Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

The objectification of women has been a very controversial topic … Read More...
Use the link provided to answer the questions below. http://www.worlddialogue.org/content.php?id=384 According to the article, what was President George W. Bush’s main rationale for going to war with Iraq? A. Bush believed that by promoting democracy, we promote peace around the world. B. Bush believed that Iraq was a key player in the global drug trade. C. Bush feared Osama bin Laden would assume power in Iraq. D. Intelligence reports showed Iraq was planning to attack Afghanistan. E. Bush had no opinion about invading Iraq. What is the democratic peace theory? A. the theory that indicates that democracy will inevitably spread and we should assist it peacefully B. the theory that economic growth leads to a peaceful democratic state C. the theory that democracies tend not to fight one another D. the theory that the key to a successful democratic transition is through a peaceful transfer of power E. the theory that peace and democracy are actually inconsistent with one another What did Mansfield and Syder conclude happens during the initial phases of democratization? A. Newly democratized countries are incapable of holding independent elections. B. Citizens are more engaged in politics and willing to be peaceful. C. New democracies are the strongest democracies in the world. D. Other countries are more likely to form alliances with new democracies. E. Newly democratized countries become more aggressive and warlike, not less. New democracies are more likely to elect which of the following types of parties into office? A. socialists B. religious extremists C. the country’s elite and wealthy class D. people who personify “the average Joe” E. the largest, most prominent parties According to Mansfield and Snyder’s prescription, what should the United States do with democratizing states? A. provide an international military force to ensure peace B. keep a close eye and replace bad leaders if necessary C. make certain that reforms are implemented in the right order D. strengthen international awareness of democratizing states so that peaceful states can arm themselves E. attempt to push through elections as soon as possible above all else Watch the video below, and then answer the questions below. To save your answers, click the Save to Notebook button above. http://www.youtube.com/watch?v=796LfXwzIUk According to Joseph Nye, what is power transition? A. a change of power among states B. a change of power among presidents C. a change of power within the European Union or other leading organizations D. a change of power within cultures E. a change of power to non-state actors How does Nye define power diffusion? A. a change of power among states B. a change of power in regions C. a change of power within cultures D. a change of power from states to non-state actors E. a change of power from non-state actors to states Which of the following is an example of a non-state actor given by Nye? A. Iranian president Mahmoud Ahmadinejad B. Oxfam C. the former USSR D. socialism E. the mayor of Tehran Why does Nye claim it is important to be cautious of power projections? A. Simple projections don’t tell us much about power transition. B. History is not linear. C. Simple projections tend to focus soley on GDP. D. Simple projections don’t tell you anything about military or soft power. E. all of these options Nye describes a three-dimensional chess game as a metaphor for modern-day power distribution. What is the top board? A. economic power among states B. military power among states C. power among state leaders D. the deciding board for the other two boards E. the board where Kasparov faces off against the computer What is the middle board in Nye’s chess game metaphor? A. non-state actors B. a metaphor for the international underground economy C. military power among states D. economic power among states E. political power among states What is the bottom board in Nye’s chess game metaphor? A. transnational relations B. things that cross borders outside government control C. a place where power is chaotically distributed D. an area where things cross borders outside the control of governments E. all of these options What is the difference between a positive-sum game and a zero-sum game? A. A positive-sum game is when one person has all the power and a zero-sum game is when power is evenly distributed. B. A positive-sum game is a two-player power game and a zero-sum game is a one-player power game. C. A positive-sum game where my gain is your gain and a zero-sum game is my win and your loss. D. A postive-sum game is when you bet and win and a zero-sum game is when you bet and lose. E. A positive-sum game is like Tetris and a zero-sum game is like Super Mario Brothers. Nye quotes Hillary Clinton, describing her foreign policy agenda as utilizing “smart power.” What does this mean? A. Smart power addresses the two great power shifts in the 21st century. B. Smart power is “using all the tools in our toolbox.” C. Smart power combines both hard and soft power. D. Smart power reflects a new narrative of dealing with power. E. all of these options

Use the link provided to answer the questions below. http://www.worlddialogue.org/content.php?id=384 According to the article, what was President George W. Bush’s main rationale for going to war with Iraq? A. Bush believed that by promoting democracy, we promote peace around the world. B. Bush believed that Iraq was a key player in the global drug trade. C. Bush feared Osama bin Laden would assume power in Iraq. D. Intelligence reports showed Iraq was planning to attack Afghanistan. E. Bush had no opinion about invading Iraq. What is the democratic peace theory? A. the theory that indicates that democracy will inevitably spread and we should assist it peacefully B. the theory that economic growth leads to a peaceful democratic state C. the theory that democracies tend not to fight one another D. the theory that the key to a successful democratic transition is through a peaceful transfer of power E. the theory that peace and democracy are actually inconsistent with one another What did Mansfield and Syder conclude happens during the initial phases of democratization? A. Newly democratized countries are incapable of holding independent elections. B. Citizens are more engaged in politics and willing to be peaceful. C. New democracies are the strongest democracies in the world. D. Other countries are more likely to form alliances with new democracies. E. Newly democratized countries become more aggressive and warlike, not less. New democracies are more likely to elect which of the following types of parties into office? A. socialists B. religious extremists C. the country’s elite and wealthy class D. people who personify “the average Joe” E. the largest, most prominent parties According to Mansfield and Snyder’s prescription, what should the United States do with democratizing states? A. provide an international military force to ensure peace B. keep a close eye and replace bad leaders if necessary C. make certain that reforms are implemented in the right order D. strengthen international awareness of democratizing states so that peaceful states can arm themselves E. attempt to push through elections as soon as possible above all else Watch the video below, and then answer the questions below. To save your answers, click the Save to Notebook button above. http://www.youtube.com/watch?v=796LfXwzIUk According to Joseph Nye, what is power transition? A. a change of power among states B. a change of power among presidents C. a change of power within the European Union or other leading organizations D. a change of power within cultures E. a change of power to non-state actors How does Nye define power diffusion? A. a change of power among states B. a change of power in regions C. a change of power within cultures D. a change of power from states to non-state actors E. a change of power from non-state actors to states Which of the following is an example of a non-state actor given by Nye? A. Iranian president Mahmoud Ahmadinejad B. Oxfam C. the former USSR D. socialism E. the mayor of Tehran Why does Nye claim it is important to be cautious of power projections? A. Simple projections don’t tell us much about power transition. B. History is not linear. C. Simple projections tend to focus soley on GDP. D. Simple projections don’t tell you anything about military or soft power. E. all of these options Nye describes a three-dimensional chess game as a metaphor for modern-day power distribution. What is the top board? A. economic power among states B. military power among states C. power among state leaders D. the deciding board for the other two boards E. the board where Kasparov faces off against the computer What is the middle board in Nye’s chess game metaphor? A. non-state actors B. a metaphor for the international underground economy C. military power among states D. economic power among states E. political power among states What is the bottom board in Nye’s chess game metaphor? A. transnational relations B. things that cross borders outside government control C. a place where power is chaotically distributed D. an area where things cross borders outside the control of governments E. all of these options What is the difference between a positive-sum game and a zero-sum game? A. A positive-sum game is when one person has all the power and a zero-sum game is when power is evenly distributed. B. A positive-sum game is a two-player power game and a zero-sum game is a one-player power game. C. A positive-sum game where my gain is your gain and a zero-sum game is my win and your loss. D. A postive-sum game is when you bet and win and a zero-sum game is when you bet and lose. E. A positive-sum game is like Tetris and a zero-sum game is like Super Mario Brothers. Nye quotes Hillary Clinton, describing her foreign policy agenda as utilizing “smart power.” What does this mean? A. Smart power addresses the two great power shifts in the 21st century. B. Smart power is “using all the tools in our toolbox.” C. Smart power combines both hard and soft power. D. Smart power reflects a new narrative of dealing with power. E. all of these options

Use the link provided to answer the questions below. http://www.worlddialogue.org/content.php?id=384 … Read More...
You have had the unique opportunity to develop a career plan in this academic program. By determining career goals and objectives, you should have become insightful and capable of assessing your current skills and abilities and their respective usefulness in attaining that ideal position. According to your plan, what training and education may be required before advancement is possible with respect to your future plans? What is the biggest obstacle you face in search of success?

You have had the unique opportunity to develop a career plan in this academic program. By determining career goals and objectives, you should have become insightful and capable of assessing your current skills and abilities and their respective usefulness in attaining that ideal position. According to your plan, what training and education may be required before advancement is possible with respect to your future plans? What is the biggest obstacle you face in search of success?

We can’t escape from the reality that if we wish … Read More...
3. The probability density function for mechanical component is given by: fT(t) = 1/(b-a) when t <=a<=b = 0; elsewhere Determine: • Cumulative distribution of the failures (5 points) • Reliability of the components (5 points) • Hazard rate for the components (5 points) • Mean, standard deviation of the failure distribution and reliability of components at the end of 2 years, when c=0.0025 (5 points) • Plot the probability density function, probability time distribution function, Reliability function and Hard Rate function for the given distribution when a=6000 and b=12000 (5 points)

3. The probability density function for mechanical component is given by: fT(t) = 1/(b-a) when t <=a<=b = 0; elsewhere Determine: • Cumulative distribution of the failures (5 points) • Reliability of the components (5 points) • Hazard rate for the components (5 points) • Mean, standard deviation of the failure distribution and reliability of components at the end of 2 years, when c=0.0025 (5 points) • Plot the probability density function, probability time distribution function, Reliability function and Hard Rate function for the given distribution when a=6000 and b=12000 (5 points)

info@checkyourstudy.com
Assignment 3 Due: 11:59pm on Friday, February 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 2.68 As a science project, you drop a watermelon off the top of the Empire State Building, 320 m above the sidewalk. It so happens that Superman flies by at the instant you release the watermelon. Superman is headed straight down with a speed of 36.0 . Part A How fast is the watermelon going when it passes Superman? Express your answer with the appropriate units. ANSWER: Correct Problem 2.63 A motorist is driving at when she sees that a traffic light ahead has just turned red. She knows that this light stays red for , and she wants to reach the light just as it turns green again. It takes her to step on the brakes and begin slowing. Part A What is her speed as she reaches the light at the instant it turns green? Express your answer with the appropriate units. ANSWER: m/s 72.0 ms 20 m/s 200 m 15 s 1.0 s 5.71 ms Correct Conceptual Question 4.1 Part A At this instant, is the particle in the figurespeeding up, slowing down, or traveling at constant speed? ANSWER: Correct Part B Is this particle curving to the right, curving to the left, or traveling straight? Speeding up Slowing down Traveling at constant speed ANSWER: Correct Conceptual Question 4.2 Part A At this instant, is the particle in the following figure speeding up, slowing down, or traveling at constant speed? ANSWER: Curving to the right Curving to the left Traveling straight Correct Part B Is this particle curving upward, curving downward, or traveling straight? ANSWER: Correct Problem 4.8 A particle’s trajectory is described by and , where is in s. Part A What is the particle’s speed at ? ANSWER: The particle is speeding up. The particle is slowing down. The particle is traveling at constant speed. The particle is curving upward. The particle is curving downward. The particle is traveling straight. x = ( 1 −2 ) m 2 t3 t2 y = ( 1 −2t) m 2 t2 t t = 0 s v = 2 m/s Correct Part B What is the particle’s speed at ? Express your answer using two significant figures. ANSWER: Correct Part C What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: Correct Part D What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: t = 5.0s v = 18 m/s t = 0 s  = -90  counterclockwise from the +x axis. t = 5.0s  = 9.7  counterclockwise from the +x axis. Correct Problem 4.9 A rocket-powered hockey puck moves on a horizontal frictionless table. The figure shows the graph of and the figure shows the graph of , the x- and y-components of the puck’s velocity, respectively. The puck starts at the origin. Part A In which direction is the puck moving at = 3 ? Give your answer as an angle from the x-axis. Express your answer using two significant figures. ANSWER: Correct Part B vx vy t s = 51   above the x-axis How far from the origin is the puck at 5 ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.13 A rifle is aimed horizontally at a target 51.0 away. The bullet hits the target 1.50 below the aim point. You may want to review ( pages 91 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A What was the bullet’s flight time? Express your answer with the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the bullet’s trajectory, including where it leaves the gun and where it hits the target. You can assume that the gun was held parallel to the ground. Label the distances given in the problem. Choose an x-y coordinate system, making sure to label the origin. It is conventional to have x in the horizontal direction and y in the vertical direction. What is the y coordinate when the bullet leaves the gun? What is the y coordinate when it hits the target? What is the initial velocity in the y direction? What is the acceleration in the y direction? What is the equation that describes the motion in the vertical y direction as a function of time? Can you use the equation for to determine the time of flight? Why was it not necessary to include the motion in the x direction? s s = 180 cm m cm y(t) y(t) ANSWER: Correct Part B What was the bullet’s speed as it left the barrel? Express your answer with the appropriate units. Hint 1. How to approach the problem In the coordinate system introduced in Part A, what are the x coordinates when the bullet leaves the gun and when it hits the target? Is there any acceleration in the x direction? What is the equation that describes the motion in the horizontal x direction as a function of time? Can you use the equation for to determine the initial velocity? ANSWER: Correct Introduction to Projectile Motion Learning Goal: To understand the basic concepts of projectile motion. Projectile motion may seem rather complex at first. However, by breaking it down into components, you will find that it is really no different than the one-dimensional motions that you have already studied. One of the most often used techniques in physics is to divide two- and three-dimensional quantities into components. For instance, in projectile motion, a particle has some initial velocity . In general, this velocity can point in any direction on the xy plane and can have any magnitude. To make a problem more managable, it is common to break up such a quantity into its x component and its y component . 5.53×10−2 s x(t) x(t) 922 ms v vx vy Consider a particle with initial velocity that has magnitude 12.0 and is directed 60.0 above the negative x axis. Part A What is the x component of ? Express your answer in meters per second. ANSWER: Correct Part B What is the y component of ? Express your answer in meters per second. ANSWER: Correct Breaking up the velocities into components is particularly useful when the components do not affect each other. Eventually, you will learn about situations in which the components of velocity do affect one another, but for now you will only be looking at problems where they do not. So, if there is acceleration in the x direction but not in the y direction, then the x component of the velocity will change, but the y component of the velocity will not. Part C Look at this applet. The motion diagram for a projectile is displayed, as are the motion diagrams for each component. The x-component motion diagram is what you would get if you shined a spotlight down on the particle as it moved and recorded the motion of its shadow. Similarly, if you shined a spotlight to the left and recorded the particle’s shadow, you would get the motion diagram for its y component. How would you describe the two motion diagrams for the components? ANSWER: v m/s degrees vx v vx = -6.00 m/s vy v vy = 10.4 m/s Correct As you can see, the two components of the motion obey their own independent kinematic laws. For the vertical component, there is an acceleration downward with magnitude . Thus, you can calculate the vertical position of the particle at any time using the standard kinematic equation . Similarly, there is no acceleration in the horizontal direction, so the horizontal position of the particle is given by the standard kinematic equation . Now, consider this applet. Two balls are simultaneously dropped from a height of 5.0 . Part D How long does it take for the balls to reach the ground? Use 10 for the magnitude of the acceleration due to gravity. Express your answer in seconds to two significant figures. Hint 1. How to approach the problem The balls are released from rest at a height of 5.0 at time . Using these numbers and basic kinematics, you can determine the amount of time it takes for the balls to reach the ground. ANSWER: Correct This situation, which you have dealt with before (motion under the constant acceleration of gravity), is actually a special case of projectile motion. Think of this as projectile motion where the horizontal component of the initial velocity is zero. Both the vertical and horizontal components exhibit motion with constant nonzero acceleration. The vertical component exhibits motion with constant nonzero acceleration, whereas the horizontal component exhibits constant-velocity motion. The vertical component exhibits constant-velocity motion, whereas the horizontal component exhibits motion with constant nonzero acceleration. Both the vertical and horizontal components exhibit motion with constant velocity. g = 10 m/s2 y = y0 + v0 t + (1/2)at2 x = x0 + v0 t m tg m/s2 m t = 0 s tg = 1.0 s Part E Imagine the ball on the left is given a nonzero initial speed in the horizontal direction, while the ball on the right continues to fall with zero initial velocity. What horizontal speed must the ball on the left start with so that it hits the ground at the same position as the ball on the right? Remember that the two balls are released, starting a horizontal distance of 3.0 apart. Express your answer in meters per second to two significant figures. Hint 1. How to approach the problem Recall from Part B that the horizontal component of velocity does not change during projectile motion. Therefore, you need to find the horizontal component of velocity such that, in a time , the ball will move horizontally 3.0 . You can assume that its initial x coordinate is . ANSWER: Correct You can adjust the horizontal speeds in this applet. Notice that regardless of what horizontal speeds you give to the balls, they continue to move vertically in the same way (i.e., they are at the same y coordinate at the same time). Problem 4.12 A ball thrown horizontally at 27 travels a horizontal distance of 49 before hitting the ground. Part A From what height was the ball thrown? Express your answer using two significant figures with the appropriate units. ANSWER: vx m vx tg = 1.0 s m x0 = 0.0 m vx = 3.0 m/s m/s m h = 16 m Correct Enhanced EOC: Problem 4.20 The figure shows the angular-velocity-versus-time graph for a particle moving in a circle. You may want to review ( page ) . For help with math skills, you may want to review: The Definite Integral Part A How many revolutions does the object make during the first 3.5 ? Express your answer using two significant figures. You did not open hints for this part. ANSWER: s n = Incorrect; Try Again Problem 4.26 To withstand “g-forces” of up to 10 g’s, caused by suddenly pulling out of a steep dive, fighter jet pilots train on a “human centrifuge.” 10 g’s is an acceleration of . Part A If the length of the centrifuge arm is 10.0 , at what speed is the rider moving when she experiences 10 g’s? Express your answer with the appropriate units. ANSWER: Correct Problem 4.28 Your roommate is working on his bicycle and has the bike upside down. He spins the 60.0 -diameter wheel, and you notice that a pebble stuck in the tread goes by three times every second. Part A What is the pebble’s speed? Express your answer with the appropriate units. ANSWER: Correct 98 m/s2 m 31.3 ms cm 5.65 ms Part B What is the pebble’s acceleration? Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.43 On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a 6 iron. The acceleration due to gravity on the moon is 1/6 of its value on earth. Suppose he hits the ball with a speed of 13 at an angle 50 above the horizontal. You may want to review ( pages 90 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A How much farther did the ball travel on the moon than it would have on earth? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the path of the golf ball, showing its starting and ending points. Choose a coordinate system, and label the origin. It is conventional to let x be the horizontal direction and y the vertical direction. What is the initial velocity in the x and y directions? What is the acceleration in the x and y directions on the moon and on the earth? What are the equations for and as a function of time, and , respectively? What is the y coordinate when the golf ball hits the ground? Can you use this information to determine the time of flight on the moon and on the earth? 107 m s2 m/s  x y x(t) y(t) Once you have the time of flight, how can you use the equation to determine the total distance traveled? Compare the distance traveled on the moon to the distance traveled on the earth . ANSWER: Correct Part B For how much more time was the ball in flight? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the equation describing as a function of time? What is the initial x component of the ball’s velocity? How are the initial x component of the ball’s velocity and the distance traveled related to the time of flight? What is the difference between the time of flight on the moon and on earth? ANSWER: Correct Problem 4.42 In the Olympic shotput event, an athlete throws the shot with an initial speed of 12 at a 40.0 angle from the horizontal. The shot leaves her hand at a height of 1.8 above the ground. x(t) L = 85 m x(t) x t = 10 s m/s  m Part A How far does the shot travel? Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part B Repeat the calculation of part (a) for angles of 42.5 , 45.0 , and 47.5 . Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part C Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part D x = 16.36 m    x(42.5 ) = 16.39 m x(45.0 ) = 16.31 m Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part E At what angle of release does she throw the farthest? ANSWER: Correct Problem 4.44 A ball is thrown toward a cliff of height with a speed of 32 and an angle of 60 above horizontal. It lands on the edge of the cliff 3.2 later. Part A How high is the cliff? Express your answer to two significant figures and include the appropriate units. ANSWER: x(47.5 ) = 16.13 m 40.0 42.5 45.0 47.5 h m/s  s h = 39 m Answer Requested Part B What was the maximum height of the ball? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the ball’s impact speed? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 4.58 A typical laboratory centrifuge rotates at 3600 . Test tubes have to be placed into a centrifuge very carefully because of the very large accelerations. Part A What is the acceleration at the end of a test tube that is 10 from the axis of rotation? Express your answer with the appropriate units. hmax = 39 m v = 16 ms rpm cm ANSWER: Correct Part B For comparison, what is the magnitude of the acceleration a test tube would experience if dropped from a height of 1.0 and stopped in a 1.7-ms-long encounter with a hard floor? Express your answer with the appropriate units. ANSWER: Correct Problem 4.62 Communications satellites are placed in a circular orbit where they stay directly over a fixed point on the equator as the earth rotates. These are called geosynchronous orbits. The radius of the earth is , and the altitude of a geosynchronous orbit is ( 22000 miles). Part A What is the speed of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct a = 1.42×104 m s2 m a = 2610 m s2 6.37 × 106m 3.58 × 107m  v = 3070 ms Part B What is the magnitude of the acceleration of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 89.5%. You received 103.82 out of a possible total of 116 points. a = 0.223 m s2

Assignment 3 Due: 11:59pm on Friday, February 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 2.68 As a science project, you drop a watermelon off the top of the Empire State Building, 320 m above the sidewalk. It so happens that Superman flies by at the instant you release the watermelon. Superman is headed straight down with a speed of 36.0 . Part A How fast is the watermelon going when it passes Superman? Express your answer with the appropriate units. ANSWER: Correct Problem 2.63 A motorist is driving at when she sees that a traffic light ahead has just turned red. She knows that this light stays red for , and she wants to reach the light just as it turns green again. It takes her to step on the brakes and begin slowing. Part A What is her speed as she reaches the light at the instant it turns green? Express your answer with the appropriate units. ANSWER: m/s 72.0 ms 20 m/s 200 m 15 s 1.0 s 5.71 ms Correct Conceptual Question 4.1 Part A At this instant, is the particle in the figurespeeding up, slowing down, or traveling at constant speed? ANSWER: Correct Part B Is this particle curving to the right, curving to the left, or traveling straight? Speeding up Slowing down Traveling at constant speed ANSWER: Correct Conceptual Question 4.2 Part A At this instant, is the particle in the following figure speeding up, slowing down, or traveling at constant speed? ANSWER: Curving to the right Curving to the left Traveling straight Correct Part B Is this particle curving upward, curving downward, or traveling straight? ANSWER: Correct Problem 4.8 A particle’s trajectory is described by and , where is in s. Part A What is the particle’s speed at ? ANSWER: The particle is speeding up. The particle is slowing down. The particle is traveling at constant speed. The particle is curving upward. The particle is curving downward. The particle is traveling straight. x = ( 1 −2 ) m 2 t3 t2 y = ( 1 −2t) m 2 t2 t t = 0 s v = 2 m/s Correct Part B What is the particle’s speed at ? Express your answer using two significant figures. ANSWER: Correct Part C What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: Correct Part D What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: t = 5.0s v = 18 m/s t = 0 s  = -90  counterclockwise from the +x axis. t = 5.0s  = 9.7  counterclockwise from the +x axis. Correct Problem 4.9 A rocket-powered hockey puck moves on a horizontal frictionless table. The figure shows the graph of and the figure shows the graph of , the x- and y-components of the puck’s velocity, respectively. The puck starts at the origin. Part A In which direction is the puck moving at = 3 ? Give your answer as an angle from the x-axis. Express your answer using two significant figures. ANSWER: Correct Part B vx vy t s = 51   above the x-axis How far from the origin is the puck at 5 ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.13 A rifle is aimed horizontally at a target 51.0 away. The bullet hits the target 1.50 below the aim point. You may want to review ( pages 91 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A What was the bullet’s flight time? Express your answer with the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the bullet’s trajectory, including where it leaves the gun and where it hits the target. You can assume that the gun was held parallel to the ground. Label the distances given in the problem. Choose an x-y coordinate system, making sure to label the origin. It is conventional to have x in the horizontal direction and y in the vertical direction. What is the y coordinate when the bullet leaves the gun? What is the y coordinate when it hits the target? What is the initial velocity in the y direction? What is the acceleration in the y direction? What is the equation that describes the motion in the vertical y direction as a function of time? Can you use the equation for to determine the time of flight? Why was it not necessary to include the motion in the x direction? s s = 180 cm m cm y(t) y(t) ANSWER: Correct Part B What was the bullet’s speed as it left the barrel? Express your answer with the appropriate units. Hint 1. How to approach the problem In the coordinate system introduced in Part A, what are the x coordinates when the bullet leaves the gun and when it hits the target? Is there any acceleration in the x direction? What is the equation that describes the motion in the horizontal x direction as a function of time? Can you use the equation for to determine the initial velocity? ANSWER: Correct Introduction to Projectile Motion Learning Goal: To understand the basic concepts of projectile motion. Projectile motion may seem rather complex at first. However, by breaking it down into components, you will find that it is really no different than the one-dimensional motions that you have already studied. One of the most often used techniques in physics is to divide two- and three-dimensional quantities into components. For instance, in projectile motion, a particle has some initial velocity . In general, this velocity can point in any direction on the xy plane and can have any magnitude. To make a problem more managable, it is common to break up such a quantity into its x component and its y component . 5.53×10−2 s x(t) x(t) 922 ms v vx vy Consider a particle with initial velocity that has magnitude 12.0 and is directed 60.0 above the negative x axis. Part A What is the x component of ? Express your answer in meters per second. ANSWER: Correct Part B What is the y component of ? Express your answer in meters per second. ANSWER: Correct Breaking up the velocities into components is particularly useful when the components do not affect each other. Eventually, you will learn about situations in which the components of velocity do affect one another, but for now you will only be looking at problems where they do not. So, if there is acceleration in the x direction but not in the y direction, then the x component of the velocity will change, but the y component of the velocity will not. Part C Look at this applet. The motion diagram for a projectile is displayed, as are the motion diagrams for each component. The x-component motion diagram is what you would get if you shined a spotlight down on the particle as it moved and recorded the motion of its shadow. Similarly, if you shined a spotlight to the left and recorded the particle’s shadow, you would get the motion diagram for its y component. How would you describe the two motion diagrams for the components? ANSWER: v m/s degrees vx v vx = -6.00 m/s vy v vy = 10.4 m/s Correct As you can see, the two components of the motion obey their own independent kinematic laws. For the vertical component, there is an acceleration downward with magnitude . Thus, you can calculate the vertical position of the particle at any time using the standard kinematic equation . Similarly, there is no acceleration in the horizontal direction, so the horizontal position of the particle is given by the standard kinematic equation . Now, consider this applet. Two balls are simultaneously dropped from a height of 5.0 . Part D How long does it take for the balls to reach the ground? Use 10 for the magnitude of the acceleration due to gravity. Express your answer in seconds to two significant figures. Hint 1. How to approach the problem The balls are released from rest at a height of 5.0 at time . Using these numbers and basic kinematics, you can determine the amount of time it takes for the balls to reach the ground. ANSWER: Correct This situation, which you have dealt with before (motion under the constant acceleration of gravity), is actually a special case of projectile motion. Think of this as projectile motion where the horizontal component of the initial velocity is zero. Both the vertical and horizontal components exhibit motion with constant nonzero acceleration. The vertical component exhibits motion with constant nonzero acceleration, whereas the horizontal component exhibits constant-velocity motion. The vertical component exhibits constant-velocity motion, whereas the horizontal component exhibits motion with constant nonzero acceleration. Both the vertical and horizontal components exhibit motion with constant velocity. g = 10 m/s2 y = y0 + v0 t + (1/2)at2 x = x0 + v0 t m tg m/s2 m t = 0 s tg = 1.0 s Part E Imagine the ball on the left is given a nonzero initial speed in the horizontal direction, while the ball on the right continues to fall with zero initial velocity. What horizontal speed must the ball on the left start with so that it hits the ground at the same position as the ball on the right? Remember that the two balls are released, starting a horizontal distance of 3.0 apart. Express your answer in meters per second to two significant figures. Hint 1. How to approach the problem Recall from Part B that the horizontal component of velocity does not change during projectile motion. Therefore, you need to find the horizontal component of velocity such that, in a time , the ball will move horizontally 3.0 . You can assume that its initial x coordinate is . ANSWER: Correct You can adjust the horizontal speeds in this applet. Notice that regardless of what horizontal speeds you give to the balls, they continue to move vertically in the same way (i.e., they are at the same y coordinate at the same time). Problem 4.12 A ball thrown horizontally at 27 travels a horizontal distance of 49 before hitting the ground. Part A From what height was the ball thrown? Express your answer using two significant figures with the appropriate units. ANSWER: vx m vx tg = 1.0 s m x0 = 0.0 m vx = 3.0 m/s m/s m h = 16 m Correct Enhanced EOC: Problem 4.20 The figure shows the angular-velocity-versus-time graph for a particle moving in a circle. You may want to review ( page ) . For help with math skills, you may want to review: The Definite Integral Part A How many revolutions does the object make during the first 3.5 ? Express your answer using two significant figures. You did not open hints for this part. ANSWER: s n = Incorrect; Try Again Problem 4.26 To withstand “g-forces” of up to 10 g’s, caused by suddenly pulling out of a steep dive, fighter jet pilots train on a “human centrifuge.” 10 g’s is an acceleration of . Part A If the length of the centrifuge arm is 10.0 , at what speed is the rider moving when she experiences 10 g’s? Express your answer with the appropriate units. ANSWER: Correct Problem 4.28 Your roommate is working on his bicycle and has the bike upside down. He spins the 60.0 -diameter wheel, and you notice that a pebble stuck in the tread goes by three times every second. Part A What is the pebble’s speed? Express your answer with the appropriate units. ANSWER: Correct 98 m/s2 m 31.3 ms cm 5.65 ms Part B What is the pebble’s acceleration? Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.43 On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a 6 iron. The acceleration due to gravity on the moon is 1/6 of its value on earth. Suppose he hits the ball with a speed of 13 at an angle 50 above the horizontal. You may want to review ( pages 90 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A How much farther did the ball travel on the moon than it would have on earth? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the path of the golf ball, showing its starting and ending points. Choose a coordinate system, and label the origin. It is conventional to let x be the horizontal direction and y the vertical direction. What is the initial velocity in the x and y directions? What is the acceleration in the x and y directions on the moon and on the earth? What are the equations for and as a function of time, and , respectively? What is the y coordinate when the golf ball hits the ground? Can you use this information to determine the time of flight on the moon and on the earth? 107 m s2 m/s  x y x(t) y(t) Once you have the time of flight, how can you use the equation to determine the total distance traveled? Compare the distance traveled on the moon to the distance traveled on the earth . ANSWER: Correct Part B For how much more time was the ball in flight? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the equation describing as a function of time? What is the initial x component of the ball’s velocity? How are the initial x component of the ball’s velocity and the distance traveled related to the time of flight? What is the difference between the time of flight on the moon and on earth? ANSWER: Correct Problem 4.42 In the Olympic shotput event, an athlete throws the shot with an initial speed of 12 at a 40.0 angle from the horizontal. The shot leaves her hand at a height of 1.8 above the ground. x(t) L = 85 m x(t) x t = 10 s m/s  m Part A How far does the shot travel? Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part B Repeat the calculation of part (a) for angles of 42.5 , 45.0 , and 47.5 . Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part C Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part D x = 16.36 m    x(42.5 ) = 16.39 m x(45.0 ) = 16.31 m Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part E At what angle of release does she throw the farthest? ANSWER: Correct Problem 4.44 A ball is thrown toward a cliff of height with a speed of 32 and an angle of 60 above horizontal. It lands on the edge of the cliff 3.2 later. Part A How high is the cliff? Express your answer to two significant figures and include the appropriate units. ANSWER: x(47.5 ) = 16.13 m 40.0 42.5 45.0 47.5 h m/s  s h = 39 m Answer Requested Part B What was the maximum height of the ball? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the ball’s impact speed? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 4.58 A typical laboratory centrifuge rotates at 3600 . Test tubes have to be placed into a centrifuge very carefully because of the very large accelerations. Part A What is the acceleration at the end of a test tube that is 10 from the axis of rotation? Express your answer with the appropriate units. hmax = 39 m v = 16 ms rpm cm ANSWER: Correct Part B For comparison, what is the magnitude of the acceleration a test tube would experience if dropped from a height of 1.0 and stopped in a 1.7-ms-long encounter with a hard floor? Express your answer with the appropriate units. ANSWER: Correct Problem 4.62 Communications satellites are placed in a circular orbit where they stay directly over a fixed point on the equator as the earth rotates. These are called geosynchronous orbits. The radius of the earth is , and the altitude of a geosynchronous orbit is ( 22000 miles). Part A What is the speed of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct a = 1.42×104 m s2 m a = 2610 m s2 6.37 × 106m 3.58 × 107m  v = 3070 ms Part B What is the magnitude of the acceleration of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 89.5%. You received 103.82 out of a possible total of 116 points. a = 0.223 m s2

please email info@checkyourstudy.com
Name: Date: Quiz IV Vignette 1. Johnny has just come in from recess and he is thirsty. He asks to go to the water fountain, but his teacher tells him that first he has to complete his math worksheet, and then he can have a drink of water. 1. Given that Johnny is thirsty, do you think he will be motivated to complete his math worksheet? 2. Write the correct notation of the 4 term contingency used in this example. Define which piece from the example matches each part of the contingency. 3. What is the MO – and what kind of MO is this? 4. If reinforcement is used in this example – is it positive or negative? Vignette 2. You feel a headache coming on – you see the bottle of advil in your desk drawer. You take the advil. The headache goes away. 5. Write and define the 4 term contingency. 6. What is the MO – and what kind of MO is this? 7. If reinforcement is used in this example – is it positive or negative? —- 8. Define positive reinforcement and give an example. 9. Define negative reinforcement and give an example. Vignette 3. Every time Johnny is given a math worksheet to complete, he kicks, hits, and spits on the teacher. This typically results in Johnny being sent to the principal’s office. 10. How would you label and define this target behavior? 11. What is the probable function of this behavior? 12. What adaptive alternative would you consider teaching Johnny to replace this target behavior? Vignette 4. When Bobby is denied access (told he cannot have) to a preferred toy, he throws himself on the ground, begins screaming and hitting the floor with his fists. This behavioral episode can go on anywhere from 5 to 20 minutes. 13. How would you label and define this target behavior? 14. What is the probable function of this behavior? 15. What type of data collection would you use for this target behavior? — Vignette 5. Johnny knows that when his grandmother watches him, she will try to soothe him with delicious treats if he begins tantrumming. However, he has learned that his mother does NOT give him tasty treats if he engages in problem behavior. Using the 3 term contingency – describe this situation when Grandma is present. (Hint: Does his grandmother function as an SD or an S∆ for tantrumming behavior?) Using the 3 term contingency – describe this situation when his mother is present. (Hint: does his mother function as an SD or an S∆ for tantrum behavior?)

Name: Date: Quiz IV Vignette 1. Johnny has just come in from recess and he is thirsty. He asks to go to the water fountain, but his teacher tells him that first he has to complete his math worksheet, and then he can have a drink of water. 1. Given that Johnny is thirsty, do you think he will be motivated to complete his math worksheet? 2. Write the correct notation of the 4 term contingency used in this example. Define which piece from the example matches each part of the contingency. 3. What is the MO – and what kind of MO is this? 4. If reinforcement is used in this example – is it positive or negative? Vignette 2. You feel a headache coming on – you see the bottle of advil in your desk drawer. You take the advil. The headache goes away. 5. Write and define the 4 term contingency. 6. What is the MO – and what kind of MO is this? 7. If reinforcement is used in this example – is it positive or negative? —- 8. Define positive reinforcement and give an example. 9. Define negative reinforcement and give an example. Vignette 3. Every time Johnny is given a math worksheet to complete, he kicks, hits, and spits on the teacher. This typically results in Johnny being sent to the principal’s office. 10. How would you label and define this target behavior? 11. What is the probable function of this behavior? 12. What adaptive alternative would you consider teaching Johnny to replace this target behavior? Vignette 4. When Bobby is denied access (told he cannot have) to a preferred toy, he throws himself on the ground, begins screaming and hitting the floor with his fists. This behavioral episode can go on anywhere from 5 to 20 minutes. 13. How would you label and define this target behavior? 14. What is the probable function of this behavior? 15. What type of data collection would you use for this target behavior? — Vignette 5. Johnny knows that when his grandmother watches him, she will try to soothe him with delicious treats if he begins tantrumming. However, he has learned that his mother does NOT give him tasty treats if he engages in problem behavior. Using the 3 term contingency – describe this situation when Grandma is present. (Hint: Does his grandmother function as an SD or an S∆ for tantrumming behavior?) Using the 3 term contingency – describe this situation when his mother is present. (Hint: does his mother function as an SD or an S∆ for tantrum behavior?)

Name:                                                                                                  Date: Quiz IV   Vignette 1.   Johnny … Read More...
Please read the following case scenario and describe how you would handle it using one of the following ethical theories: Utilitarianism, Deontological, Contractarian, Virtue or Feminist. Case: You are taking a math class at the University of Hartford. It is a very difficult class. You must take and pass the class in order to graduate. You have worked very hard to just barely scrape by with a low C going into the final. You are talking to one of your classmates before the last class and she tells you that her roommate has a copy of the test that will be given. Her roommate works nights as part of the cleaning crew and “found a copy in her files”. You could really use the advance copy to help study. What do you do? Use the first paragraph to describe what you would do and why. In the second paragraph describe how you came to that solution using one of the Ethical Theories that are listed.

Please read the following case scenario and describe how you would handle it using one of the following ethical theories: Utilitarianism, Deontological, Contractarian, Virtue or Feminist. Case: You are taking a math class at the University of Hartford. It is a very difficult class. You must take and pass the class in order to graduate. You have worked very hard to just barely scrape by with a low C going into the final. You are talking to one of your classmates before the last class and she tells you that her roommate has a copy of the test that will be given. Her roommate works nights as part of the cleaning crew and “found a copy in her files”. You could really use the advance copy to help study. What do you do? Use the first paragraph to describe what you would do and why. In the second paragraph describe how you came to that solution using one of the Ethical Theories that are listed.

Virtue Ethics (Aristotle): “Strive for happiness, to be as fully … Read More...
Chapter 11 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Understanding Work and Kinetic Energy Learning Goal: To learn about the Work-Energy Theorem and its basic applications. In this problem, you will learn about the relationship between the work done on an object and the kinetic energy of that object. The kinetic energy of an object of mass moving at a speed is defined as . It seems reasonable to say that the speed of an object–and, therefore, its kinetic energy–can be changed by performing work on the object. In this problem, we will explore the mathematical relationship between the work done on an object and the change in the kinetic energy of that object. First, let us consider a sled of mass being pulled by a constant, horizontal force of magnitude along a rough, horizontal surface. The sled is speeding up. Part A How many forces are acting on the sled? ANSWER: Part B This question will be shown after you complete previous question(s). Part C K m v K = (1/2)mv2 m F one two three four This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I Typesetting math: 91% This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Work-Energy Theorem Reviewed Learning Goal: Review the work-energy theorem and apply it to a simple problem. If you push a particle of mass in the direction in which it is already moving, you expect the particle’s speed to increase. If you push with a constant force , then the particle will accelerate with acceleration (from Newton’s 2nd law). Part A Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied for a fixed interval of time , then the _____ of the particle will increase by an amount . You did not open hints for this part. ANSWER: M F a = F/M t at Typesetting math: 91% Part B Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied over a given distance , along the path of the particle, then the _____ of the particle will increase by . ANSWER: Part C If the initial kinetic energy of the particle is , and its final kinetic energy is , express in terms of and the work done on the particle. ANSWER: Part D In general, the work done by a force is written as . Now, consider whether the following statements are true or false: The dot product assures that the integrand is always nonnegative. The dot product indicates that only the component of the force perpendicular to the path contributes to the integral. The dot product indicates that only the component of the force parallel to the path contributes to the integral. Enter t for true or f for false for each statement. Separate your responses with commas (e.g., t,f,t). ANSWER: D FD Ki Kf Kf Ki W Kf = F W =  ( ) d f i F r r Typesetting math: 91% Part E Assume that the particle has initial speed . Find its final kinetic energy in terms of , , , and . You did not open hints for this part. ANSWER: Part F What is the final speed of the particle? Express your answer in terms of and . ANSWER: ± The Work Done in Pulling a Supertanker Two tugboats pull a disabled supertanker. Each tug exerts a constant force of 2.20×106 , one at an angle 10.0 west of north, and the other at an angle 10.0 east of north, as they pull the tanker a distance 0.660 toward the north. Part A What is the total work done by the two tugboats on the supertanker? Express your answer in joules, to three significant figures. vi Kf vi M F D Kf = Kf M vf = N km Typesetting math: 91% You did not open hints for this part. ANSWER: Energy Required to Lift a Heavy Box As you are trying to move a heavy box of mass , you realize that it is too heavy for you to lift by yourself. There is no one around to help, so you attach an ideal pulley to the box and a massless rope to the ceiling, which you wrap around the pulley. You pull up on the rope to lift the box. Use for the magnitude of the acceleration due to gravity and neglect friction forces. Part A Once you have pulled hard enough to start the box moving upward, what is the magnitude of the upward force you must apply to the rope to start raising the box with constant velocity? Express the magnitude of the force in terms of , the mass of the box. J m g F m Typesetting math: 91% You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Pulling a Block on an Incline with Friction A block of weight sits on an inclined plane as shown. A force of magnitude is applied to pull the block up the incline at constant speed. The coefficient of kinetic friction between the plane and the block is . Part A F = mg F μ Typesetting math: 91% What is the total work done on the block by the force of friction as the block moves a distance up the incline? Express the work done by friction in terms of any or all of the variables , , , , , and . You did not open hints for this part. ANSWER: Part B What is the total work done on the block by the applied force as the block moves a distance up the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Now the applied force is changed so that instead of pulling the block up the incline, the force pulls the block down the incline at a constant speed. Wfric L μ m g  L F Wfric = WF F L μ m g  L F WF = Typesetting math: 91% Part C What is the total work done on the block by the force of friction as the block moves a distance down the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Part D What is the total work done on the box by the appled force in this case? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: When Push Comes to Shove Two forces, of magnitudes = 75.0 and = 25.0 , act in opposite directions on a block, which sits atop a frictionless surface, as shown in the figure. Initially, the center of the block is at position = -1.00 . At some later time, the block has moved to the right, and its center is at a new position, = 1.00 . Wfric L μ m g  L F Wfric = WF μ m g  L F WF = F1 N F2 N xi cm xf cm Typesetting math: 91% Part A Find the work done on the block by the force of magnitude = 75.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Part B Find the work done by the force of magnitude = 25.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: W1 F1 N xi cm xf cm W1 = J W2 F2 N xi cm xf cm Typesetting math: 91% Part C What is the net work done on the block by the two forces? Express your answer numerically, in joules. ANSWER: Part D Determine the change in the kinetic energy of the block as it moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Work from a Constant Force Learning Goal: W2 = J Wnet Wnet = J Kf − Ki xi cm xf cm Kf − Ki = J Typesetting math: 91% To understand how to compute the work done by a constant force acting on a particle that moves in a straight line. In this problem, you will calculate the work done by a constant force. A force is considered constant if is independent of . This is the most frequently encountered situation in elementary Newtonian mechanics. Part A Consider a particle moving in a straight line from initial point B to final point A, acted upon by a constant force . The force (think of it as a field, having a magnitude and direction at every position ) is indicated by a series of identical vectors pointing to the left, parallel to the horizontal axis. The vectors are all identical only because the force is constant along the path. The magnitude of the force is , and the displacement vector from point B to point A is (of magnitude , making and angle (radians) with the positive x axis). Find , the work that the force performs on the particle as it moves from point B to point A. Express the work in terms of , , and . Remember to use radians, not degrees, for any angles that appear in your answer. You did not open hints for this part. ANSWER: Part B Now consider the same force acting on a particle that travels from point A to point B. The displacement vector now points in the opposite direction as it did in Part A. Find the work done by in this case. Express your answer in terms of , , and . F( r) r F r F L L  WBA F L F  WBA = F L WAB F Typesetting math: 91% L F  You did not open hints for this part. ANSWER: ± Vector Dot Product Let vectors , , and . Calculate the following: Part A You did not open hints for this part. ANSWER: WAB = A = (2, 1,−4) B = (−3, 0, 1) C = (−1,−1, 2) Typesetting math: 91% Part B What is the angle between and ? Express your answer using one significant figure. You did not open hints for this part. ANSWER: Part C ANSWER: Part D ANSWER: A B = AB A B AB = radians 2B 3C = Typesetting math: 91% Part E Which of the following can be computed? You did not open hints for this part. ANSWER: and are different vectors with lengths and respectively. Find the following: Part F Express your answer in terms of You did not open hints for this part. ANSWER: 2(B 3C) = A B C A (B C) A (B + C) 3 A V 1 V 2 V1 V2 V1 Typesetting math: 91% Part G If and are perpendicular, You did not open hints for this part. ANSWER: Part H If and are parallel, Express your answer in terms of and . You did not open hints for this part. ANSWER: ± Tactics Box 11.1 Calculating the Work Done by a Constant Force V = 1 V 1 V 1 V 2 V = 1 V 2 V 1 V 2 V1 V2 V = 1 V 2 Typesetting math: 91% Learning Goal: To practice Tactics Box 11.1 Calculating the Work Done by a Constant Force. Recall that the work done by a constant force at an angle to the displacement is . The vector magnitudes and are always positive, so the sign of is determined entirely by the angle between the force and the displacement. W F  d W = Fd cos  F d W  Typesetting math: 91% TACTICS BOX 11.1 Calculating the work done by a constant force Force and displacement Work Sign of Energy transfer Energy is transferred into the system. The particle speeds up. increases. No energy is transferred. Speed and are constant. Energy is transferred out of the system. The particle slows down. decreases. A box has weight of magnitude = 2.00 accelerates down a rough plane that is inclined at an angle = 30.0 above the horizontal, as shown at left. The normal force acting on the box has a magnitude = 1.732 , the coefficient of kinetic friction between the box and the plane is = 0.300, and the displacement of the box is 1.80 down the inclined plane.  W W 0 F(“r) + K < 90 F("r) cos  + 90 0 0 K > 90 F(“r) cos  − K 180 −F(“r) − FG N  n N μk d m Typesetting math: 91% Part A What is the work done on the box by gravity? Express your answers in joules to two significant figures. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Wgrav Wgrav = J Typesetting math: 91% Work and Potential Energy on a Sliding Block with Friction A block of weight sits on a plane inclined at an angle as shown. The coefficient of kinetic friction between the plane and the block is . A force is applied to push the block up the incline at constant speed. Part A What is the work done on the block by the force of friction as the block moves a distance up the incline? Express your answer in terms of some or all of the following: , , , . You did not open hints for this part. ANSWER: w  μ F Wf L μ w  L Wf = Typesetting math: 91% Part B What is the work done by the applied force of magnitude ? Express your answer in terms of some or all of the following: , , , . ANSWER: Part C What is the change in the potential energy of the block, , after it has been pushed a distance up the incline? Express your answer in terms of some or all of the following: , , , . ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). W F μ w  L W = “U L μ w  L “U = Typesetting math: 91% Part F This question will be shown after you complete previous question(s). Where’s the Energy? Learning Goal: To understand how to apply the law of conservation of energy to situations with and without nonconservative forces acting. The law of conservation of energy states the following: In an isolated system the total energy remains constant. If the objects within the system interact through gravitational and elastic forces only, then the total mechanical energy is conserved. The mechanical energy of a system is defined as the sum of kinetic energy and potential energy . For such systems where no forces other than the gravitational and elastic forces do work, the law of conservation of energy can be written as , where the quantities with subscript “i” refer to the “initial” moment and those with subscript “f” refer to the final moment. A wise choice of initial and final moments, which is not always obvious, may significantly simplify the solution. The kinetic energy of an object that has mass \texttip{m}{m} and velocity \texttip{v}{v} is given by \large{K=\frac{1}{2}mv^2}. Potential energy, instead, has many forms. The two forms that you will be dealing with most often in this chapter are the gravitational and elastic potential energy. Gravitational potential energy is the energy possessed by elevated objects. For small heights, it can be found as U_{\rm g}=mgh, where \texttip{m}{m} is the mass of the object, \texttip{g}{g} is the acceleration due to gravity, and \texttip{h}{h} is the elevation of the object above the zero level. The zero level is the elevation at which the gravitational potential energy is assumed to be (you guessed it) zero. The choice of the zero level is dictated by convenience; typically (but not necessarily), it is selected to coincide with the lowest position of the object during the motion explored in the problem. Elastic potential energy is associated with stretched or compressed elastic objects such as springs. For a spring with a force constant \texttip{k}{k}, stretched or compressed a distance \texttip{x}{x}, the associated elastic potential energy is \large{U_{\rm e}=\frac{1}{2}kx^2}. When all three types of energy change, the law of conservation of energy for an object of mass \texttip{m}{m} can be written as K U Ki + Ui = Kf + Uf Typesetting math: 91% \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}. The gravitational force and the elastic force are two examples of conservative forces. What if nonconservative forces, such as friction, also act within the system? In that case, the total mechanical energy would change. The law of conservation of energy is then written as \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2+W_{\rm nc}=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}, where \texttip{W_{\rm nc}}{W_nc} represents the work done by the nonconservative forces acting on the object between the initial and the final moments. The work \texttip{W_{\rm nc}}{W_nc} is usually negative; that is, the nonconservative forces tend to decrease, or dissipate, the mechanical energy of the system. In this problem, we will consider the following situation as depicted in the diagram : A block of mass \texttip{m}{m} slides at a speed \texttip{v}{v} along a horizontal, smooth table. It next slides down a smooth ramp, descending a height \texttip{h}{h}, and then slides along a horizontal rough floor, stopping eventually. Assume that the block slides slowly enough so that it does not lose contact with the supporting surfaces (table, ramp, or floor). You will analyze the motion of the block at different moments using the law of conservation of energy. Part A Which word in the statement of this problem allows you to assume that the table is frictionless? ANSWER: Part B straight smooth horizontal Typesetting math: 91% This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H Typesetting math: 91% This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Sliding In Socks Suppose that the coefficient of kinetic friction between Zak’s feet and the floor, while wearing socks, is 0.250. Knowing this, Zak decides to get a running start and then slide across the floor. Part A If Zak’s speed is 3.00 \rm m/s when he starts to slide, what distance \texttip{d}{d} will he slide before stopping? Express your answer in meters. ANSWER: Typesetting math: 91% Part B This question will be shown after you complete previous question(s). Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. \rm m Typesetting math: 91%

Chapter 11 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Understanding Work and Kinetic Energy Learning Goal: To learn about the Work-Energy Theorem and its basic applications. In this problem, you will learn about the relationship between the work done on an object and the kinetic energy of that object. The kinetic energy of an object of mass moving at a speed is defined as . It seems reasonable to say that the speed of an object–and, therefore, its kinetic energy–can be changed by performing work on the object. In this problem, we will explore the mathematical relationship between the work done on an object and the change in the kinetic energy of that object. First, let us consider a sled of mass being pulled by a constant, horizontal force of magnitude along a rough, horizontal surface. The sled is speeding up. Part A How many forces are acting on the sled? ANSWER: Part B This question will be shown after you complete previous question(s). Part C K m v K = (1/2)mv2 m F one two three four This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I Typesetting math: 91% This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Work-Energy Theorem Reviewed Learning Goal: Review the work-energy theorem and apply it to a simple problem. If you push a particle of mass in the direction in which it is already moving, you expect the particle’s speed to increase. If you push with a constant force , then the particle will accelerate with acceleration (from Newton’s 2nd law). Part A Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied for a fixed interval of time , then the _____ of the particle will increase by an amount . You did not open hints for this part. ANSWER: M F a = F/M t at Typesetting math: 91% Part B Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied over a given distance , along the path of the particle, then the _____ of the particle will increase by . ANSWER: Part C If the initial kinetic energy of the particle is , and its final kinetic energy is , express in terms of and the work done on the particle. ANSWER: Part D In general, the work done by a force is written as . Now, consider whether the following statements are true or false: The dot product assures that the integrand is always nonnegative. The dot product indicates that only the component of the force perpendicular to the path contributes to the integral. The dot product indicates that only the component of the force parallel to the path contributes to the integral. Enter t for true or f for false for each statement. Separate your responses with commas (e.g., t,f,t). ANSWER: D FD Ki Kf Kf Ki W Kf = F W =  ( ) d f i F r r Typesetting math: 91% Part E Assume that the particle has initial speed . Find its final kinetic energy in terms of , , , and . You did not open hints for this part. ANSWER: Part F What is the final speed of the particle? Express your answer in terms of and . ANSWER: ± The Work Done in Pulling a Supertanker Two tugboats pull a disabled supertanker. Each tug exerts a constant force of 2.20×106 , one at an angle 10.0 west of north, and the other at an angle 10.0 east of north, as they pull the tanker a distance 0.660 toward the north. Part A What is the total work done by the two tugboats on the supertanker? Express your answer in joules, to three significant figures. vi Kf vi M F D Kf = Kf M vf = N km Typesetting math: 91% You did not open hints for this part. ANSWER: Energy Required to Lift a Heavy Box As you are trying to move a heavy box of mass , you realize that it is too heavy for you to lift by yourself. There is no one around to help, so you attach an ideal pulley to the box and a massless rope to the ceiling, which you wrap around the pulley. You pull up on the rope to lift the box. Use for the magnitude of the acceleration due to gravity and neglect friction forces. Part A Once you have pulled hard enough to start the box moving upward, what is the magnitude of the upward force you must apply to the rope to start raising the box with constant velocity? Express the magnitude of the force in terms of , the mass of the box. J m g F m Typesetting math: 91% You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Pulling a Block on an Incline with Friction A block of weight sits on an inclined plane as shown. A force of magnitude is applied to pull the block up the incline at constant speed. The coefficient of kinetic friction between the plane and the block is . Part A F = mg F μ Typesetting math: 91% What is the total work done on the block by the force of friction as the block moves a distance up the incline? Express the work done by friction in terms of any or all of the variables , , , , , and . You did not open hints for this part. ANSWER: Part B What is the total work done on the block by the applied force as the block moves a distance up the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Now the applied force is changed so that instead of pulling the block up the incline, the force pulls the block down the incline at a constant speed. Wfric L μ m g  L F Wfric = WF F L μ m g  L F WF = Typesetting math: 91% Part C What is the total work done on the block by the force of friction as the block moves a distance down the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Part D What is the total work done on the box by the appled force in this case? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: When Push Comes to Shove Two forces, of magnitudes = 75.0 and = 25.0 , act in opposite directions on a block, which sits atop a frictionless surface, as shown in the figure. Initially, the center of the block is at position = -1.00 . At some later time, the block has moved to the right, and its center is at a new position, = 1.00 . Wfric L μ m g  L F Wfric = WF μ m g  L F WF = F1 N F2 N xi cm xf cm Typesetting math: 91% Part A Find the work done on the block by the force of magnitude = 75.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Part B Find the work done by the force of magnitude = 25.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: W1 F1 N xi cm xf cm W1 = J W2 F2 N xi cm xf cm Typesetting math: 91% Part C What is the net work done on the block by the two forces? Express your answer numerically, in joules. ANSWER: Part D Determine the change in the kinetic energy of the block as it moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Work from a Constant Force Learning Goal: W2 = J Wnet Wnet = J Kf − Ki xi cm xf cm Kf − Ki = J Typesetting math: 91% To understand how to compute the work done by a constant force acting on a particle that moves in a straight line. In this problem, you will calculate the work done by a constant force. A force is considered constant if is independent of . This is the most frequently encountered situation in elementary Newtonian mechanics. Part A Consider a particle moving in a straight line from initial point B to final point A, acted upon by a constant force . The force (think of it as a field, having a magnitude and direction at every position ) is indicated by a series of identical vectors pointing to the left, parallel to the horizontal axis. The vectors are all identical only because the force is constant along the path. The magnitude of the force is , and the displacement vector from point B to point A is (of magnitude , making and angle (radians) with the positive x axis). Find , the work that the force performs on the particle as it moves from point B to point A. Express the work in terms of , , and . Remember to use radians, not degrees, for any angles that appear in your answer. You did not open hints for this part. ANSWER: Part B Now consider the same force acting on a particle that travels from point A to point B. The displacement vector now points in the opposite direction as it did in Part A. Find the work done by in this case. Express your answer in terms of , , and . F( r) r F r F L L  WBA F L F  WBA = F L WAB F Typesetting math: 91% L F  You did not open hints for this part. ANSWER: ± Vector Dot Product Let vectors , , and . Calculate the following: Part A You did not open hints for this part. ANSWER: WAB = A = (2, 1,−4) B = (−3, 0, 1) C = (−1,−1, 2) Typesetting math: 91% Part B What is the angle between and ? Express your answer using one significant figure. You did not open hints for this part. ANSWER: Part C ANSWER: Part D ANSWER: A B = AB A B AB = radians 2B 3C = Typesetting math: 91% Part E Which of the following can be computed? You did not open hints for this part. ANSWER: and are different vectors with lengths and respectively. Find the following: Part F Express your answer in terms of You did not open hints for this part. ANSWER: 2(B 3C) = A B C A (B C) A (B + C) 3 A V 1 V 2 V1 V2 V1 Typesetting math: 91% Part G If and are perpendicular, You did not open hints for this part. ANSWER: Part H If and are parallel, Express your answer in terms of and . You did not open hints for this part. ANSWER: ± Tactics Box 11.1 Calculating the Work Done by a Constant Force V = 1 V 1 V 1 V 2 V = 1 V 2 V 1 V 2 V1 V2 V = 1 V 2 Typesetting math: 91% Learning Goal: To practice Tactics Box 11.1 Calculating the Work Done by a Constant Force. Recall that the work done by a constant force at an angle to the displacement is . The vector magnitudes and are always positive, so the sign of is determined entirely by the angle between the force and the displacement. W F  d W = Fd cos  F d W  Typesetting math: 91% TACTICS BOX 11.1 Calculating the work done by a constant force Force and displacement Work Sign of Energy transfer Energy is transferred into the system. The particle speeds up. increases. No energy is transferred. Speed and are constant. Energy is transferred out of the system. The particle slows down. decreases. A box has weight of magnitude = 2.00 accelerates down a rough plane that is inclined at an angle = 30.0 above the horizontal, as shown at left. The normal force acting on the box has a magnitude = 1.732 , the coefficient of kinetic friction between the box and the plane is = 0.300, and the displacement of the box is 1.80 down the inclined plane.  W W 0 F(“r) + K < 90 F("r) cos  + 90 0 0 K > 90 F(“r) cos  − K 180 −F(“r) − FG N  n N μk d m Typesetting math: 91% Part A What is the work done on the box by gravity? Express your answers in joules to two significant figures. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Wgrav Wgrav = J Typesetting math: 91% Work and Potential Energy on a Sliding Block with Friction A block of weight sits on a plane inclined at an angle as shown. The coefficient of kinetic friction between the plane and the block is . A force is applied to push the block up the incline at constant speed. Part A What is the work done on the block by the force of friction as the block moves a distance up the incline? Express your answer in terms of some or all of the following: , , , . You did not open hints for this part. ANSWER: w  μ F Wf L μ w  L Wf = Typesetting math: 91% Part B What is the work done by the applied force of magnitude ? Express your answer in terms of some or all of the following: , , , . ANSWER: Part C What is the change in the potential energy of the block, , after it has been pushed a distance up the incline? Express your answer in terms of some or all of the following: , , , . ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). W F μ w  L W = “U L μ w  L “U = Typesetting math: 91% Part F This question will be shown after you complete previous question(s). Where’s the Energy? Learning Goal: To understand how to apply the law of conservation of energy to situations with and without nonconservative forces acting. The law of conservation of energy states the following: In an isolated system the total energy remains constant. If the objects within the system interact through gravitational and elastic forces only, then the total mechanical energy is conserved. The mechanical energy of a system is defined as the sum of kinetic energy and potential energy . For such systems where no forces other than the gravitational and elastic forces do work, the law of conservation of energy can be written as , where the quantities with subscript “i” refer to the “initial” moment and those with subscript “f” refer to the final moment. A wise choice of initial and final moments, which is not always obvious, may significantly simplify the solution. The kinetic energy of an object that has mass \texttip{m}{m} and velocity \texttip{v}{v} is given by \large{K=\frac{1}{2}mv^2}. Potential energy, instead, has many forms. The two forms that you will be dealing with most often in this chapter are the gravitational and elastic potential energy. Gravitational potential energy is the energy possessed by elevated objects. For small heights, it can be found as U_{\rm g}=mgh, where \texttip{m}{m} is the mass of the object, \texttip{g}{g} is the acceleration due to gravity, and \texttip{h}{h} is the elevation of the object above the zero level. The zero level is the elevation at which the gravitational potential energy is assumed to be (you guessed it) zero. The choice of the zero level is dictated by convenience; typically (but not necessarily), it is selected to coincide with the lowest position of the object during the motion explored in the problem. Elastic potential energy is associated with stretched or compressed elastic objects such as springs. For a spring with a force constant \texttip{k}{k}, stretched or compressed a distance \texttip{x}{x}, the associated elastic potential energy is \large{U_{\rm e}=\frac{1}{2}kx^2}. When all three types of energy change, the law of conservation of energy for an object of mass \texttip{m}{m} can be written as K U Ki + Ui = Kf + Uf Typesetting math: 91% \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}. The gravitational force and the elastic force are two examples of conservative forces. What if nonconservative forces, such as friction, also act within the system? In that case, the total mechanical energy would change. The law of conservation of energy is then written as \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2+W_{\rm nc}=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}, where \texttip{W_{\rm nc}}{W_nc} represents the work done by the nonconservative forces acting on the object between the initial and the final moments. The work \texttip{W_{\rm nc}}{W_nc} is usually negative; that is, the nonconservative forces tend to decrease, or dissipate, the mechanical energy of the system. In this problem, we will consider the following situation as depicted in the diagram : A block of mass \texttip{m}{m} slides at a speed \texttip{v}{v} along a horizontal, smooth table. It next slides down a smooth ramp, descending a height \texttip{h}{h}, and then slides along a horizontal rough floor, stopping eventually. Assume that the block slides slowly enough so that it does not lose contact with the supporting surfaces (table, ramp, or floor). You will analyze the motion of the block at different moments using the law of conservation of energy. Part A Which word in the statement of this problem allows you to assume that the table is frictionless? ANSWER: Part B straight smooth horizontal Typesetting math: 91% This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H Typesetting math: 91% This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Sliding In Socks Suppose that the coefficient of kinetic friction between Zak’s feet and the floor, while wearing socks, is 0.250. Knowing this, Zak decides to get a running start and then slide across the floor. Part A If Zak’s speed is 3.00 \rm m/s when he starts to slide, what distance \texttip{d}{d} will he slide before stopping? Express your answer in meters. ANSWER: Typesetting math: 91% Part B This question will be shown after you complete previous question(s). Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. \rm m Typesetting math: 91%

please email info@checkyourstudy.com
MSE201 Take-home, due 9/10 (1 point each) 1. Materials are characterized by: a. Macroscopic properties b. Microstructure c. Atomic level composition d. All of the above 2. Atoms are: a. Discrete units of matter b. An abstract concept c. Found in fractional units d. Lattice points 3. A typical atomic radii is roughly: a. 1 centimeter b. 1 nanometer c. 1 picometer d. 1 angstrom 4. Cubic crystal lattices have: a. Equal edge lengths b. 90° angles between edges c. Both a. & b. d. Atoms at each corner 5. Body centered cubic metals have: a. Close packed directions b. Close packed planes c. Both a. & b. d. Neither a. or b. 6. Face centered cubic metals have: a. Close packed directions b. Close packed planes c. Both a. & b. d. Neither a. or b. 7. A crystal lattice is an: a. Idealized representation of sites in a real crystal b. Exact crystal representation c. Both a. & b. d. Neither a. or b. 8. Defects in a real crystal are: a. At lattice sites b. Within interstices c. Improve properties d. Decrease properties (1 point each element) 9. Au and W have a density of 19.3 g/cc. Au 197 g/mol with a FCC structure, while W is BCC an a mass of 183.9 g/mol. a. What is a, the lattice parameter for each metal? b. Using a hard sphere approximation, what is the ratio of the gold and tungsten diameters? 10. The close packed plane of the HCP structure is the top surface, or basal plane, of the unit cell. a. Using a typical atomic radii, what is the areal atomic density of this plane? b. Is the face of the FCC structure close packed? c. Repeat 10.a. on an FCC face. d. Where is the close packed plane in the FCC structure? 11. Consider BCC, FCC and HCP structures. a. For each structure, what is the coordination number of each atom? b. Using Appendix 1 in your text, what is the general structural preference of the alkali and alkali earth metals? c. As we discussed, mixed bonding types (covalent, ionic, metallic) are possible. If pure metallic bonding favors a maximum coordination number, describe and justify plausible bonding type preferences of alkali and alkali earth metals. 12. Edge and screw dislocations are interrelated and have been discussed. a. Draw the 2-dimensional picture of an edge dislocation in diamond. b. Draw the path that allows you to determine the length of the Burger’s vector. c. How long is this vector? (diamond lattice parameter = 3.57 angstroms) MSE201 Take-home Crystal structures chemed.chem.purdue.edu commons.wikimedia.org commons.wikimedia.org

MSE201 Take-home, due 9/10 (1 point each) 1. Materials are characterized by: a. Macroscopic properties b. Microstructure c. Atomic level composition d. All of the above 2. Atoms are: a. Discrete units of matter b. An abstract concept c. Found in fractional units d. Lattice points 3. A typical atomic radii is roughly: a. 1 centimeter b. 1 nanometer c. 1 picometer d. 1 angstrom 4. Cubic crystal lattices have: a. Equal edge lengths b. 90° angles between edges c. Both a. & b. d. Atoms at each corner 5. Body centered cubic metals have: a. Close packed directions b. Close packed planes c. Both a. & b. d. Neither a. or b. 6. Face centered cubic metals have: a. Close packed directions b. Close packed planes c. Both a. & b. d. Neither a. or b. 7. A crystal lattice is an: a. Idealized representation of sites in a real crystal b. Exact crystal representation c. Both a. & b. d. Neither a. or b. 8. Defects in a real crystal are: a. At lattice sites b. Within interstices c. Improve properties d. Decrease properties (1 point each element) 9. Au and W have a density of 19.3 g/cc. Au 197 g/mol with a FCC structure, while W is BCC an a mass of 183.9 g/mol. a. What is a, the lattice parameter for each metal? b. Using a hard sphere approximation, what is the ratio of the gold and tungsten diameters? 10. The close packed plane of the HCP structure is the top surface, or basal plane, of the unit cell. a. Using a typical atomic radii, what is the areal atomic density of this plane? b. Is the face of the FCC structure close packed? c. Repeat 10.a. on an FCC face. d. Where is the close packed plane in the FCC structure? 11. Consider BCC, FCC and HCP structures. a. For each structure, what is the coordination number of each atom? b. Using Appendix 1 in your text, what is the general structural preference of the alkali and alkali earth metals? c. As we discussed, mixed bonding types (covalent, ionic, metallic) are possible. If pure metallic bonding favors a maximum coordination number, describe and justify plausible bonding type preferences of alkali and alkali earth metals. 12. Edge and screw dislocations are interrelated and have been discussed. a. Draw the 2-dimensional picture of an edge dislocation in diamond. b. Draw the path that allows you to determine the length of the Burger’s vector. c. How long is this vector? (diamond lattice parameter = 3.57 angstroms) MSE201 Take-home Crystal structures chemed.chem.purdue.edu commons.wikimedia.org commons.wikimedia.org

info@checkyourstudy.com MSE201 Take-home, due 9/10 (1 point each) 1. Materials … Read More...