## PHSX 220 Homework 13 Paper – Due Online April 28 – 5:00 pm SHM and Wave the Equation Problem 1: A hanging mass system with a mass of 85 kg, spring constant of k= 490 N/m is realeased from rest from a distance of 10 meters below the systems equilibrium position (similar values to the bottom of a bungee jump). Calculate the following quantities in regards to this system after being released at t=0: a) The angular frequency of the system (radians/sec) b) The frequency of oscillations for the system (Hz) c) The period of oscillations for the system (seconds) d) The time it takes to get back to the equilibrium position of the system for the rst time Problem 2: A horizontal spring-mass system (mass of 2:21×1025 kg) with no friction has an ocsillation frequency of 9,192,631,770 cycles per second. (a second is dened by 9,192,631,770 cycles of a Cs-133 atom)). Calculate the eective spring constant of the system Problem 3: A swinging person, such as Tarzan, can be modeled after a simple pendulum with a mass of 85 kg and a length of 10 m. Consider the mass being released from rest at t=0 at an angle of +15 degrees from the vertical. Calculate the following quantities in regards to this system. You need to be in radians mode for this problem a) The angular frequency of the system (radians/sec) b) The frequency of oscillations for the system in (Hz) c) The period of oscillations of the system (seconds) d) Sketch plots of the angular position, angular velocity and angular acceleration of the system as a function of time. Hint: These will always help you with these time to it takes to a certain point in it’s cycle questions. e) The time it takes for the mass to get half way through its rst cycle (or to the other side of the swing if you were interested in timing say a rescue eort or something along those lines) . f) The maximum angular velocity of the mass g) The maximum angular accleration of the mass h) The magnitude of the angular momentum of the mass at 3 seconds i) The magnitude of the torque acting on the mass at 3 seconds Problem 4: A wave has a wavenumber of 1 m-1, and an angular frequency of 2 radians per second, travels in the +x direction and has a maximum transverse amplitude of 0.1 m. At t=0, and x =0 the y position is equal to 0.0 m (y(0,0) = 0.0 m). a) Calculate the wavelength of the wave b) Calculate the period of oscillations for the wave c) Calculate the wave speed along the x axis d) Calculate the magnitude and direction of the transverse position of the wave at x=0.5 m and t = 8s e) Calculate the magnitude and direction of the transverse velocity of the wave at x=0.5 m and t = 8s f) Calculate the magnitude and direction of the transverse acceleration of the wave at x=0.5 m and t = 8s Problem 5-6: Chapter 16 Problem 10, 22 Additional Suggested Problems with Solutions Provided: Chapter 16 Problems 5, 9, 15, 45

Login to see content or contact +1 909 666-5988

## AERN 45350 Avionics Name: _______________________________ 1 | P a g e Homework Set One (40 Points) Due: 25 September 2015 General Instructions: Answer the following questions, submitting your answers on Blackboard. SHOW YOUR WORK on any math problems. Consider the following voltage signal: V t 12sin377t 1. What is the peak voltage of the signal [Volts]? 2. What is the angular frequency [rad/sec]? 3. What is the frequency of the signal [Hz]? 4. What is the period of the signal [sec/cycle]? In a heterodyne receiver, the intermediate frequency of the receiver is 21.4 MHz. 5. What is the local oscillator frequency (f1) if the tuned frequency (f2) is 120.9 MHz? 6. If the local oscillator frequency (f1) is 145.7 MHz, what is the tuned frequency (f2)? The gain of a power amplifier is 5. 7. If 30W are coming in, what is the power going out? 8. What is the gain in decibels (dB)? The attenuation of a voltage attenuator is 10. 9. If 120V are coming in, what is the voltage going out? 10. What is the loss in decibels (dB)? 11. What is the component of the ILS that provides the extended centerline of the runway? 12. What is the component of the ILS that provides vertical guidance to the runway? 13. If the aircraft is on the correct trajectory, the airplane will arrive at the outer marker on the ILS corresponding to intercepting what? 14. If the aircraft is on the correct trajectory, the airplane will arrive at the middle marker on the ILS corresponding to reaching what? 15. All marker beacons transmit at what frequency? 16. Why doesn’t this cause problems (all marker beacons transmitting on the same frequency)? 17. What are the four components to an ILS? 18. What is the most common ILS category? 19. Which ILS category requires aircraft with the “auto-land” feature? 20. An attenuator leads to a power ratio of 0.5. What is that in decibels (dB)?

info@checkyourstudy.com

## Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 Assignment 4 – Noise and Correlation 1. If a signal is measured as 2.5 V and the noise is 28 mV (28 × 10−3 V), what is the SNR in dB? 2. A single sinusoidal signal is found with some noise. If the RMS value of the noise is 0.5 V and the SNR is 10 dB, what is the RMS amplitude of the sinusoid? 3. The file signal_noise.mat contains a variable x that consists of a 1.0-V peak sinusoidal signal buried in noise. What is the SNR for this signal and noise? Assume that the noise RMS is much greater than the signal RMS. Note: “signal_noise.mat” and other files used in these assignments can be downloaded from the content area of Brightspace, within the “Data Files for Exercises” folder. These files can be opened in Matlab by copying into the active folder and double-clicking on the file or using the Matlab load command using the format: load(‘signal_noise.mat’). To discover the variables within the files use the Matlab who command. 4. An 8-bit ADC converter that has an input range of ±5 V is used to convert a signal that ranges between ±2 V. What is the SNR of the input if the input noise equals the quantization noise of the converter? Hint: Refer to Equation below to find the quantization noise: 5. The file filter1.mat contains the spectrum of a fourth-order lowpass filter as variable x in dB. The file also contains the corresponding frequencies of x in variable freq. Plot the spectrum of this filter both as dB versus log frequency and as linear amplitude versus linear frequency. The frequency axis should range between 10 and 400 Hz in both plots. Hint: Use Equation below to convert: Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 6. Generate one cycle of the square wave similar to the one shown below in a 500-point MATLAB array. Determine the RMS value of this waveform. [Hint: When you take the square of the data array, be sure to use a period before the up arrow so that MATLAB does the squaring point-by-point (i.e., x.^2).]. 7. A resistor produces 10 μV noise (i.e., 10 × 10−6 V noise) when the room temperature is 310 K and the bandwidth is 1 kHz (i.e., 1000 Hz). What current noise would be produced by this resistor? 8. A 3-ma current flows through both a diode (i.e., a semiconductor) and a 20,000-Ω (i.e., 20-kΩ) resistor. What is the net current noise, in? Assume a bandwidth of 1 kHz (i.e., 1 × 103 Hz). Which of the two components is responsible for producing the most noise? 9. Determine if the two signals, x and y, in file correl1.mat are correlated by checking the angle between them. 10. Modify the approach used in Practice Problem 3 to find the angle between short signals: Do not attempt to plot these vectors as it would require a 6-dimensional plot!

Whatsapp +919911743277

## In the network in the figure, find Z( jw) at a frequency of 60 Hz if R1 = 1W;R2 = 6W;C = 690μF, and L = 34mH. Enter complex numbers as either a+bi, i.e., 3+4i, or ae^(bi) where b is in radians, i.e., 5e^(0.927i). The radial frequency, w = rad=s The impedance of the capacitor is ZC = W The impedance of the inductor is ZL = W The input impedance is Z = W

Correct Answers: 377 -3.84433370200494i 12.81766i 9.4599167479303+0.165394427824697i

## ELEC153 Circuit Theory II M2A3 Lab: AC Series Circuits Introduction Previously you worked with two simple AC series circuits, R-C and R-L circuits. We continue that work in this experiment. Procedure 1. Setup the following circuit in MultiSim.The voltage source is 10 volts peak at 1000 Hz. Figure 1: Circuit for analysis using MultiSim 2. Change R1 to 1 k and C1 to 0.1 uF. Connect the oscilloscope to measure both the source voltage and the voltage across the resistor.You should have the following arrangement. Figure 2: Circuit of figure 1 connected to oscilloscope To color the wires, right click the desired wire and select “Color Segment…” and follow the instructions. Start the simulation and open the oscilloscope. You should get the following plot: Figure 3: Source voltage (red) and the voltage (blue) across the resistor The red signal is the voltage of the source and the blue is the voltage across the resistor. The colors correspond to the colors of the wires from the oscilloscope. 3. From the resulting analysis plotdetermine the peak current. To determine the peak current measure the peak voltage across the resistor and divide by the value of the resistor (1000 Ohms). Record it here. Measured Peak Current 4. Determine the peak current by calculation. Record it here. Does it match the measured peak current? Explain. Calculated Peak Current 5 Determine the phase shift between the current in the circuit and the source voltage. We look at the time between zero crossings to determine the phase shift between two waveforms. In our plot, the blue waveform (representing the circuit current or the voltage across the resistor) crosses zero before the red waveform (the circuit voltage). So, current is leading voltage in this circuit. This is exactly what should happen when we have a capacitive circuit. 6. To determine the phase shift, we first have to measure the time between zero crossings on the red and blue waveforms. This is done by moving the oscillator probes to the two zero crossing as is shown in the following figure Figure 4: Determining the phase shift between the two voltage waveforms We can see from the figure that the zero crossing difference (T2 – T1) is approximately 134 us. The ratio of the zero-crossing time difference to the period of the waveform determines the phase shift, as follows: Using our time values, we have: How do we know if this phase shift is correct? In step 4 when you did your manual calculations to find the peak current, you had to find the total impedance of the circuit, which was: Now, the current will be: Here, the positive angle on the current indicates it is leading the circuit voltage. 7. Change the frequency of the voltage source to 5000 Hz. Estimulate and perform a Transient Analysis to find the new circuit current and phase angle. Measure them and record them here: Measured Current Measured Phase Shift 8. Perform the manual calculations needed to find the circuit current and phase shift. Record the calculated values here. Do they match the measured values within reason? What has happened to the circuit with an increase in frequency? Calculated Current Calculated Phase Shift Writeup and Submission In general, for each lab you do, you will be asked to setup certain circuits, simulate them, record the results, verify the results are correct by hand, and then discuss the solution. Your lab write-up should contain a one page, single spaced discussion of the lab experiment, what went right for you, what you had difficulty with, what you learned from the experiment, how it applies to our coursework, and any other comment you can think of. In addition, you should include screen shots from the MultiSim software and any other figure, table, or diagram as necessary.

No expert has answered this question yet. You can browse … Read More...

## A block with mass m =7.1 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.23 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.4 m/s. The block oscillates on the spring without friction. 1) What is the spring constant of the spring? N/m You currently have 1 submissions for this question. Only 10 submission are allowed. You can make 9 more submissions for this question. 2) What is the oscillation frequency? Hz You currently have 2 submissions for this question. Only 10 submission are allowed. You can make 8 more submissions for this question. 3) After t = 0.37 s what is the speed of the block? m/s You currently have 1 submissions for this question. Only 10 submission are allowed. You can make 9 more submissions for this question. 4) What is the magnitude of the maximum acceleration of the block? m/s2 You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 5) At t = 0.37 s what is the magnitude of the net force on the block? N You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 6) Where is the potential energy of the system the greatest? At the highest point of the oscillation. At the new equilibrium position of the oscillation. At the lowest point of the oscillation. You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. (Survey Question) 7) Below is some space to write notes on this problem A 5.2-kg object on a frictionless horizontal surface is attached to one end of a horizontal spring that has a force constantk = 717 N/m. The spring is stretched 7.9 cm from equilibrium and released. 1) (a) What is the frequency of the motion? Hz You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 2) (b) What is the period of the motion? s You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 3) (c) What is the amplitude of the motion? cm You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 4) (d) What is the maximum speed of the motion? m/s You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 5) (e) What is the maximum acceleration of the motion? m/s2 You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 6) (f) When does the object first reach its equilibrium position? s You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 7) (h) What is its acceleration at this time? m/s2 You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 1) An 86 kg person steps into a car of mass 2437 kg, causing it to sink 2.35 cm on its springs. Assuming no damping, with what frequency will the car and passenger vibrate on the springs? Hz You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 1) A 0.117-kg block is suspended from a spring. When a small pebble of mass 30 g is placed on the block, the spring stretches an additional 5.1 cm. With the pebble on the block, the block oscillates with an amplitude of 12 cm. Find the maximum amplitude of oscillation at which the pebble will remain in contact with the block. Block and Spring SHM ________________________________________ At t = 0 a block with mass M = 5 kg moves with a velocity v = 2 m/s at position xo = -.33 m from the equilibrium position of the spring. The block is attached to a massless spring of spring constant k = 61.2 N/m and slides on a frictionless surface. At what time will the block next pass x = 0, the place where the spring is unstretched? t1 = seconds You currently have 1 submissions for this question. Only 10 submission are allowed. You can make 9 more submissions for this question. A simple pendulum with mass m = 1.9 kg and length L = 2.39 m hangs from the ceiling. It is pulled back to an small angle of θ = 9.9° from the vertical and released at t = 0. 1) What is the period of oscillation? s You currently have 2 submissions for this question. Only 10 submission are allowed. You can make 8 more submissions for this question. 2) What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? N You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 3) What is the maximum speed of the pendulum? m/s You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 4) What is the angular displacement at t = 3.5 s? (give the answer as a negative angle if the angle is to the left of the vertical) ° You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 5) What is the magnitude of the tangential acceleration as the pendulum passes through the equilibrium position? m/s2 You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 6) What is the magnitude of the radial acceleration as the pendulum passes through the equilibrium position? m/s2 You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 7) Which of the following would change the frequency of oscillation of this simple pendulum? increasing the mass decreasing the initial angular displacement increasing the length hanging the pendulum in an elevator accelerating downward You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. (Survey Question) 8) Below is some space to write notes on this problem 1) If the period of a 74-cm-long simple pendulum is 1.72 s, what is the value of g at the location of the pendulum? m/s2 You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. Torsion Pendulum • 1 • 2 • 3 • 4 • 5 A torsion pendulum is made from a disk of mass m = 6.6 kg and radius R = 0.66 m. A force of F = 44.8 N exerted on the edge of the disk rotates the disk 1/4 of a revolution from equilibrium. 1) What is the torsion constant of this pendulum? N-m/rad You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 2) What is the minimum torque needed to rotate the pendulum a full revolution from equilibrium? N-m You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 3) What is the angular frequency of oscillation of this torsion pendulum? rad/s You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 4) Which of the following would change the period of oscillation of this torsion pendulum? increasing the mass decreasing the initial angular displacement replacing the disk with a sphere of equal mass and radius hanging the pendulum in an elevator accelerating downward You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. (Survey Question) 5) Below is some space to write notes on this problem You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. Physical Pendulum ________________________________________ A rigid rod of length L= 1 m and mass M = 2.5 kg is attached to a pivot mounted d = 0.17 m from one end. The rod can rotate in the vertical plane, and is influenced by gravity. What is the period for small oscillations of the pendulum shown? T = seconds A circular hoop of radius 57 cm is hung on a narrow horizontal rod and allowed to swing in the plane of the hoop. What is the period of its oscillation, assuming that the amplitude is small? s 1) You are given a wooden rod 68 cm long and asked to drill a small diameter hole in it so that when pivoted about the the hole the period of the pendulum will be a minimum. How far from the center should you drill the hole? cm

No expert has answered this question yet. You can browse … Read More...

## ELEC153 Circuit Theory II M2A1 Textbook Assignment: Problem Set A: Chapter 15 Instructions Save this document and place your answers into it so you can submit it to the appropriate homework dropbox. Handwritten solutions should be scanned and saved as a BMP, GIF, or JPG image, or scanned and pasted into this document. Questions 1. Find the impedance of this AC series circuit as seen from the two open-ended terminals. Show your answer in rectangular and polar form. The AC signal frequency is 1 KHz. 2. Repeat your analysis of Question 1 for a frequency of 200 Hz. 3. Consider the following AC series circuit: a. Find the total impedance across the voltage source in polar form. b. Find the source current, in polar form. Note: the source voltage is 20 volts rms at 0 degrees. c. Find the voltage across each component, in polar form. d. Find the real power supplied to the circuit, in Watts. ELEC153 Circuit Theory II M2A2 Textbook Assignment: Problem Set B: Chapter 15 Instructions Save this document and place your answers into it so you can submit it to the appropriate homework dropbox. Handwritten solutions should be scanned and saved as a BMP, GIF, or JPG image, or scanned and pasted into this document. Questions 1. Find the impedance of this AC parallel circuit between the two open-ended terminals, in rectangular and polar forms: 2. Consider the following AC parallel circuit: a. Find the total impedance across the voltage source in polar form. b. Find the source current, in polar form. Note: the source voltage is 12 volts rms at 0 degrees. c. Find the current through each component, in polar form. d. Find the real power supplied to the circuit, in Watts.

No expert has answered this question yet. You can browse … Read More...

## A helicopter landing gear consists of a metal framework rather than the coil spring based suspension system used in a xed-wing aircraft. The vibration of the frame in the vertical direction can be modeled by a spring made of a slender steel bar, such as the one illustrated in Figure 1.23 of the textbook. Here l=0.3 m and m=125 kg. Calculate the cross-sectional area (in cm2) that should be used if the natural frequency is to be fn=800 Hz.

For any additional help, please contact: info@checkyourstudy.com Call and Whatsapp … Read More...

## Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F F = −kx x k m k x = 0 block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = -60 % s t = 0 s cm cm/s 0 = -2.09 rad Correct Part B What is the phase at ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part C What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: t = 0.5 s = 0 rad t = 1.0 s = 2.09 rad t = 1.5 s = 4.19 rad Correct Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct g cm s 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 0.628 s 5.00 Nm -0.785 rad Part E The initial coordinate of the mass. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part F The initial velocity. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part G The maximum speed. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 1.41 cm 14.1 cms 20.0 cms Part H The total energy. Express your answer to one decimal place and include the appropriate units. ANSWER: Correct Part I The velocity at . Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? 1.0 mJ t = 0.40 s 1.46 cms N/m cm s Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum m = 110 g vmax = 49 cms A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. m L T T L T = 2 Lg −− g T/2 T ‘2T 2T g/6 ANSWER: Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. T/6 T/’6 ‘6T 6T It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. g % s L = 19 cm m lmoon = 0.35 m m g 1.0 MHz Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 94.2%. You received 135.71 out of a possible total of 144 points. N amax = 6.6 μm vmax = 41 ms

please email info@checkyourstudy.com