How did the different concentrations of sucrose impact osmotic rate? This assignment requires you to evaluate a hypothesis and communicate the results of your experiment on the rate of osmosis into sucrose solutions of varying concentrations. The questions below are meant to guide you to reporting the key findings of your experiment and help you think through how to explain the findings and draw conclusions from them in a scientific manner

How did the different concentrations of sucrose impact osmotic rate? This assignment requires you to evaluate a hypothesis and communicate the results of your experiment on the rate of osmosis into sucrose solutions of varying concentrations. The questions below are meant to guide you to reporting the key findings of your experiment and help you think through how to explain the findings and draw conclusions from them in a scientific manner

info@checkyourstudy.com Operations Team Whatsapp( +91 9911743277)
A possible explanation for a natural event, based on observations and past knowledge, is a Select one: hypothesis. phenomenon. control. variable. theory.

A possible explanation for a natural event, based on observations and past knowledge, is a Select one: hypothesis. phenomenon. control. variable. theory.

A possible explanation for a natural event, based on observations … Read More...
Homework 3 For Homework 3, answer each of the five questions below from this article Granena, G., & Long, M. (2013). Age of onset, length of residence, language aptitude, and ultimate attainment in three linguistic domains. Second Language Research, 29, 311-343. You will probably need no more than a paragraph for each question. These are very general questions about the main points of the article. As I am interested in how you understand the article, do not use quotes for your answers, but rather your own words. 1. What was the purpose of the study? 2. Who did they investigate? 3. What was the procedure? 4. What were the results? 5. What are the implications of the study for our understanding of language development in general and the Critical Period Hypothesis in particular?

Homework 3 For Homework 3, answer each of the five questions below from this article Granena, G., & Long, M. (2013). Age of onset, length of residence, language aptitude, and ultimate attainment in three linguistic domains. Second Language Research, 29, 311-343. You will probably need no more than a paragraph for each question. These are very general questions about the main points of the article. As I am interested in how you understand the article, do not use quotes for your answers, but rather your own words. 1. What was the purpose of the study? 2. Who did they investigate? 3. What was the procedure? 4. What were the results? 5. What are the implications of the study for our understanding of language development in general and the Critical Period Hypothesis in particular?

info@checkyourstudy.com Whatsapp +919911743277
Sample to sample: A researcher suspected that students who study with music playing in the background would not retain information as well as students who study under quiet conditions. To test her hypothesis, she randomly assigned 18 participants to either a music or quiet study condition and had them study the same information for the same amount of time. She then administered a 10 item test on the material to all participants. The test scores were interval/ratio data and normally distributed. Assume alpha=.05. Their scores were as follows: Music group: 6, 5, 6, 5, 6, 6, 7, 8, 5 Quiet group: 10, 9, 8, 7, 9, 6, 8, 6, 9 – – Describe what type of decision maker you are. Talk about a time you had to make a decision that affected others and what was the process in which you reached that decision. Be specific. Write your reaction to a club meeting that you have attended. Discuss how you felt about being at the meeting, how the meeting was run, what leadership characteristics did the officers exhibit, etc.? Was the meeting effective? Solving the water scarcity problem to achieve long-term water availability lake chad

Sample to sample: A researcher suspected that students who study with music playing in the background would not retain information as well as students who study under quiet conditions. To test her hypothesis, she randomly assigned 18 participants to either a music or quiet study condition and had them study the same information for the same amount of time. She then administered a 10 item test on the material to all participants. The test scores were interval/ratio data and normally distributed. Assume alpha=.05. Their scores were as follows: Music group: 6, 5, 6, 5, 6, 6, 7, 8, 5 Quiet group: 10, 9, 8, 7, 9, 6, 8, 6, 9 – – Describe what type of decision maker you are. Talk about a time you had to make a decision that affected others and what was the process in which you reached that decision. Be specific. Write your reaction to a club meeting that you have attended. Discuss how you felt about being at the meeting, how the meeting was run, what leadership characteristics did the officers exhibit, etc.? Was the meeting effective? Solving the water scarcity problem to achieve long-term water availability lake chad

checkyourstudy.com Whatsapp +919891515290
BI 102 Lab 1 Writing Assignment How did the different concentrations of sucrose impact osmotic rate? This assignment requires you to evaluate a hypothesis and communicate the results of your experiment on the rate of osmosis into sucrose solutions of varying concentrations. The questions below are meant to guide you to reporting the key findings of your experiment and help you think through how to explain the findings and draw conclusions from them in a scientific manner. ASSIGNMENT: Please respond to the following questions to complete your laboratory write up. For this assignment you will only focus on the osmosis of water into sucrose concentrations of varying concentration. Make sure that your write up is accurate, and clearly written so that it is easily readable. A grading rubric is provided on the second page of this assignment. To earn full points on your write up, you must provide answers that align to the “meets” column of your grading rubric as well as meeting all “Quality of Writing and Mechanics” elements described in the rubric. There are also some tips on pages 3-4 of this assignment to help you succeed. FORMAT: • Type your responses, using 1.5 or double spacing. • Include the section headings (Hypothesis, Results, Analysis) and question number (example: 1, 2, 3, etc) in your answers but do not rewrite the question. • Graphs may be made with a computer program (example: Microsoft excel, Mac numbers, etc) or may be neatly produced with a ruler on graphing paper. • Print out the cover sheet on page 2 of this assignment, read and sign the academic honesty statement, and submit it with your write up. Your instructor WILL NOT accept a write up without the signed cover sheet. DUE DATE: Your write up is due at the beginning of class next week. Late assignments will have 1 point deducted per day up to 5 days, at which point the assignment will be assigned 0 points. Hypothesis and Prediction – Part 1 of Rubric 1. What did you think was going to happen in this experiment and why? You may find it helpful to state your answers to these questions as an “if-then” hypothesis-prediction. Be sure you have included a biological rationale that explains WHY you made this hypothesis/prediction. (You worked on this in question 2 on page 10 of this lab activity) Results – Part 2 of Rubric 2. How did the different concentrations of sucrose impact osmotic rate? Answer this question by creating a line graph that shows the results of your experiment. If you need assistance building a graph, there is a Guide to Graphing resource available on your Moodle lab course site. Analysis- Part 3 of Rubric 3. Explain why you think that the results shown in your graph support or refute your hypothesis (remember we never “prove” anything in science). Consider all your data and the overall data pattern as you answer this question. Don’t ignore unusual data that may not seem to fit into a specific patterns (“outliers”). Explain what you think might be behind these unusual data points. 4. What is the biological significance of your results? What biological concepts explain completely why these events happened in the experiment? How do these results help you understand the biology of the cell and how materials move back and forth across the cell membrane? (A hint: refer back to questions 1A-1F on page 10 of this lab activity). Think about giving a specific example. References- Mechanics Checklist 5. Provide at least one full citation (make sure you include an in-text citation that pinpoints where you used this resource) for a resource you made use of in performing the experiment, understanding the concepts and writing this assignment. (Perhaps your lab manual? Your textbook? A website?) If you used more than one resource, you need to cite each one! If you need help with citations, a Guide to Citing References is available on your Moodle lab course site. Please print out and submit this cover sheet with your lab writeup! Lab Writeup Assignment (1) Assessment Rubric-­‐ 10 points total Name: ________________________________________ Element Misses (1 point) Approaches (2 points) Meets (3 points) Hypothesis Clarity/Specificity Testability Rationale ___Hypothesis is unclear and hardto- understand ___Hypothesis is not testable ___No biological rationale for hypothesis or rationale is fully inaccurate ___Hypothesis included is clearly stated, but not specific or lacks specific details __Hypothesis is testable, but not in a feasible way in this lab ___Some foundation for hypothesis, but based in part on biological inaccuracy ___Hypothesis included is clearly stated and very specific ___Hypothesis is testable and could be tested within lab parameters ___Rationale for hypothesis is grounded in accurate biological information Graph Title Axes Variables Key Graph clarity Data accuracy ___Graph lacks a title ___Axes are not labeled ___Variables not addressed in graph ___No key or way to tell data points apart ___Graph is hard to read and comparisons cannot be made: Inappropriate graph type or use of scale ___Data graphed is inaccurate or does not relate to experiment ___Graph has a title that is not very descriptive ___Axes are either unlabeled, or units are unclear or wrong ___Variables addressed in graph, but not on correct axes ___Key included, but is hard to understand ___Graph is somewhat readable, comparisons can be made with difficulty: Appropriate graph type, but not scaled well ___Data graphed is partially accurate; some data is missing ___Graph has a concise, descriptive title ___Axes are labeled, including clarification of units used ___Variables on correct axes ___A clear, easy-to-use key to data points is included ___Graph is clearly readable and comparisons between treatments are easy to make: Graph type and scale are appropriate to data ___Data graphed is accurate and includes all relevant data, including controls (if needed) Analysis Hypothesis Scientific language Data addressed Explanation ___Hypothesis is not addressed ___Hypothesis is described using language like proven, true, or right ___No explanations for data patterns observed in graph or data does not support conclusions. ___No biological explanation for data trends or explanations are completely inaccurate ___Hypothesis is mentioned, but not linked well to data ___Hypothesis is not consistently described as supported or refuted ___Some data considered in conclusions but other data is ignored. Any unusual “outliers” are ignored ___Explanations include minimal or some inaccurate biological concepts ___Hypothesis is evaluated based upon data ___Hypothesis is consistently described as supported or refuted ___All data collected is considered and addressed by conclusions, including presence of outliers, ___Explanations include relevant and accurate biological concepts Quality of Writing and Mechanics: Worth 1 point. Writeup should meet all of the following criteria! Yes No ☐ ☐ Write up includes your name, the date, and your lab section ☐ ☐ Write up is free from spelling and grammatical errors (make sure you proofread!!) ☐ ☐ Write up is clear and easy-to-understand ☐ ☐ Write up includes full citation for at least one reference with corresponding in-text citation ☐ ☐ All portions of write up are clearly labeled, and question numbers are included Plagiarism refers to the use of original work, ideas, or text that are not your own. This includes cut-and-paste from websites, copying directly from texts, and copying the work of others, including fellow students. Telling someone your answers to the questions (including telling someone how to make their graph, question #2), or asking for the answers to any question, is cheating. (Asking someone how to make the graph for this assignment is NOT the same as asking for help learning excel or some other software). All forms of cheating, including plagiarism and copying of work will result in an immediate zero for the exam, quiz, or assignment. In the case of copying, all parties involved in the unethical behavior will earn zeros. Cheating students will be referred to the Student Conduct Committee for further action. You also have the right to appeal to the Student Conduct Committee. I have read and understand the plagiarism statement. ____________________________________________________ Signature Guidelines for Good Quality Scientific Reports Hypothesis and Prediction: The hypothesis is a tentative explanation for the phenomenon. Remember that: • A good hypothesis and prediction is testable (and should be testable under the conditions of our lab environment; For example, if your hypothesis requires shooting a rocket into space, then its not really testable under our laboratory conditions). • Your explanation can be ruled out through testing, or falsified. • A good hypothesis and prediction is detailed and specific in what it is testing. • A good hypothesis provides a rationale or explanation for why you think your prediction is reasonable and this rationale is based on what we know about biology. • A good prediction is specific and can be tested with a specific experiment. Examples*: I think that diet soda will float and regular soda will sink. {This hypothesis misses the goal. It is not specific as we don’t know where the sodas are floating and sinking, and it does not provide any explanation to explain why the hypothesis makes sense} Because diet soda does not contain sugar and regular soda does, the diet soda will float in a bucket of water, while regular soda will sink. {This hypothesis approaches the goal. It is more specific about the conditions, and it provides a partial explanation about why the hypothesis makes sense, but the connection between sugar and sinking is unclear} If diet soda does not contain sugar, then its density (mass/volume) is lower than that of regular soda which does contain sugar, and so diet soda will float in a bucket of water while regular soda sinks. {This hypothesis meets the goal. It is specific and the rationale- sugar affects density and density is what determines floating or sinking in water- is clearly articulated} *Note that these examples are for different experiments and investigations and NOT about your osmosis lab. They are provided only to help you think about what you need to include in your write up. Graph: The graph is a visual representation of the data you gathered while testing your hypothesis. Remember that: • A graph needs a concise title that clearly describes the data that it is showing. • Data must be put on the correct axes of the graph. In general, the data you collected (representing what you are trying to find out about) goes on the vertical (Y) axis. The supporting data that that describes how, when or under what conditions you collected your data goes on the horizontal (X) axis. (For this reason time nearly always goes on the X-axis). • Axes must be labeled, including the units in which data were recorded • Data points should be clearly marked and identified; a key is helpful if more than one group of data is included in the graph. • The scale of a graph is important. It should be consistent (there should be no change in the units or increments on a single axis) and appropriate to the data you collected Examples: {This graph misses the goal. There is no title, nor is there a key to help distinguish what the data points mean. The scale is too large- from 0 to 100 with an increment of 50, when the maximum number in the graph is 25- and makes it hard to interpret this graph. The x-axis is labeled, but without units (the months) and the y-axis has units, but the label is incomplete- number of what?} {This graph meets the goal. There is a descriptive title, and all of the axes are clearly labeled with units. There is a key so that we can distinguish what each set of data points represent. The dependent variable (number of individuals) is correctly placed on the y-axis with the independent variable of time placed on the x-axis. The scale of 0-30 is appropriate to the data, with each line on the x-axis representing an increment of 5.} 0 50 100 Number Month 0 5 10 15 20 25 30 March April May June July Number of individuals Month (2011) Population size of three different madtom catiCish in the Marais de Cygnes River in Spring/Summer 2011 Brindled madtom Neosho madtom Slender madtom Analysis: You need to evaluate your hypothesis based on the data patterns shown by your graph. Remember that: • You use data to determine support or refute your hypothesis. It is only possible to support a hypothesis, not to “prove” one (that would require testing every possible permutation and combination of factors). Your evaluation of your hypothesis should not be contradicted by the pattern shown by your data. • Refer back to the prediction you made as part of your hypothesis and use your data to justify your decision to support or refute your hypothesis. • In the “if” part of your hypothesis you should have provided a rationale, or explanation for the prediction you made in your hypothesis (“then” part of hypothesis”). Use this to help you explain why you think you observed the specific pattern of data revealed in your graph. • You should consider all of the data you collected in examining the support (or lack of support for your hypothesis). If there are unusual data points or “outliers” that don’t seem to fit the general pattern in your graph, explain what you think those mean. Examples: I was right. Diet Pepsi floated and so did Apricot Nectar. Regular Pepsi sank. Obviously the regular Pepsi was heavier. This helps us understand the concept of density, which is a really important one. {This analysis misses the goal. The hypothesis isn’t actually mentioned and the data is only briefly described. There is no explanation of the importance of the Apricot Nectar results. Finally, there is no connection to how these results help understand density or why it is biologically important} I hypothesized that diet soda would float, and all three cans of diet Pepsi did float while the regular Pepsi sank. This supports my hypothesis. Both types of Pepsi were 8.5 fluid ounces in volume, but the regular Pepsi also contained 16 grams of sugar. This means that the regular Pepsi had 16 more grams of mass provided by the sugar in the same amount of volume. This would lead to an increase in density, which explains why the regular soda cans sank. When we put in a can of Apricot Nectar, which had 19 grams of sugar, it floated. This was unexpected, but I think it is explained by the fact that an Apricot Nectar can had a volume of 7 fluid ounces, but the dimensions of the can are the same as that of a Pepsi can. A same-sized can with less liquid probably has an air space that helped it float. The results of this experiment help us understand how the air bladder of a fish, which creates an air space inside the fish, helps it float in the water and also how seaweeds and other living things with air spaces or other factors that decrease their density keep from sinking to the bottom of the water. {This analysis meets the goal. It clearly ties the hypothesis to the results and outlines what they mean. It describes how the results support the hypothesis, but also explains a possible reason behind the unusual results of the Apricot Nectar. Finally, there is a link to how this experiment helps us understand biology}

BI 102 Lab 1 Writing Assignment How did the different concentrations of sucrose impact osmotic rate? This assignment requires you to evaluate a hypothesis and communicate the results of your experiment on the rate of osmosis into sucrose solutions of varying concentrations. The questions below are meant to guide you to reporting the key findings of your experiment and help you think through how to explain the findings and draw conclusions from them in a scientific manner. ASSIGNMENT: Please respond to the following questions to complete your laboratory write up. For this assignment you will only focus on the osmosis of water into sucrose concentrations of varying concentration. Make sure that your write up is accurate, and clearly written so that it is easily readable. A grading rubric is provided on the second page of this assignment. To earn full points on your write up, you must provide answers that align to the “meets” column of your grading rubric as well as meeting all “Quality of Writing and Mechanics” elements described in the rubric. There are also some tips on pages 3-4 of this assignment to help you succeed. FORMAT: • Type your responses, using 1.5 or double spacing. • Include the section headings (Hypothesis, Results, Analysis) and question number (example: 1, 2, 3, etc) in your answers but do not rewrite the question. • Graphs may be made with a computer program (example: Microsoft excel, Mac numbers, etc) or may be neatly produced with a ruler on graphing paper. • Print out the cover sheet on page 2 of this assignment, read and sign the academic honesty statement, and submit it with your write up. Your instructor WILL NOT accept a write up without the signed cover sheet. DUE DATE: Your write up is due at the beginning of class next week. Late assignments will have 1 point deducted per day up to 5 days, at which point the assignment will be assigned 0 points. Hypothesis and Prediction – Part 1 of Rubric 1. What did you think was going to happen in this experiment and why? You may find it helpful to state your answers to these questions as an “if-then” hypothesis-prediction. Be sure you have included a biological rationale that explains WHY you made this hypothesis/prediction. (You worked on this in question 2 on page 10 of this lab activity) Results – Part 2 of Rubric 2. How did the different concentrations of sucrose impact osmotic rate? Answer this question by creating a line graph that shows the results of your experiment. If you need assistance building a graph, there is a Guide to Graphing resource available on your Moodle lab course site. Analysis- Part 3 of Rubric 3. Explain why you think that the results shown in your graph support or refute your hypothesis (remember we never “prove” anything in science). Consider all your data and the overall data pattern as you answer this question. Don’t ignore unusual data that may not seem to fit into a specific patterns (“outliers”). Explain what you think might be behind these unusual data points. 4. What is the biological significance of your results? What biological concepts explain completely why these events happened in the experiment? How do these results help you understand the biology of the cell and how materials move back and forth across the cell membrane? (A hint: refer back to questions 1A-1F on page 10 of this lab activity). Think about giving a specific example. References- Mechanics Checklist 5. Provide at least one full citation (make sure you include an in-text citation that pinpoints where you used this resource) for a resource you made use of in performing the experiment, understanding the concepts and writing this assignment. (Perhaps your lab manual? Your textbook? A website?) If you used more than one resource, you need to cite each one! If you need help with citations, a Guide to Citing References is available on your Moodle lab course site. Please print out and submit this cover sheet with your lab writeup! Lab Writeup Assignment (1) Assessment Rubric-­‐ 10 points total Name: ________________________________________ Element Misses (1 point) Approaches (2 points) Meets (3 points) Hypothesis Clarity/Specificity Testability Rationale ___Hypothesis is unclear and hardto- understand ___Hypothesis is not testable ___No biological rationale for hypothesis or rationale is fully inaccurate ___Hypothesis included is clearly stated, but not specific or lacks specific details __Hypothesis is testable, but not in a feasible way in this lab ___Some foundation for hypothesis, but based in part on biological inaccuracy ___Hypothesis included is clearly stated and very specific ___Hypothesis is testable and could be tested within lab parameters ___Rationale for hypothesis is grounded in accurate biological information Graph Title Axes Variables Key Graph clarity Data accuracy ___Graph lacks a title ___Axes are not labeled ___Variables not addressed in graph ___No key or way to tell data points apart ___Graph is hard to read and comparisons cannot be made: Inappropriate graph type or use of scale ___Data graphed is inaccurate or does not relate to experiment ___Graph has a title that is not very descriptive ___Axes are either unlabeled, or units are unclear or wrong ___Variables addressed in graph, but not on correct axes ___Key included, but is hard to understand ___Graph is somewhat readable, comparisons can be made with difficulty: Appropriate graph type, but not scaled well ___Data graphed is partially accurate; some data is missing ___Graph has a concise, descriptive title ___Axes are labeled, including clarification of units used ___Variables on correct axes ___A clear, easy-to-use key to data points is included ___Graph is clearly readable and comparisons between treatments are easy to make: Graph type and scale are appropriate to data ___Data graphed is accurate and includes all relevant data, including controls (if needed) Analysis Hypothesis Scientific language Data addressed Explanation ___Hypothesis is not addressed ___Hypothesis is described using language like proven, true, or right ___No explanations for data patterns observed in graph or data does not support conclusions. ___No biological explanation for data trends or explanations are completely inaccurate ___Hypothesis is mentioned, but not linked well to data ___Hypothesis is not consistently described as supported or refuted ___Some data considered in conclusions but other data is ignored. Any unusual “outliers” are ignored ___Explanations include minimal or some inaccurate biological concepts ___Hypothesis is evaluated based upon data ___Hypothesis is consistently described as supported or refuted ___All data collected is considered and addressed by conclusions, including presence of outliers, ___Explanations include relevant and accurate biological concepts Quality of Writing and Mechanics: Worth 1 point. Writeup should meet all of the following criteria! Yes No ☐ ☐ Write up includes your name, the date, and your lab section ☐ ☐ Write up is free from spelling and grammatical errors (make sure you proofread!!) ☐ ☐ Write up is clear and easy-to-understand ☐ ☐ Write up includes full citation for at least one reference with corresponding in-text citation ☐ ☐ All portions of write up are clearly labeled, and question numbers are included Plagiarism refers to the use of original work, ideas, or text that are not your own. This includes cut-and-paste from websites, copying directly from texts, and copying the work of others, including fellow students. Telling someone your answers to the questions (including telling someone how to make their graph, question #2), or asking for the answers to any question, is cheating. (Asking someone how to make the graph for this assignment is NOT the same as asking for help learning excel or some other software). All forms of cheating, including plagiarism and copying of work will result in an immediate zero for the exam, quiz, or assignment. In the case of copying, all parties involved in the unethical behavior will earn zeros. Cheating students will be referred to the Student Conduct Committee for further action. You also have the right to appeal to the Student Conduct Committee. I have read and understand the plagiarism statement. ____________________________________________________ Signature Guidelines for Good Quality Scientific Reports Hypothesis and Prediction: The hypothesis is a tentative explanation for the phenomenon. Remember that: • A good hypothesis and prediction is testable (and should be testable under the conditions of our lab environment; For example, if your hypothesis requires shooting a rocket into space, then its not really testable under our laboratory conditions). • Your explanation can be ruled out through testing, or falsified. • A good hypothesis and prediction is detailed and specific in what it is testing. • A good hypothesis provides a rationale or explanation for why you think your prediction is reasonable and this rationale is based on what we know about biology. • A good prediction is specific and can be tested with a specific experiment. Examples*: I think that diet soda will float and regular soda will sink. {This hypothesis misses the goal. It is not specific as we don’t know where the sodas are floating and sinking, and it does not provide any explanation to explain why the hypothesis makes sense} Because diet soda does not contain sugar and regular soda does, the diet soda will float in a bucket of water, while regular soda will sink. {This hypothesis approaches the goal. It is more specific about the conditions, and it provides a partial explanation about why the hypothesis makes sense, but the connection between sugar and sinking is unclear} If diet soda does not contain sugar, then its density (mass/volume) is lower than that of regular soda which does contain sugar, and so diet soda will float in a bucket of water while regular soda sinks. {This hypothesis meets the goal. It is specific and the rationale- sugar affects density and density is what determines floating or sinking in water- is clearly articulated} *Note that these examples are for different experiments and investigations and NOT about your osmosis lab. They are provided only to help you think about what you need to include in your write up. Graph: The graph is a visual representation of the data you gathered while testing your hypothesis. Remember that: • A graph needs a concise title that clearly describes the data that it is showing. • Data must be put on the correct axes of the graph. In general, the data you collected (representing what you are trying to find out about) goes on the vertical (Y) axis. The supporting data that that describes how, when or under what conditions you collected your data goes on the horizontal (X) axis. (For this reason time nearly always goes on the X-axis). • Axes must be labeled, including the units in which data were recorded • Data points should be clearly marked and identified; a key is helpful if more than one group of data is included in the graph. • The scale of a graph is important. It should be consistent (there should be no change in the units or increments on a single axis) and appropriate to the data you collected Examples: {This graph misses the goal. There is no title, nor is there a key to help distinguish what the data points mean. The scale is too large- from 0 to 100 with an increment of 50, when the maximum number in the graph is 25- and makes it hard to interpret this graph. The x-axis is labeled, but without units (the months) and the y-axis has units, but the label is incomplete- number of what?} {This graph meets the goal. There is a descriptive title, and all of the axes are clearly labeled with units. There is a key so that we can distinguish what each set of data points represent. The dependent variable (number of individuals) is correctly placed on the y-axis with the independent variable of time placed on the x-axis. The scale of 0-30 is appropriate to the data, with each line on the x-axis representing an increment of 5.} 0 50 100 Number Month 0 5 10 15 20 25 30 March April May June July Number of individuals Month (2011) Population size of three different madtom catiCish in the Marais de Cygnes River in Spring/Summer 2011 Brindled madtom Neosho madtom Slender madtom Analysis: You need to evaluate your hypothesis based on the data patterns shown by your graph. Remember that: • You use data to determine support or refute your hypothesis. It is only possible to support a hypothesis, not to “prove” one (that would require testing every possible permutation and combination of factors). Your evaluation of your hypothesis should not be contradicted by the pattern shown by your data. • Refer back to the prediction you made as part of your hypothesis and use your data to justify your decision to support or refute your hypothesis. • In the “if” part of your hypothesis you should have provided a rationale, or explanation for the prediction you made in your hypothesis (“then” part of hypothesis”). Use this to help you explain why you think you observed the specific pattern of data revealed in your graph. • You should consider all of the data you collected in examining the support (or lack of support for your hypothesis). If there are unusual data points or “outliers” that don’t seem to fit the general pattern in your graph, explain what you think those mean. Examples: I was right. Diet Pepsi floated and so did Apricot Nectar. Regular Pepsi sank. Obviously the regular Pepsi was heavier. This helps us understand the concept of density, which is a really important one. {This analysis misses the goal. The hypothesis isn’t actually mentioned and the data is only briefly described. There is no explanation of the importance of the Apricot Nectar results. Finally, there is no connection to how these results help understand density or why it is biologically important} I hypothesized that diet soda would float, and all three cans of diet Pepsi did float while the regular Pepsi sank. This supports my hypothesis. Both types of Pepsi were 8.5 fluid ounces in volume, but the regular Pepsi also contained 16 grams of sugar. This means that the regular Pepsi had 16 more grams of mass provided by the sugar in the same amount of volume. This would lead to an increase in density, which explains why the regular soda cans sank. When we put in a can of Apricot Nectar, which had 19 grams of sugar, it floated. This was unexpected, but I think it is explained by the fact that an Apricot Nectar can had a volume of 7 fluid ounces, but the dimensions of the can are the same as that of a Pepsi can. A same-sized can with less liquid probably has an air space that helped it float. The results of this experiment help us understand how the air bladder of a fish, which creates an air space inside the fish, helps it float in the water and also how seaweeds and other living things with air spaces or other factors that decrease their density keep from sinking to the bottom of the water. {This analysis meets the goal. It clearly ties the hypothesis to the results and outlines what they mean. It describes how the results support the hypothesis, but also explains a possible reason behind the unusual results of the Apricot Nectar. Finally, there is a link to how this experiment helps us understand biology}

info@checkyourstudy.com Whatsapp +919911743277
“No Bats in the Belfry” by Dechaine and Johnson Page 1 by Jennifer M. Dechaine1,2 and James E. Johnson1 1Department of Biological Sciences 2Department of Science Education Central Washington University, Ellensburg, WA NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE Part I – The Basic Question Introduction Imagine going out for a brisk winter snowshoe and suddenly stumbling upon hundreds of bat carcasses littering the forest floor. Unfortunately, this unsettling sight has become all too common in the United States (Figure 1). White-nose syndrome (WNS), first discovered in 2006, has now spread to 20 states and has led to the deaths of over 5.5 million bats (as of January 2012). WNS is a disease caused by the fungus, Pseudogymnoascus destructans. Bats infected with WNS develop white fuzz on their noses (Figure 2, next page) and often exhibit unnatural behavior, such as flying outside during the winter when they should be hibernating. WNS affects at least six different bat species in the United States and quickly decimates bat populations (colony mortality is commonly greater than 90%). Scientists have predicted that if deaths continue at the current rate, several bat species will become locally extinct within 20 years. Bats provide natural pest control by eating harmful insects, such as crop pests and disease carrying insect species, and losing bat populations would have devastating consequences for the U.S. economy. Researchers have sprung into action to study how bats become infected with and transmit P. destructans, but a key component of this research is determining where the fungus came from in the first place. Some have suggested that it is an invasive species from a different country while others think it is a North American fungal species that has recently become better able to cause disease. In this case study, we examine the origin of P. destructans causing WNS in North America. Some Other Important Observations • WNS was first documented at four cave sites in New York State in 2006. • The fungus can be spread among bats by direct contact or spores can be transferred between caves by humans (on clothing) or other animals. • European strains of the fungus occur in low levels across Europe but have led to few bat deaths there. • Bats with WNS frequently awake during hibernation, causing them to use important fat reserves, leading to death. No Bats in the Belfry: The Origin of White- Nose Syndrome in Little Brown Bats Figure 1. Many bats dead in winter from white-nose syndrome. NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE “No Bats in the Belfry” by Dechaine and Johnson Page 2 Questions 1. What is the basic question of this study and why is it interesting? 2. What specific testable hypotheses can you develop to explain the observations and answer the basic question of this study? Write at least two alternative hypotheses. 3. What predictions about the effects of European strains of P. destructans on North American bats can you make if your hypotheses are correct? Write at least one prediction for each of your hypotheses. Figure 2. White fuzz on the muzzle of a little brown bat indicating infection by the disease. NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE “No Bats in the Belfry” by Dechaine and Johnson Page 3 Part II – The Hypothesis As discussed in Part I, researchers had preliminary data suggesting that the pathogen causing WNS is an invasive fungal species (P. destructans) brought to North America from Europe. They had also observed that P. destructans occurs on European bats but rarely causes their death. Preliminary research also suggested that one reason that bats have been dying from WNS is that the disorder arouses them from hibernation, causing the bats to waste fat reserves flying during the winter when food is not readily available. These observations led researchers to speculate that European P. destructans will affect North American bat hibernation at least as severely as does North American P. destructans (Warnecke et al. 2012). Questions 1. Explicitly state the researchers’ null (H0 ) and alternative hypotheses (HA) for this study. 2. Describe an experiment you could use to differentiate between these hypotheses (H0 and HA). NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE “No Bats in the Belfry” by Dechaine and Johnson Page 4 Part III – Experiments and Observations In 2010, Lisa Warnecke and colleagues (2012) isolated P. destructans fungal spores from Europe and North America. They collected 54 male little brown bats (Myotis lucifugus) from the wild and divided these bats equally into three treatment groups. • Group 1 was inoculated with the North American P. destructans spores (NAGd treatment). • Group 2 was inoculated with the European P. destructans spores (EUGd treatment). • Group 3 was inoculated using the inoculation serum with no spores (Control treatment). All three groups were put into separate dark chambers that simulated the environmental conditions of a cave. All bats began hibernating within the first week of the study. The researchers used infrared cameras to examine the bats’ hibernation over four consecutive intervals of 26 days each. They then used the cameras to determine the total number of times a bat was aroused from hibernation during each interval. Questions 1. Use the graph below to predict what the results will look like if the null hypothesis is supported. The total arousal counts in the control treatment at each interval is graphed for you (open bars). Justifiy your predictions. 2. Use the graph below to predict what the results will look like if the null hypothesis is rejected. The total arousal counts in the control treatment at each interval is graphed for you (open bars). Justify your predictions. Null Supported Total Arousal counts Interval Null Rejected Total Arousal counts Interval NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE “No Bats in the Belfry” by Dechaine and Johnson Page 5 2 Credits: Title block photo by David A. Riggs (http://www.flickr.com/photos/driggs/6933593833/sizes/l/), cropped, used in accordance with CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0/). Figure 1 photo by Kevin Wenner/Pennsylvania Game Commision (http://www. portal.state.pa.us/portal/server.pt/document/901415/white-nose_kills_hundreds_of_bats_in_lackawanna_county_pdf ). Figure 2 photo courtesy of Ryan von Linden/New York Department of Environmental Conservation, http://www.flickr.com/photos/usfwshq/5765048289/sizes/l/in/ set-72157626818845664/, used in accordance with CC BY 2.0 (http://creativecommons.org/licenses/by/2.0/deed.en). Case copyright held by the National Center for Case Study Teaching in Science, University at Buffalo, State University of New York. Originally published February 6, 2014. Please see our usage guidelines, which outline our policy concerning permissible reproduction of this work. Part IV – Results Figure 3 (below) shows the real data from the study. There is no data for interval 4 bats that were exposed to the European P. destructans (gray bar) because all of the bats in that group died. Questions 1. How do your predictions compare with the experimental results? Be specific. 2. Do the results support or reject the null hypothesis? 3. If the European P. destructans is causing WNS in North America, how come European bats aren’t dying from the same disease? References U.S. Fish and Wildlife Service. 2012. White-Nose Syndrome. Available at: http://whitenosesyndrome.org/. Last accessed December 20, 2013. Warnecke, L., et al. 2012. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. PNAS Online Early Edition: http://www.pnas.org/cgi/ doi/10.1073/pnas.1200374109. Last accessed December 20, 2013. Figure 3. Changes in hibernation patterns in M. lucifugus following inoculation with North American P. destructans (NAGd), European P. destructans (EUGd), or the control serum. Interval Total Arousal counts

“No Bats in the Belfry” by Dechaine and Johnson Page 1 by Jennifer M. Dechaine1,2 and James E. Johnson1 1Department of Biological Sciences 2Department of Science Education Central Washington University, Ellensburg, WA NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE Part I – The Basic Question Introduction Imagine going out for a brisk winter snowshoe and suddenly stumbling upon hundreds of bat carcasses littering the forest floor. Unfortunately, this unsettling sight has become all too common in the United States (Figure 1). White-nose syndrome (WNS), first discovered in 2006, has now spread to 20 states and has led to the deaths of over 5.5 million bats (as of January 2012). WNS is a disease caused by the fungus, Pseudogymnoascus destructans. Bats infected with WNS develop white fuzz on their noses (Figure 2, next page) and often exhibit unnatural behavior, such as flying outside during the winter when they should be hibernating. WNS affects at least six different bat species in the United States and quickly decimates bat populations (colony mortality is commonly greater than 90%). Scientists have predicted that if deaths continue at the current rate, several bat species will become locally extinct within 20 years. Bats provide natural pest control by eating harmful insects, such as crop pests and disease carrying insect species, and losing bat populations would have devastating consequences for the U.S. economy. Researchers have sprung into action to study how bats become infected with and transmit P. destructans, but a key component of this research is determining where the fungus came from in the first place. Some have suggested that it is an invasive species from a different country while others think it is a North American fungal species that has recently become better able to cause disease. In this case study, we examine the origin of P. destructans causing WNS in North America. Some Other Important Observations • WNS was first documented at four cave sites in New York State in 2006. • The fungus can be spread among bats by direct contact or spores can be transferred between caves by humans (on clothing) or other animals. • European strains of the fungus occur in low levels across Europe but have led to few bat deaths there. • Bats with WNS frequently awake during hibernation, causing them to use important fat reserves, leading to death. No Bats in the Belfry: The Origin of White- Nose Syndrome in Little Brown Bats Figure 1. Many bats dead in winter from white-nose syndrome. NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE “No Bats in the Belfry” by Dechaine and Johnson Page 2 Questions 1. What is the basic question of this study and why is it interesting? 2. What specific testable hypotheses can you develop to explain the observations and answer the basic question of this study? Write at least two alternative hypotheses. 3. What predictions about the effects of European strains of P. destructans on North American bats can you make if your hypotheses are correct? Write at least one prediction for each of your hypotheses. Figure 2. White fuzz on the muzzle of a little brown bat indicating infection by the disease. NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE “No Bats in the Belfry” by Dechaine and Johnson Page 3 Part II – The Hypothesis As discussed in Part I, researchers had preliminary data suggesting that the pathogen causing WNS is an invasive fungal species (P. destructans) brought to North America from Europe. They had also observed that P. destructans occurs on European bats but rarely causes their death. Preliminary research also suggested that one reason that bats have been dying from WNS is that the disorder arouses them from hibernation, causing the bats to waste fat reserves flying during the winter when food is not readily available. These observations led researchers to speculate that European P. destructans will affect North American bat hibernation at least as severely as does North American P. destructans (Warnecke et al. 2012). Questions 1. Explicitly state the researchers’ null (H0 ) and alternative hypotheses (HA) for this study. 2. Describe an experiment you could use to differentiate between these hypotheses (H0 and HA). NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE “No Bats in the Belfry” by Dechaine and Johnson Page 4 Part III – Experiments and Observations In 2010, Lisa Warnecke and colleagues (2012) isolated P. destructans fungal spores from Europe and North America. They collected 54 male little brown bats (Myotis lucifugus) from the wild and divided these bats equally into three treatment groups. • Group 1 was inoculated with the North American P. destructans spores (NAGd treatment). • Group 2 was inoculated with the European P. destructans spores (EUGd treatment). • Group 3 was inoculated using the inoculation serum with no spores (Control treatment). All three groups were put into separate dark chambers that simulated the environmental conditions of a cave. All bats began hibernating within the first week of the study. The researchers used infrared cameras to examine the bats’ hibernation over four consecutive intervals of 26 days each. They then used the cameras to determine the total number of times a bat was aroused from hibernation during each interval. Questions 1. Use the graph below to predict what the results will look like if the null hypothesis is supported. The total arousal counts in the control treatment at each interval is graphed for you (open bars). Justifiy your predictions. 2. Use the graph below to predict what the results will look like if the null hypothesis is rejected. The total arousal counts in the control treatment at each interval is graphed for you (open bars). Justify your predictions. Null Supported Total Arousal counts Interval Null Rejected Total Arousal counts Interval NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE “No Bats in the Belfry” by Dechaine and Johnson Page 5 2 Credits: Title block photo by David A. Riggs (http://www.flickr.com/photos/driggs/6933593833/sizes/l/), cropped, used in accordance with CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0/). Figure 1 photo by Kevin Wenner/Pennsylvania Game Commision (http://www. portal.state.pa.us/portal/server.pt/document/901415/white-nose_kills_hundreds_of_bats_in_lackawanna_county_pdf ). Figure 2 photo courtesy of Ryan von Linden/New York Department of Environmental Conservation, http://www.flickr.com/photos/usfwshq/5765048289/sizes/l/in/ set-72157626818845664/, used in accordance with CC BY 2.0 (http://creativecommons.org/licenses/by/2.0/deed.en). Case copyright held by the National Center for Case Study Teaching in Science, University at Buffalo, State University of New York. Originally published February 6, 2014. Please see our usage guidelines, which outline our policy concerning permissible reproduction of this work. Part IV – Results Figure 3 (below) shows the real data from the study. There is no data for interval 4 bats that were exposed to the European P. destructans (gray bar) because all of the bats in that group died. Questions 1. How do your predictions compare with the experimental results? Be specific. 2. Do the results support or reject the null hypothesis? 3. If the European P. destructans is causing WNS in North America, how come European bats aren’t dying from the same disease? References U.S. Fish and Wildlife Service. 2012. White-Nose Syndrome. Available at: http://whitenosesyndrome.org/. Last accessed December 20, 2013. Warnecke, L., et al. 2012. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. PNAS Online Early Edition: http://www.pnas.org/cgi/ doi/10.1073/pnas.1200374109. Last accessed December 20, 2013. Figure 3. Changes in hibernation patterns in M. lucifugus following inoculation with North American P. destructans (NAGd), European P. destructans (EUGd), or the control serum. Interval Total Arousal counts

checkyourstudy.com Whatsapp +919911743277
Reading Guide 3 CHEM 101 Check here if you want your paper returned Chapter 3 – Section 3.1-3.4 Introduction to Chemistry Dr. Bragg Printed Last Name: First Name: WKUID: 1. Express in your own words the meaning of these terms: a. Hypothesis b. Law c. Theory d. Conservation e. Proportion f. Radioactive g. Atomic Number h. Mass Number i. Isotope j. Spectrum k. Ground State l. Excited State m. Quantum n. Valence o. Shell p. Subshell q. Orbital 2. Briefly describe the main points of Dalton’s Atomic Theory. On Time: Complete: Questions: Total Score: 3. Who experimentally verified the Law of Conservation of Matter? 4. Who experimentally verified the Law of Definite Proportions? 5. What are the three most important subatomic particles, and what is the charge on each? 6. Who discovered natural radioactivity? 7. What are the three main radioactive ‘particles,’ and what is the charge on each? 8. Who was the student that set up the experiments and made the observations that lead to the discovery of the nucleus of the atom? 9. Considering atomic numbers and mass numbers, which is the same among a set of isotopes and which is different? 10. What is the difference between a continuous spectrum and a line spectrum? 11. Who proposed the Shell Model of the hydrogen atom based on small energy steps between adjacent levels for electrons? 12. Which end of the electromagnetic spectrum is higher in ENERGY, ı-rays or radio waves? 13. Who proposed the mathematical wave theory that explained the existence of orbitals? 14. Give the general subshell filling order for electrons in ground state atoms. Reading Guide 3 CHEM 101 Dr. Bragg Chapter 3 – Sections 3.1 – 3.4 Introduction to Chemistry Page 2

Reading Guide 3 CHEM 101 Check here if you want your paper returned Chapter 3 – Section 3.1-3.4 Introduction to Chemistry Dr. Bragg Printed Last Name: First Name: WKUID: 1. Express in your own words the meaning of these terms: a. Hypothesis b. Law c. Theory d. Conservation e. Proportion f. Radioactive g. Atomic Number h. Mass Number i. Isotope j. Spectrum k. Ground State l. Excited State m. Quantum n. Valence o. Shell p. Subshell q. Orbital 2. Briefly describe the main points of Dalton’s Atomic Theory. On Time: Complete: Questions: Total Score: 3. Who experimentally verified the Law of Conservation of Matter? 4. Who experimentally verified the Law of Definite Proportions? 5. What are the three most important subatomic particles, and what is the charge on each? 6. Who discovered natural radioactivity? 7. What are the three main radioactive ‘particles,’ and what is the charge on each? 8. Who was the student that set up the experiments and made the observations that lead to the discovery of the nucleus of the atom? 9. Considering atomic numbers and mass numbers, which is the same among a set of isotopes and which is different? 10. What is the difference between a continuous spectrum and a line spectrum? 11. Who proposed the Shell Model of the hydrogen atom based on small energy steps between adjacent levels for electrons? 12. Which end of the electromagnetic spectrum is higher in ENERGY, ı-rays or radio waves? 13. Who proposed the mathematical wave theory that explained the existence of orbitals? 14. Give the general subshell filling order for electrons in ground state atoms. Reading Guide 3 CHEM 101 Dr. Bragg Chapter 3 – Sections 3.1 – 3.4 Introduction to Chemistry Page 2

info@checkyourstudy.com Whatsapp +919911743277
Name: Lab Time: BIO 218 Experiment Paper Rubric (20 points) General Formatting: (2 pts.) • Margins should be 1 inch top, bottom, left, and right. • Font should be 12 point Times New Roman or similar font. • Double-spaced. • Pages numbered. Title page is unnumbered. Next page is numbered at the bottom right corner with a 2 followed by pages 3, 4, and 5. • All sections must be included: Abstract, Introduction, Methods, Results, Discussion, and Literature Cited. • At least 3 pages (double spaced) but no more than five pages long. • All scientific names should be formatted correctly by italicizing and capitalizing the genus name and having the species name in lowercase (Bufo americanus). • Title page should have a specific title, student name, course, lab section time, and date. Project elements (18 pts. Total) • Abstract (2 points) o Summarize most important points using past tense. Use present tense to suggest a general conclusion which supports or refutes the hypothesis. • Introduction (3 points) o General background on topic and species (state scientific name!) o Discuss the possible tests of the hypothesis. o Reads from general to specific. o States hypothesis/hypotheses to be addressed. May discuss null and all alternative hypotheses. • Methods (2 points) o Reports how experiment was conducted and all materials used. Use enough detail so others could repeat the study. o Discuss the type(s) of data collected. o Discuss how data was to be analyzed/compared/used to test hypothesis. • Results (3 points) o Reports what happened in the experiment. o If comparisons made, discuss how they were made. o Report statistical and other data. Use “significant” only for statistical significance. o NO interpretation of data (no data analysis). o At least one original figure present and formatted correctly. Figures such as pictures and graphs are numbered and have captions underneath. o At least one table present and formatted correctly. Tables such as charts are numbered and have captions above them. • Discussion: (3 points) o Discusses the results of the experiment and ties in how the results fit with the literature. o Use past tense to discuss your results and shift to present tense to discuss previously published information. o States how results supported or refuted the original hypothesis. Hypotheses are never proven! o Ties in results with big picture within topic of biology. • Literature Cited: (2 points: .5 per citation) o At least 2 peer-reviewed journal articles (provided) + 2 peer-reviewed journal articles (found on your own). o References used in text properly. o References all listed in this section are alphabetized by author’s last name and formatted correctly. o All references listed in the Literature Cited section are cited in text. Writing Elements (3 pts.) • Grammar or spelling is error-free and excellent print quality. (1 pt) • Writing is clear and flows logically throughout paper. (1 pt) • Appropriate content in each section? (1 pt) Additional Comments:

Name: Lab Time: BIO 218 Experiment Paper Rubric (20 points) General Formatting: (2 pts.) • Margins should be 1 inch top, bottom, left, and right. • Font should be 12 point Times New Roman or similar font. • Double-spaced. • Pages numbered. Title page is unnumbered. Next page is numbered at the bottom right corner with a 2 followed by pages 3, 4, and 5. • All sections must be included: Abstract, Introduction, Methods, Results, Discussion, and Literature Cited. • At least 3 pages (double spaced) but no more than five pages long. • All scientific names should be formatted correctly by italicizing and capitalizing the genus name and having the species name in lowercase (Bufo americanus). • Title page should have a specific title, student name, course, lab section time, and date. Project elements (18 pts. Total) • Abstract (2 points) o Summarize most important points using past tense. Use present tense to suggest a general conclusion which supports or refutes the hypothesis. • Introduction (3 points) o General background on topic and species (state scientific name!) o Discuss the possible tests of the hypothesis. o Reads from general to specific. o States hypothesis/hypotheses to be addressed. May discuss null and all alternative hypotheses. • Methods (2 points) o Reports how experiment was conducted and all materials used. Use enough detail so others could repeat the study. o Discuss the type(s) of data collected. o Discuss how data was to be analyzed/compared/used to test hypothesis. • Results (3 points) o Reports what happened in the experiment. o If comparisons made, discuss how they were made. o Report statistical and other data. Use “significant” only for statistical significance. o NO interpretation of data (no data analysis). o At least one original figure present and formatted correctly. Figures such as pictures and graphs are numbered and have captions underneath. o At least one table present and formatted correctly. Tables such as charts are numbered and have captions above them. • Discussion: (3 points) o Discusses the results of the experiment and ties in how the results fit with the literature. o Use past tense to discuss your results and shift to present tense to discuss previously published information. o States how results supported or refuted the original hypothesis. Hypotheses are never proven! o Ties in results with big picture within topic of biology. • Literature Cited: (2 points: .5 per citation) o At least 2 peer-reviewed journal articles (provided) + 2 peer-reviewed journal articles (found on your own). o References used in text properly. o References all listed in this section are alphabetized by author’s last name and formatted correctly. o All references listed in the Literature Cited section are cited in text. Writing Elements (3 pts.) • Grammar or spelling is error-free and excellent print quality. (1 pt) • Writing is clear and flows logically throughout paper. (1 pt) • Appropriate content in each section? (1 pt) Additional Comments:

info@checkyourstudy.com