.) Keep in mind, however, that this is an arbitrary choice. The correct solution of the problem will not depend on the location of the origin of your coordinate system. Now, define symbols representing initial and final position, velocity, and time. Your target variable is , the initial y coordinate of the rock. Your pictorial representation should be complete now, and similar to the picture below: Solve Part C Find the height from which the rock was launched. Express your answer in meters to three significant figures. yi yi Typesetting math: 100% Hint 1. How to approach the problem The time needed to move horizontally to the final position = 17.0 is the same time needed for the rock to rise from the initial position to the peak of its trajectory and then fall to the ground. Use the information you have about motion in the horizontal direction to solve for . Knowing this time will allow you to use the equations of motion for the vertical direction to solve for . Hint 2. Find the time spent in the air How long ( ) is the rock in the air? Express your answer in seconds to three significant figures. Hint 1. Determine which equation to use Which of the equations given in the strategy and shown below is the most appropriate to calculate the time the rock spent in the air? ANSWER: Hint 2. Find the x component of the initial velocity What is the x component of the rock’s initial velocity? Express your answer in meters per second to three significant figures. ANSWER: ANSWER: t xf = d m yi t yi t t xf = xi + vixt yf = yi + viyt− g(t 1 2 )2 vfy = viy − gt vix = 7.79 m/s Typesetting math: 100% Hint 3. Find the y component of the initial velocity What is the y component of the rock’s initial velocity? Express your answer in meters per second to three significant figures. ANSWER: ANSWER: Answer Requested Assess Part D A second rock is thrown straight upward with a speed 4.500 . If this rock takes 2.181 to fall to the ground, from what height was it released? Express your answer in meters to three significant figures. Hint 1. Identify the known variables What are the values of , , , and for the second rock? Take the positive y axis to be upward and the origin to be located on the ground where the rock lands. Express your answers to four significant figures in the units shown to the right, separated by commas. ANSWER: t = 2.18 s viy = 4.50 m/s yi = 13.5 m m/s s H yf viy t a Typesetting math: 100% Answer Requested Hint 2. Determine which equation to use to find the height Which equation should you use to find ? Keep in mind that if the positive y axis is upward and the origin is located on the ground, . ANSWER: ANSWER: Answer Requested Projectile motion is made up of two independent motions: uniform motion at constant velocity in the horizontal direction and free-fall motion in the vertical direction. Because both rocks were thrown with the same initial vertical velocity, 4.500 , and fell the same vertical distance of 13.5 , they were in the air for the same amount of time. This result was expected and helps to confirm that you did the calculation in Part C correctly. ± Arrow Hits Apple An arrow is shot at an angle of above the horizontal. The arrow hits a tree a horizontal distance away, at the same height above the ground as it was shot. Use for the magnitude of the acceleration due to gravity. Part A , , , = 0,4.500,2.181,-yf viy t a 9.810 m, m/s, s, m/s2 H yi = H yf = yi + viyt− g(t 1 2 )2 vfy = viy − gt = − 2g( − ) v2f y v2i y yf yi H = 13.5 m viy = m/s m  = 45 D = 220 m g = 9.8 m/s2 Typesetting math: 100% Find , the time that the arrow spends in the air. Answer numerically in seconds, to two significant figures. Hint 1. Find the initial upward component of velocity in terms of D. Introduce the (unknown) variables and for the initial components of velocity. Then use kinematics to relate them and solve for . What is the vertical component of the initial velocity? Express your answer symbolically in terms of and . Hint 1. Find Find the horizontal component of the initial velocity. Express your answer symbolically in terms of and given symbolic quantities. ANSWER: Hint 2. Find What is the vertical component of the initial velocity? Express your answer symbolically in terms of . ANSWER: ANSWER: ta vy0 vx0 ta vy0 ta D vx0 vx0 ta vx0 = D ta vy0 vy0 vx0 vy0 = vx0 vy0 = D ta Typesetting math: 100% Hint 2. Find the time of flight in terms of the initial vertical component of velocity. From the change in the vertical component of velocity, you should be able to find in terms of and . Give your answer in terms of and . Hint 1. Find When applied to the y-component of velocity, in this problem the formula for with constant acceleration is What is , the vertical component of velocity when the arrow hits the tree? Answer symbolically in terms of only. ANSWER: ANSWER: Hint 3. Put the algebra together to find symbolically. If you have an expression for the initial vertical velocity component in terms in terms of and , and another in terms of and , you should be able to eliminate this initial component to find an expression for Express your answer symbolically in terms of given variables. ANSWER: ta vy0 g vy0 g vy(ta) v(t) −g vy(t) = vy0 − g t vy(ta ) vy0 vy(ta) = −vy0 ta = 2vy0 g ta D ta g ta ta2 t2 = a 2D g Typesetting math: 100% ANSWER: Answer Requested Suppose someone drops an apple from a vertical distance of 6.0 meters, directly above the point where the arrow hits the tree. Part B How long after the arrow was shot should the apple be dropped, in order for the arrow to pierce the apple as the arrow hits the tree? Express your answer numerically in seconds, to two significant figures. Hint 1. When should the apple be dropped The apple should be dropped at the time equal to the total time it takes the arrow to reach the tree minus the time it takes the apple to fall 6.0 meters. Hint 2. Find the time it takes for the apple to fall 6.0 meters How long does it take an apple to fall 6.0 meters? Express your answer numerically in seconds, to two significant figures. ANSWER: Answer Requested ANSWER: ta = 6.7 s tf = 1.1 s td = 5.6 s Typesetting math: 100% Answer Requested Video Tutor: Ball Fired Upward from Accelerating Cart First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the questions at right. You can watch the video again at any point. Part A Consider the video you just watched. Suppose we replace the original launcher with one that fires the ball upward at twice the speed. We make no other changes. How far behind the cart will the ball land, compared to the distance in the original experiment? Hint 1. Determine how long the ball is in the air How will doubling the initial upward speed of the ball change the time the ball spends in the air? A kinematic equation may be helpful here. The time in the air will ANSWER: be cut in half. stay the same. double. quadruple. Typesetting math: 100% Hint 2. Determine the appropriate kinematic expression Which of the following kinematic equations correctly describes the horizontal distance between the ball and the cart at the moment the ball lands? The cart’s initial horizontal velocity is , its horizontal acceleration is , and is the time elapsed between launch and impact. ANSWER: ANSWER: Correct The ball will spend twice as much time in the air ( , where is the ball’s initial upward velocity), so it will land four times farther behind the cart: (where is the cart’s horizontal acceleration). Video Tutor: Ball Fired Upward from Moving Cart First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the questions at right. You can watch the video again at any point. d v0x ax t d = v0x t d = 1 2 axv0x t2 d = v0x t+ 1 2 axt2 d = 1 2 axt2 the same distance twice as far half as far four times as far by a factor not listed above t = 2v0y/g v0y d = 1 2 axt2 ax Typesetting math: 100% Part A The crew of a cargo plane wishes to drop a crate of supplies on a target below. To hit the target, when should the crew drop the crate? Ignore air resistance. Hint 1. How to approach the problem While the crate is on the plane, it shares the plane’s velocity. What is the crate’s velocity immediately after it is released? Hint 2. What affects the motion of the crate? Gravity will accelerate the crate downward. What, if anything, affects the crate’s horizontal motion? (Keep in mind that we are told to ignore air resistance, even though that’s not very realistic in this situation.) ANSWER: Correct At the moment it is released, the crate shares the plane’s horizontal velocity. In the absence of air resistance, the crate would remain directly below the plane as it fell. Score Summary: Your score on this assignment is 0%. Before the plane is directly over the target After the plane has flown over the target When the plane is directly over the target Typesetting math: 100% You received 0 out of a possible total of 0 points. Typesetting math: 100%

please email info@checkyourstudy.com