1. Develop a thought experiment that attempts to uncover hidden assumptions about human freedom. 2. Find a paragraph from a book, magazine, ect. First, tell whether there are claims in the paragraph. If there are, identify the types of claims (descriptive, normative, a priori, a posteriori) in the paragraph

1. Develop a thought experiment that attempts to uncover hidden assumptions about human freedom. 2. Find a paragraph from a book, magazine, ect. First, tell whether there are claims in the paragraph. If there are, identify the types of claims (descriptive, normative, a priori, a posteriori) in the paragraph

Let us think of a thought experiment that wants to … Read More...
What is Hobbes’s view of human nature – pessimistic or optimistic? Why?

What is Hobbes’s view of human nature – pessimistic or optimistic? Why?

Hobbes’s states that men squabble because of rivalry, lack of … Read More...
Fact Debate Brief Introduction Crime doesn’t pay; it should be punished. Even since childhood, a slap on the hand has prevented possible criminals from ever committing the same offense; whether it was successful or not depended on how much that child wanted that cookie. While a slap on the wrist might or might not be an effective deterrent, the same can be said about the death penalty. Every day, somewhere in the world, a criminal is stopped permanently from committing any future costs, but this is by the means of the death. While effective in stopping one person permanently, it does nothing about the crime world as a whole. While it is necessary to end the career of a criminal, no matter what his or her crime is, we must not end it by taking a life. Through this paper, the death penalty will be proven ineffective at deterring crime by use of other environmental factors. Definition: The death penalty is defined as the universal punishment of death as legally applied by a fair court system. It is important for it to be a fair legal system, as not to confuse it with genocide, mob mentality, or any other ruling without trial. Claim 1: Use of the death penalty is in decline Ground 1: According to the book The Death Penalty: A Worldwide Perspective by Roger Hood and Carolyn Hoyle, published Dec. 8th, 2014, the Oxford professors in criminology say “As in most of the rest of the world, the death penalty in the US is in decline and distributed unevenly in frequency of use” even addressing that, as of April 2014, 18 states no longer have a death penalty, and even Oregon and Washington are considering removing their death penalty laws. Furthermore, in 2013, only 9 of these states still retaining the death penalty actually executed someone. Warrant 1: The death penalty can be reinstated at any time, but so far, it hasn’t been. At the same time, more states consider getting rid of it altogether. Therefore, it becomes clear that even states don’t want to be involved with this process showing that this is a disliked process. Claim 2: Even states with death penalty in effect still have high crime rates. Ground 2: With the reports gathered from fbi.gov, lawstreetmedia.com, a website based around political expertise and research determined the ranking of each state based on violent crime, published September 12th, 2014. Of the top ten most violent states, only three of which had the death penalty instituted (Maryland #9, New Mexico #4, Alaska #3). The other seven still had the system in place, and, despite it, still have a high amount of violent crime. On the opposite end of the spectrum, at the bottom ten most violent states, four of which, including the bottom-most states, do not have the death penalty in place. Warrant 2: With this ranking, it literally proves that the death penalty does not deter crime, or that there is a correlation between having the death penalty and having a decrease in the crime rate. Therefore, the idea of death penalty deterring crime is a null term in the sense that there is no, or a flawed connection. Claim 3: Violent crime is decreasing (but not because if the death penalty) Ground 3 A: According to an article published by The Economist, dated July 23rd, 2013, the rate of violent crime is in fact decreasing, but not because of the death penalty, but rather, because we have more police. From 1995 to 2010, policing has increased one-fifth, and with it, a decline in crime rate. In fact, in cities such as Detroit where policing has been cut, an opposite effect, an increase in crime, has been reported. Ground 3 B: An article from the Wall Street Journal, dated May 28th, 2011, also cites a decline in violent, only this time, citing the reason as a correlation with poverty levels. In 2009, at the start of the housing crisis, crime rates also dropped noticeably. Oddly enough, this article points out the belief that unemployment is often associated with crime; instead, the evidence presented is environmental in nature. Warrant 3: Crime rate isn’t deterred by death penalty, but rather, our surroundings. Seeing as how conditions have improved, so has the state of peace. Therefore, it becomes clear that the death penalty is ineffective at deterring crime because other key factors present more possibility for improvement of society. Claim 4: The death penalty is a historically flawed system. Ground 4A: According to the book The Death Penalty: Constitutional Issues, Commentaries, and Case Briefs by Scott Vollum, published in 2005, addresses how the case of the death penalty emerged to where it is today. While the book is now a decade old, it is used for historical context, particularly, in describing the first execution that took place in 1608. While it is true that most of these executions weren’t as well-grounded as the modern ones that take place now, they still had no effect in deterring crime. Why? Because even after America was established and more sane, the death penalty still had to be used because criminals still had violent behaviors. Ground 4B: According to data from Mother Jones, published May 17th, 2013, the reason why the crime rate was so high in the past could possibly be due to yet another environmental factor (affected by change over time), exposure to lead. Since the removal of lead from paint started over a hundred years ago, there has been a decline in homicide. Why is this important? Lead poisoning in child’s brain, if not lethal, can affect development and lead to mental disability, lower IQ, and lack of reasoning. Warrant 4: By examining history as a whole, there is a greater correlation between other factors that have resulted in a decline in violent crime. The decline in the crime rate has been an ongoing process, but has shown a faster decline due to other environmental factors, rather than the instatement of the death penalty. Claim 5: The world’s violent crime rate is changing, but not due to the death penalty. Ground 5A: According to article published by Amnesty USA in March of 2014, the number of executions under the death penalty reported in 2013 had increased by 15%. However, the rate of violent crime in the world has decreased significantly in the last decade. But, Latvia, for example, has permanently banned the death penalty since 2012. In 2014, the country was viewed overall as safe and low in violent crime rate. Ground 5B: However, while it is true that there is a decline in violent crime rate worldwide, The World Bank, April 17, 2013, reports that the rate of global poverty is decreasing. In a similar vein to the US, because wealth is being distributed better and conditions are improving overall, there is a steady decline in crime rate. Warrant 5: By examining the world as a whole, it becomes clear that it doesn’t matter if the death penalty is in place, violent crime will still exist. However, mirroring the US, as simple conditions improve, so does lifestyle. The death penalty does not deter crime in the world, rather a better quality of life is responsible for that. Works Cited “Death Sentences and Executions 2013.” Amnesty International USA. Amnesty USA, 26 Mar. 2014. Web. 15 Mar. 2015. <http://www.amnestyusa.org/research/reports/death-sentences-and-executions-2013>. D. K. “Why Is Crime Falling?” The Economist. The Economist Newspaper, 23 July 2013. Web. 12 Mar. 2015. <http://www.economist.com/blogs/economist-explains/2013/07/economist-explains-16>. Drum, Kevin. “The US Murder Rate Is on Track to Be Lowest in a Century.”Mother Jones. Mother Jones, 17 May 2013. Web. 13 Mar. 2015. <http://www.motherjones.com/kevin-drum/2013/05/us-murder-rate-track-be-lowest-century>. Hood, Roger, and Carolyn Hoyle. The Death Penalty: A Worldwide Perspective. Oxford: Oxford UP, 2002. 45. Print. Rizzo, Kevin. “Slideshow: America’s Safest and Most Dangerous States 2014.”Law Street Media. Law Street TM, 12 Sept. 2014. Web. 12 Mar. 2015. <http://lawstreetmedia.com/blogs/crime/safest-and-most-dangerous-states-2014/#slideshow>. Vollum, Scott. The Death Penalty: Constitutional Issues, Commentaries, and Case Briefs. Newark, NJ: LexisNexis, 2005. 2. Print. Theis, David. “Remarkable Declines in Global Poverty, But Major Challenges Remain.” The World Bank. The World Bank, 17 Apr. 2013. Web. 15 Mar. 2015. <http://www.worldbank.org/en/news/press-release/2013/04/17/remarkable-declines-in-global-poverty-but-major-challenges-remain>. Wilson, James Q. “Hard Times, Fewer Crimes.” WSJ. The Wall Street Journal, 28 May 2011. Web. 13 Mar. 2015. <http://www.wsj.com/articles/SB10001424052702304066504576345553135009870>.

Fact Debate Brief Introduction Crime doesn’t pay; it should be punished. Even since childhood, a slap on the hand has prevented possible criminals from ever committing the same offense; whether it was successful or not depended on how much that child wanted that cookie. While a slap on the wrist might or might not be an effective deterrent, the same can be said about the death penalty. Every day, somewhere in the world, a criminal is stopped permanently from committing any future costs, but this is by the means of the death. While effective in stopping one person permanently, it does nothing about the crime world as a whole. While it is necessary to end the career of a criminal, no matter what his or her crime is, we must not end it by taking a life. Through this paper, the death penalty will be proven ineffective at deterring crime by use of other environmental factors. Definition: The death penalty is defined as the universal punishment of death as legally applied by a fair court system. It is important for it to be a fair legal system, as not to confuse it with genocide, mob mentality, or any other ruling without trial. Claim 1: Use of the death penalty is in decline Ground 1: According to the book The Death Penalty: A Worldwide Perspective by Roger Hood and Carolyn Hoyle, published Dec. 8th, 2014, the Oxford professors in criminology say “As in most of the rest of the world, the death penalty in the US is in decline and distributed unevenly in frequency of use” even addressing that, as of April 2014, 18 states no longer have a death penalty, and even Oregon and Washington are considering removing their death penalty laws. Furthermore, in 2013, only 9 of these states still retaining the death penalty actually executed someone. Warrant 1: The death penalty can be reinstated at any time, but so far, it hasn’t been. At the same time, more states consider getting rid of it altogether. Therefore, it becomes clear that even states don’t want to be involved with this process showing that this is a disliked process. Claim 2: Even states with death penalty in effect still have high crime rates. Ground 2: With the reports gathered from fbi.gov, lawstreetmedia.com, a website based around political expertise and research determined the ranking of each state based on violent crime, published September 12th, 2014. Of the top ten most violent states, only three of which had the death penalty instituted (Maryland #9, New Mexico #4, Alaska #3). The other seven still had the system in place, and, despite it, still have a high amount of violent crime. On the opposite end of the spectrum, at the bottom ten most violent states, four of which, including the bottom-most states, do not have the death penalty in place. Warrant 2: With this ranking, it literally proves that the death penalty does not deter crime, or that there is a correlation between having the death penalty and having a decrease in the crime rate. Therefore, the idea of death penalty deterring crime is a null term in the sense that there is no, or a flawed connection. Claim 3: Violent crime is decreasing (but not because if the death penalty) Ground 3 A: According to an article published by The Economist, dated July 23rd, 2013, the rate of violent crime is in fact decreasing, but not because of the death penalty, but rather, because we have more police. From 1995 to 2010, policing has increased one-fifth, and with it, a decline in crime rate. In fact, in cities such as Detroit where policing has been cut, an opposite effect, an increase in crime, has been reported. Ground 3 B: An article from the Wall Street Journal, dated May 28th, 2011, also cites a decline in violent, only this time, citing the reason as a correlation with poverty levels. In 2009, at the start of the housing crisis, crime rates also dropped noticeably. Oddly enough, this article points out the belief that unemployment is often associated with crime; instead, the evidence presented is environmental in nature. Warrant 3: Crime rate isn’t deterred by death penalty, but rather, our surroundings. Seeing as how conditions have improved, so has the state of peace. Therefore, it becomes clear that the death penalty is ineffective at deterring crime because other key factors present more possibility for improvement of society. Claim 4: The death penalty is a historically flawed system. Ground 4A: According to the book The Death Penalty: Constitutional Issues, Commentaries, and Case Briefs by Scott Vollum, published in 2005, addresses how the case of the death penalty emerged to where it is today. While the book is now a decade old, it is used for historical context, particularly, in describing the first execution that took place in 1608. While it is true that most of these executions weren’t as well-grounded as the modern ones that take place now, they still had no effect in deterring crime. Why? Because even after America was established and more sane, the death penalty still had to be used because criminals still had violent behaviors. Ground 4B: According to data from Mother Jones, published May 17th, 2013, the reason why the crime rate was so high in the past could possibly be due to yet another environmental factor (affected by change over time), exposure to lead. Since the removal of lead from paint started over a hundred years ago, there has been a decline in homicide. Why is this important? Lead poisoning in child’s brain, if not lethal, can affect development and lead to mental disability, lower IQ, and lack of reasoning. Warrant 4: By examining history as a whole, there is a greater correlation between other factors that have resulted in a decline in violent crime. The decline in the crime rate has been an ongoing process, but has shown a faster decline due to other environmental factors, rather than the instatement of the death penalty. Claim 5: The world’s violent crime rate is changing, but not due to the death penalty. Ground 5A: According to article published by Amnesty USA in March of 2014, the number of executions under the death penalty reported in 2013 had increased by 15%. However, the rate of violent crime in the world has decreased significantly in the last decade. But, Latvia, for example, has permanently banned the death penalty since 2012. In 2014, the country was viewed overall as safe and low in violent crime rate. Ground 5B: However, while it is true that there is a decline in violent crime rate worldwide, The World Bank, April 17, 2013, reports that the rate of global poverty is decreasing. In a similar vein to the US, because wealth is being distributed better and conditions are improving overall, there is a steady decline in crime rate. Warrant 5: By examining the world as a whole, it becomes clear that it doesn’t matter if the death penalty is in place, violent crime will still exist. However, mirroring the US, as simple conditions improve, so does lifestyle. The death penalty does not deter crime in the world, rather a better quality of life is responsible for that. Works Cited “Death Sentences and Executions 2013.” Amnesty International USA. Amnesty USA, 26 Mar. 2014. Web. 15 Mar. 2015. . D. K. “Why Is Crime Falling?” The Economist. The Economist Newspaper, 23 July 2013. Web. 12 Mar. 2015. . Drum, Kevin. “The US Murder Rate Is on Track to Be Lowest in a Century.”Mother Jones. Mother Jones, 17 May 2013. Web. 13 Mar. 2015. . Hood, Roger, and Carolyn Hoyle. The Death Penalty: A Worldwide Perspective. Oxford: Oxford UP, 2002. 45. Print. Rizzo, Kevin. “Slideshow: America’s Safest and Most Dangerous States 2014.”Law Street Media. Law Street TM, 12 Sept. 2014. Web. 12 Mar. 2015. . Vollum, Scott. The Death Penalty: Constitutional Issues, Commentaries, and Case Briefs. Newark, NJ: LexisNexis, 2005. 2. Print. Theis, David. “Remarkable Declines in Global Poverty, But Major Challenges Remain.” The World Bank. The World Bank, 17 Apr. 2013. Web. 15 Mar. 2015. . Wilson, James Q. “Hard Times, Fewer Crimes.” WSJ. The Wall Street Journal, 28 May 2011. Web. 13 Mar. 2015. .

Fact Debate Brief Introduction Crime doesn’t pay; it should be … Read More...
Chapter 7 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, March 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Book on a Table A book weighing 5 N rests on top of a table. Part A A downward force of magnitude 5 N is exerted on the book by the force of ANSWER: Part B An upward force of magnitude _____ is exerted on the _____ by the table. the table gravity inertia . ANSWER: Part C Do the downward force in Part A and the upward force in Part B constitute a 3rd law pair? You did not open hints for this part. ANSWER: Part D The reaction to the force in Part A is a force of magnitude _____, exerted on the _____ by the _____. Its direction is _____ . You did not open hints for this part. ANSWER: 6 N / table 5 N / table 5 N / book 6 N / book yes no Part E The reaction to the force in Part B is a force of magnitude _____, exerted on the _____ by the _____. Its direction is _____. ANSWER: Part F Which of Newton’s laws dictates that the forces in Parts A and B are equal and opposite? ANSWER: Part G Which of Newton’s laws dictates that the forces in Parts B and E are equal and opposite? ANSWER: 5 N / earth / book / upward 5 N / book / table / upward 5 N / book / earth / upward 5 N / earth / book / downward 5 N / table / book / upward 5 N / table / earth / upward 5 N / book / table / upward 5 N / table / book / downward 5 N / earth / book / downward Newton’s 1st or 2nd law Newton’s 3rd law Blocks in an Elevator Ranking Task Three blocks are stacked on top of each other inside an elevator as shown in the figure. Answer the following questions with reference to the eight forces defined as follows. the force of the 3 block on the 2 block, , the force of the 2 block on the 3 block, , the force of the 3 block on the 1 block, , the force of the 1 block on the 3 block, , the force of the 2 block on the 1 block, , the force of the 1 block on the 2 block, , the force of the 1 block on the floor, , and the force of the floor on the 1 block, . Part A Assume the elevator is at rest. Rank the magnitude of the forces. Rank from largest to smallest. To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: Newton’s 1st or 2nd law Newton’s 3rd law kg kg F3 on 2 kg kg F2 on 3 kg kg F3 on 1 kg kg F1 on 3 kg kg F2 on 1 kg kg F1 on 2 kg F1 on floor kg Ffloor on 1 Part B This question will be shown after you complete previous question(s). Newton’s 3rd Law Discussed Learning Goal: To understand Newton’s 3rd law, which states that a physical interaction always generates a pair of forces on the two interacting bodies. In Principia, Newton wrote: To every action there is always opposed an equal reaction: or, the mutual actions of two bodies upon each other are always equal, and directed to contrary parts. (translation by Cajori) The phrase after the colon (often omitted from textbooks) makes it clear that this is a statement about the nature of force. The central idea is that physical interactions (e.g., due to gravity, bodies touching, or electric forces) cause forces to arise between pairs of bodies. Each pairwise interaction produces a pair of opposite forces, one acting on each body. In summary, each physical interaction between two bodies generates a pair of forces. Whatever the physical cause of the interaction, the force on body A from body B is equal in magnitude and opposite in direction to the force on body B from body A. Incidentally, Newton states that the word “action” denotes both (a) the force due to an interaction and (b) the changes in momentum that it imparts to the two interacting bodies. If you haven’t learned about momentum, don’t worry; for now this is just a statement about the origin of forces. Mark each of the following statements as true or false. If a statement refers to “two bodies” interacting via some force, you are not to assume that these two bodies have the same mass. Part A Every force has one and only one 3rd law pair force. ANSWER: Part B The two forces in each pair act in opposite directions. ANSWER: Part C The two forces in each pair can either both act on the same body or they can act on different bodies. ANSWER: true false true false Part D The two forces in each pair may have different physical origins (for instance, one of the forces could be due to gravity, and its pair force could be due to friction or electric charge). ANSWER: Part E The two forces of a 3rd law pair always act on different bodies. ANSWER: Part F Given that two bodies interact via some force, the accelerations of these two bodies have the same magnitude but opposite directions. (Assume no other forces act on either body.) You did not open hints for this part. ANSWER: true false true false true false Part G According to Newton’s 3rd law, the force on the (smaller) moon due to the (larger) earth is ANSWER: Pulling Three Blocks Three identical blocks connected by ideal strings are being pulled along a horizontal frictionless surface by a horizontal force . The magnitude of the tension in the string between blocks B and C is = 3.00 . Assume that each block has mass = 0.400 . true false greater in magnitude and antiparallel to the force on the earth due to the moon. greater in magnitude and parallel to the force on the earth due to the moon. equal in magnitude but antiparallel to the force on the earth due to the moon. equal in magnitude and parallel to the force on the earth due to the moon. smaller in magnitude and antiparallel to the force on the earth due to the moon. smaller in magnitude and parallel to the force on the earth due to the moon. F T N m kg Part A What is the magnitude of the force? Express your answer numerically in newtons. You did not open hints for this part. ANSWER: Part B What is the tension in the string between block A and block B? Express your answer numerically in newtons You did not open hints for this part. ANSWER: Pulling Two Blocks In the situation shown in the figure, a person is pulling with a constant, nonzero force on string 1, which is attached to block A. Block A is also attached to block B via string 2, as shown. For this problem, assume that neither string stretches and that friction is negligible. Both blocks have finite (nonzero) mass. F F = N TAB TAB = N F Part A Which one of the following statements correctly descibes the relationship between the accelerations of blocks A and B? You did not open hints for this part. ANSWER: Part B How does the magnitude of the tension in string 1, , compare with the tension in string 2, ? You did not open hints for this part. Block A has a larger acceleration than block B. Block B has a larger acceleration than block A. Both blocks have the same acceleration. More information is needed to determine the relationship between the accelerations. T1 T2 ANSWER: Tension in a Massless Rope Learning Goal: To understand the concept of tension and the relationship between tension and force. This problem introduces the concept of tension. The example is a rope, oriented vertically, that is being pulled from both ends. Let and (with u for up and d for down) represent the magnitude of the forces acting on the top and bottom of the rope, respectively. Assume that the rope is massless, so that its weight is negligible compared with the tension. (This is not a ridiculous approximation–modern rope materials such as Kevlar can carry tensions thousands of times greater than the weight of tens of meters of such rope.) Consider the three sections of rope labeled a, b, and c in the figure. At point 1, a downward force of magnitude acts on section a. At point 1, an upward force of magnitude acts on section b. At point 1, the tension in the rope is . At point 2, a downward force of magnitude acts on section b. At point 2, an upward force of magnitude acts on section c. At point 2, the tension in the rope is . Assume, too, that the rope is at equilibrium. Part A What is the magnitude of the downward force on section a? Express your answer in terms of the tension . ANSWER: More information is needed to determine the relationship between and . T1 > T2 T1 = T2 T1 < T2 T1 T2 Fu Fd Fad Fbu T1 Fbd Fcu T2 Fad T1 Part B What is the magnitude of the upward force on section b? Express your answer in terms of the tension . ANSWER: Part C The magnitude of the upward force on c, , and the magnitude of the downward force on b, , are equal because of which of Newton's laws? ANSWER: Part D The magnitude of the force is ____ . ANSWER: Fad = Fbu T1 Fbu = Fcu Fbd 1st 2nd 3rd Fbu Fbd Part E Now consider the forces on the ends of the rope. What is the relationship between the magnitudes of these two forces? You did not open hints for this part. ANSWER: Part F The ends of a massless rope are attached to two stationary objects (e.g., two trees or two cars) so that the rope makes a straight line. For this situation, which of the following statements are true? Check all that apply. ANSWER: less than greater than equal to Fu > Fd Fu = Fd Fu < Fd The tension in the rope is everywhere the same. The magnitudes of the forces exerted on the two objects by the rope are the same. The forces exerted on the two objects by the rope must be in opposite directions. The forces exerted on the two objects by the rope must be in the direction of the rope. Two Hanging Masses Two blocks with masses and hang one under the other. For this problem, take the positive direction to be upward, and use for the magnitude of the acceleration due to gravity. Case 1: Blocks at rest For Parts A and B assume the blocks are at rest. Part A Find , the tension in the lower rope. Express your answer in terms of some or all of the variables , , and . You did not open hints for this part. ANSWER: M1 M2 g T2 M1 M2 g Part B Find , the tension in the upper rope. Express your answer in terms of some or all of the variables , , and . You did not open hints for this part. ANSWER: Case 2: Accelerating blocks For Parts C and D the blocks are now accelerating upward (due to the tension in the strings) with acceleration of magnitude . Part C Find , the tension in the lower rope. Express your answer in terms of some or all of the variables , , , and . You did not open hints for this part. ANSWER: T2 = T1 M1 M2 g T1 = a T2 M1 M2 a g Part D Find , the tension in the upper rope. Express your answer in terms of some or all of the variables , , , and . You did not open hints for this part. ANSWER: Video Tutor: Suspended Balls: Which String Breaks? First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the question at right. You can watch the video again at any point. T2 = T1 M1 M2 a g T1 = Part A A heavy crate is attached to the wall by a light rope, as shown in the figure. Another rope hangs off the opposite edge of the box. If you slowly increase the force on the free rope by pulling on it in a horizontal direction, which rope will break? Ignore friction and the mass of the ropes. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The rope attached to the wall will break. The rope that you are pulling on will break. Both ropes are equally likely to break.

Chapter 7 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, March 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Book on a Table A book weighing 5 N rests on top of a table. Part A A downward force of magnitude 5 N is exerted on the book by the force of ANSWER: Part B An upward force of magnitude _____ is exerted on the _____ by the table. the table gravity inertia . ANSWER: Part C Do the downward force in Part A and the upward force in Part B constitute a 3rd law pair? You did not open hints for this part. ANSWER: Part D The reaction to the force in Part A is a force of magnitude _____, exerted on the _____ by the _____. Its direction is _____ . You did not open hints for this part. ANSWER: 6 N / table 5 N / table 5 N / book 6 N / book yes no Part E The reaction to the force in Part B is a force of magnitude _____, exerted on the _____ by the _____. Its direction is _____. ANSWER: Part F Which of Newton’s laws dictates that the forces in Parts A and B are equal and opposite? ANSWER: Part G Which of Newton’s laws dictates that the forces in Parts B and E are equal and opposite? ANSWER: 5 N / earth / book / upward 5 N / book / table / upward 5 N / book / earth / upward 5 N / earth / book / downward 5 N / table / book / upward 5 N / table / earth / upward 5 N / book / table / upward 5 N / table / book / downward 5 N / earth / book / downward Newton’s 1st or 2nd law Newton’s 3rd law Blocks in an Elevator Ranking Task Three blocks are stacked on top of each other inside an elevator as shown in the figure. Answer the following questions with reference to the eight forces defined as follows. the force of the 3 block on the 2 block, , the force of the 2 block on the 3 block, , the force of the 3 block on the 1 block, , the force of the 1 block on the 3 block, , the force of the 2 block on the 1 block, , the force of the 1 block on the 2 block, , the force of the 1 block on the floor, , and the force of the floor on the 1 block, . Part A Assume the elevator is at rest. Rank the magnitude of the forces. Rank from largest to smallest. To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: Newton’s 1st or 2nd law Newton’s 3rd law kg kg F3 on 2 kg kg F2 on 3 kg kg F3 on 1 kg kg F1 on 3 kg kg F2 on 1 kg kg F1 on 2 kg F1 on floor kg Ffloor on 1 Part B This question will be shown after you complete previous question(s). Newton’s 3rd Law Discussed Learning Goal: To understand Newton’s 3rd law, which states that a physical interaction always generates a pair of forces on the two interacting bodies. In Principia, Newton wrote: To every action there is always opposed an equal reaction: or, the mutual actions of two bodies upon each other are always equal, and directed to contrary parts. (translation by Cajori) The phrase after the colon (often omitted from textbooks) makes it clear that this is a statement about the nature of force. The central idea is that physical interactions (e.g., due to gravity, bodies touching, or electric forces) cause forces to arise between pairs of bodies. Each pairwise interaction produces a pair of opposite forces, one acting on each body. In summary, each physical interaction between two bodies generates a pair of forces. Whatever the physical cause of the interaction, the force on body A from body B is equal in magnitude and opposite in direction to the force on body B from body A. Incidentally, Newton states that the word “action” denotes both (a) the force due to an interaction and (b) the changes in momentum that it imparts to the two interacting bodies. If you haven’t learned about momentum, don’t worry; for now this is just a statement about the origin of forces. Mark each of the following statements as true or false. If a statement refers to “two bodies” interacting via some force, you are not to assume that these two bodies have the same mass. Part A Every force has one and only one 3rd law pair force. ANSWER: Part B The two forces in each pair act in opposite directions. ANSWER: Part C The two forces in each pair can either both act on the same body or they can act on different bodies. ANSWER: true false true false Part D The two forces in each pair may have different physical origins (for instance, one of the forces could be due to gravity, and its pair force could be due to friction or electric charge). ANSWER: Part E The two forces of a 3rd law pair always act on different bodies. ANSWER: Part F Given that two bodies interact via some force, the accelerations of these two bodies have the same magnitude but opposite directions. (Assume no other forces act on either body.) You did not open hints for this part. ANSWER: true false true false true false Part G According to Newton’s 3rd law, the force on the (smaller) moon due to the (larger) earth is ANSWER: Pulling Three Blocks Three identical blocks connected by ideal strings are being pulled along a horizontal frictionless surface by a horizontal force . The magnitude of the tension in the string between blocks B and C is = 3.00 . Assume that each block has mass = 0.400 . true false greater in magnitude and antiparallel to the force on the earth due to the moon. greater in magnitude and parallel to the force on the earth due to the moon. equal in magnitude but antiparallel to the force on the earth due to the moon. equal in magnitude and parallel to the force on the earth due to the moon. smaller in magnitude and antiparallel to the force on the earth due to the moon. smaller in magnitude and parallel to the force on the earth due to the moon. F T N m kg Part A What is the magnitude of the force? Express your answer numerically in newtons. You did not open hints for this part. ANSWER: Part B What is the tension in the string between block A and block B? Express your answer numerically in newtons You did not open hints for this part. ANSWER: Pulling Two Blocks In the situation shown in the figure, a person is pulling with a constant, nonzero force on string 1, which is attached to block A. Block A is also attached to block B via string 2, as shown. For this problem, assume that neither string stretches and that friction is negligible. Both blocks have finite (nonzero) mass. F F = N TAB TAB = N F Part A Which one of the following statements correctly descibes the relationship between the accelerations of blocks A and B? You did not open hints for this part. ANSWER: Part B How does the magnitude of the tension in string 1, , compare with the tension in string 2, ? You did not open hints for this part. Block A has a larger acceleration than block B. Block B has a larger acceleration than block A. Both blocks have the same acceleration. More information is needed to determine the relationship between the accelerations. T1 T2 ANSWER: Tension in a Massless Rope Learning Goal: To understand the concept of tension and the relationship between tension and force. This problem introduces the concept of tension. The example is a rope, oriented vertically, that is being pulled from both ends. Let and (with u for up and d for down) represent the magnitude of the forces acting on the top and bottom of the rope, respectively. Assume that the rope is massless, so that its weight is negligible compared with the tension. (This is not a ridiculous approximation–modern rope materials such as Kevlar can carry tensions thousands of times greater than the weight of tens of meters of such rope.) Consider the three sections of rope labeled a, b, and c in the figure. At point 1, a downward force of magnitude acts on section a. At point 1, an upward force of magnitude acts on section b. At point 1, the tension in the rope is . At point 2, a downward force of magnitude acts on section b. At point 2, an upward force of magnitude acts on section c. At point 2, the tension in the rope is . Assume, too, that the rope is at equilibrium. Part A What is the magnitude of the downward force on section a? Express your answer in terms of the tension . ANSWER: More information is needed to determine the relationship between and . T1 > T2 T1 = T2 T1 < T2 T1 T2 Fu Fd Fad Fbu T1 Fbd Fcu T2 Fad T1 Part B What is the magnitude of the upward force on section b? Express your answer in terms of the tension . ANSWER: Part C The magnitude of the upward force on c, , and the magnitude of the downward force on b, , are equal because of which of Newton's laws? ANSWER: Part D The magnitude of the force is ____ . ANSWER: Fad = Fbu T1 Fbu = Fcu Fbd 1st 2nd 3rd Fbu Fbd Part E Now consider the forces on the ends of the rope. What is the relationship between the magnitudes of these two forces? You did not open hints for this part. ANSWER: Part F The ends of a massless rope are attached to two stationary objects (e.g., two trees or two cars) so that the rope makes a straight line. For this situation, which of the following statements are true? Check all that apply. ANSWER: less than greater than equal to Fu > Fd Fu = Fd Fu < Fd The tension in the rope is everywhere the same. The magnitudes of the forces exerted on the two objects by the rope are the same. The forces exerted on the two objects by the rope must be in opposite directions. The forces exerted on the two objects by the rope must be in the direction of the rope. Two Hanging Masses Two blocks with masses and hang one under the other. For this problem, take the positive direction to be upward, and use for the magnitude of the acceleration due to gravity. Case 1: Blocks at rest For Parts A and B assume the blocks are at rest. Part A Find , the tension in the lower rope. Express your answer in terms of some or all of the variables , , and . You did not open hints for this part. ANSWER: M1 M2 g T2 M1 M2 g Part B Find , the tension in the upper rope. Express your answer in terms of some or all of the variables , , and . You did not open hints for this part. ANSWER: Case 2: Accelerating blocks For Parts C and D the blocks are now accelerating upward (due to the tension in the strings) with acceleration of magnitude . Part C Find , the tension in the lower rope. Express your answer in terms of some or all of the variables , , , and . You did not open hints for this part. ANSWER: T2 = T1 M1 M2 g T1 = a T2 M1 M2 a g Part D Find , the tension in the upper rope. Express your answer in terms of some or all of the variables , , , and . You did not open hints for this part. ANSWER: Video Tutor: Suspended Balls: Which String Breaks? First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the question at right. You can watch the video again at any point. T2 = T1 M1 M2 a g T1 = Part A A heavy crate is attached to the wall by a light rope, as shown in the figure. Another rope hangs off the opposite edge of the box. If you slowly increase the force on the free rope by pulling on it in a horizontal direction, which rope will break? Ignore friction and the mass of the ropes. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The rope attached to the wall will break. The rope that you are pulling on will break. Both ropes are equally likely to break.

please email info@checkyourstudy.com
Book review The Shareholder Value Myth: How Putting Shareholders First Harms Investors, Corporations, and the Public by Lynn Stout Provide 1) a 900 word review of this book (word range 900-1,200) and 2) a 350 word reflection where you force yourself to relate the message of the book . As per the format of the review, I like the ones done by the folks of the WSJ. This is an example: http://forums.delphiforums.com/diversecity/messages?msg=17531.1264 or http://www.wsj.com/articles/book-review-how-adam-smith-can-change-your-life-by-russ-roberts-1413846808?KEYWORDS=book+reviews

Book review The Shareholder Value Myth: How Putting Shareholders First Harms Investors, Corporations, and the Public by Lynn Stout Provide 1) a 900 word review of this book (word range 900-1,200) and 2) a 350 word reflection where you force yourself to relate the message of the book . As per the format of the review, I like the ones done by the folks of the WSJ. This is an example: http://forums.delphiforums.com/diversecity/messages?msg=17531.1264 or http://www.wsj.com/articles/book-review-how-adam-smith-can-change-your-life-by-russ-roberts-1413846808?KEYWORDS=book+reviews

The Shareholder Value Myth: How Putting Shareholders First Harms Investors, … Read More...
CURR 5702 Guidelines for Writing Analysis Project 1. Find a piece of writing written by a learner with special needs or an English learner. In your write-up, describe the learner’s background in as much detail as you can (country/language of origin, age/grade, gender, length of time in U.S., educational background, level of proficiency, etc.) and the type of writing it is (journal entry, 5-paragraph essay assignment, free write, etc.). 2. Determine what aspects of language are present in the writing. a. Where is the learner strong? b. Where does he/she need help? c. What features do you notice? (this is a list to get you thinking…you do not need to address every one) i. lexical variety ii. syntactic complexity iii. control of grammatical features (nouns, verbs, preps, etc.) iv. linking features (conjunctions) v. structures that mark order (first, second, later, finally) vi. structures that reference prior elements (using the right pronouns to refer back to some person or thing already mentioned) vii. Others? 3. Consider how you might assess this writing and provide feedback to the learner. a. Will you use a rubric? b. What will you focus on? Here are some possibilities: i. Organization and content ii. Language 1. Sentence fluency 2. Grammar/spelling/word choice iii. All of the above c. How will you convey your feedback? i. In writing 1. Highlight errors 2. Choose a few of the most common errors to highlight/ have the learner correct them? (e.g. Error log) 3. Provide general feedback without marking the paper? ii. Have a conference with the learner and discuss some of the areas in need of revision d. What are the next steps in the process? 4. What are your recommendations for literacy instruction? a. Based on your analysis and connections, how might you address the needs of this learner as a teacher? This is where you can connect your project with your readings from the course (or other readings as appropriate). i. Are there strategies, activities, tools, technology, resources, etc., that would be beneficial for your learner? Describe them and be sure to cite your sources. ii. Directly link the recommendations with the observations that you made in their writing sample and with your readings. 5. Write up the writing analysis you have done. Be sure to include the writing sample as an appendix. If you reference a rubric or Error log, etc., please include that as well. You should incorporate at least 4 references into this project (you can start with the 2 course texts if you like). Be sure to cite your sources within your paper and include a list of references at the end in APA format. The evaluation rubric for this project can be found below. Rubric for Writing Analysis Performance Excellent Good Needs Improvement Unacceptable 5 points 3-4 points 1-2 points 0 points Introduction and Context Writer introduces learner and gives clear context of learner. Writer identifies learner, but does not give full context OR writer describes context, but learner information sketchy. Writer has very little information about learner and/or context. No context provided. Writing Sample Writer describes clearly writing sample. Writer is too general about how writing sample. Writer has provided very little information about sample. No information provided regarding sample or no sample provided. 13-15 points 9-12 points 4-8 points 0-3 points Identification of Writing Challenges Language challenges are clearly identified and samples given to support challenges (including transcript numbers). Clear connections made to relevant topics covered in course. Writer indicates some idea of language challenges. Some support given. Some connections made to relevant topics covered in course. Writer discusses language challenges in general; does not support in terms of transcription. Minimal effort to make connections to relevant topics covered in course. Very little or no discussion language challenges identified and little or no transcription support provided. No connections to course topics. Plan for Assessment and Feedback Clear plan for assessing writing and providing feedback to learner. General plan for assessment; feedback addressed, but more details needed. Plan for assessment not clear; feedback to learner addressed superficially. No plan for assessment or feedback. Recommendations for Instruction Recommendations for instruction are clear and well-supported. Recommendations present, but need more description and support. Recommendations are implied or only partially supported. No recommendations given. 5 points 3-4 points 1-2 points 0 points References Writer includes at least 4 credible sources. Writer includes 3 sources. Writer includes 1-2 resources. Sources not included. Writing Conventions Writing is clear. No grammatical, spelling, or punctuation errors. APA format is correct. A few grammatical, spelling, or punctuation errors. APA format is mostly correct. Some grammatical, spelling, or punctuation errors. Numerous issues with APA format. Many grammatical, spelling, or punctuation errors. APA format disregarded. Total ____ / 75 Comments:

CURR 5702 Guidelines for Writing Analysis Project 1. Find a piece of writing written by a learner with special needs or an English learner. In your write-up, describe the learner’s background in as much detail as you can (country/language of origin, age/grade, gender, length of time in U.S., educational background, level of proficiency, etc.) and the type of writing it is (journal entry, 5-paragraph essay assignment, free write, etc.). 2. Determine what aspects of language are present in the writing. a. Where is the learner strong? b. Where does he/she need help? c. What features do you notice? (this is a list to get you thinking…you do not need to address every one) i. lexical variety ii. syntactic complexity iii. control of grammatical features (nouns, verbs, preps, etc.) iv. linking features (conjunctions) v. structures that mark order (first, second, later, finally) vi. structures that reference prior elements (using the right pronouns to refer back to some person or thing already mentioned) vii. Others? 3. Consider how you might assess this writing and provide feedback to the learner. a. Will you use a rubric? b. What will you focus on? Here are some possibilities: i. Organization and content ii. Language 1. Sentence fluency 2. Grammar/spelling/word choice iii. All of the above c. How will you convey your feedback? i. In writing 1. Highlight errors 2. Choose a few of the most common errors to highlight/ have the learner correct them? (e.g. Error log) 3. Provide general feedback without marking the paper? ii. Have a conference with the learner and discuss some of the areas in need of revision d. What are the next steps in the process? 4. What are your recommendations for literacy instruction? a. Based on your analysis and connections, how might you address the needs of this learner as a teacher? This is where you can connect your project with your readings from the course (or other readings as appropriate). i. Are there strategies, activities, tools, technology, resources, etc., that would be beneficial for your learner? Describe them and be sure to cite your sources. ii. Directly link the recommendations with the observations that you made in their writing sample and with your readings. 5. Write up the writing analysis you have done. Be sure to include the writing sample as an appendix. If you reference a rubric or Error log, etc., please include that as well. You should incorporate at least 4 references into this project (you can start with the 2 course texts if you like). Be sure to cite your sources within your paper and include a list of references at the end in APA format. The evaluation rubric for this project can be found below. Rubric for Writing Analysis Performance Excellent Good Needs Improvement Unacceptable 5 points 3-4 points 1-2 points 0 points Introduction and Context Writer introduces learner and gives clear context of learner. Writer identifies learner, but does not give full context OR writer describes context, but learner information sketchy. Writer has very little information about learner and/or context. No context provided. Writing Sample Writer describes clearly writing sample. Writer is too general about how writing sample. Writer has provided very little information about sample. No information provided regarding sample or no sample provided. 13-15 points 9-12 points 4-8 points 0-3 points Identification of Writing Challenges Language challenges are clearly identified and samples given to support challenges (including transcript numbers). Clear connections made to relevant topics covered in course. Writer indicates some idea of language challenges. Some support given. Some connections made to relevant topics covered in course. Writer discusses language challenges in general; does not support in terms of transcription. Minimal effort to make connections to relevant topics covered in course. Very little or no discussion language challenges identified and little or no transcription support provided. No connections to course topics. Plan for Assessment and Feedback Clear plan for assessing writing and providing feedback to learner. General plan for assessment; feedback addressed, but more details needed. Plan for assessment not clear; feedback to learner addressed superficially. No plan for assessment or feedback. Recommendations for Instruction Recommendations for instruction are clear and well-supported. Recommendations present, but need more description and support. Recommendations are implied or only partially supported. No recommendations given. 5 points 3-4 points 1-2 points 0 points References Writer includes at least 4 credible sources. Writer includes 3 sources. Writer includes 1-2 resources. Sources not included. Writing Conventions Writing is clear. No grammatical, spelling, or punctuation errors. APA format is correct. A few grammatical, spelling, or punctuation errors. APA format is mostly correct. Some grammatical, spelling, or punctuation errors. Numerous issues with APA format. Many grammatical, spelling, or punctuation errors. APA format disregarded. Total ____ / 75 Comments:

No expert has answered this question yet. You can browse … Read More...
Assignment 8 Due: 11:59pm on Friday, April 4, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 10.3 Part A If a particle’s speed increases by a factor of 5, by what factor does its kinetic energy change? ANSWER: Correct Conceptual Question 10.11 A spring is compressed 1.5 . Part A How far must you compress a spring with twice the spring constant to store the same amount of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct = 25 K2 K1 cm x = 1.1 cm Problem 10.2 The lowest point in Death Valley is below sea level. The summit of nearby Mt. Whitney has an elevation of 4420 . Part A What is the change in potential energy of an energetic 80 hiker who makes it from the floor of Death Valley to the top of Mt.Whitney? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.3 Part A At what speed does a 1800 compact car have the same kinetic energy as a 1.80×104 truck going 21.0 ? Express your answer with the appropriate units. ANSWER: Correct Problem 10.5 A boy reaches out of a window and tosses a ball straight up with a speed of 13 . The ball is 21 above the ground as he releases it. 85m m kg U = 3.5×106 J kg kg km/hr vc = 66.4 km hr m/s m Part A Use energy to find the ball’s maximum height above the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B Use energy to find the ball’s speed as it passes the window on its way down. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C Use energy to find the speed of impact on the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Hmax = 30 m v = 13 ms v = 24 ms Problem 10.8 A 59.0 skateboarder wants to just make it to the upper edge of a “quarter pipe,” a track that is one-quarter of a circle with a radius of 2.30 . Part A What speed does he need at the bottom? Express your answer with the appropriate units. ANSWER: Correct Problem 10.12 A 1500 car traveling at 12 suddenly runs out of gas while approaching the valley shown in the figure. The alert driver immediately puts the car in neutral so that it will roll. Part A kg m 6.71 ms kg m/s What will be the car’s speed as it coasts into the gas station on the other side of the valley? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Ups and Downs Learning Goal: To apply the law of conservation of energy to an object launched upward in the gravitational field of the earth. In the absence of nonconservative forces such as friction and air resistance, the total mechanical energy in a closed system is conserved. This is one particular case of the law of conservation of energy. In this problem, you will apply the law of conservation of energy to different objects launched from the earth. The energy transformations that take place involve the object’s kinetic energy and its gravitational potential energy . The law of conservation of energy for such cases implies that the sum of the object’s kinetic energy and potential energy does not change with time. This idea can be expressed by the equation , where “i” denotes the “initial” moment and “f” denotes the “final” moment. Since any two moments will work, the choice of the moments to consider is, technically, up to you. That choice, though, is usually suggested by the question posed in the problem. First, let us consider an object launched vertically upward with an initial speed . Neglect air resistance. Part A As the projectile goes upward, what energy changes take place? ANSWER: v = 6.8 ms K = (1/2)mv2 U = mgh Ki + Ui = Kf + Uf v Correct Part B At the top point of the flight, what can be said about the projectile’s kinetic and potential energy? ANSWER: Correct Strictly speaking, it is not the ball that possesses potential energy; rather, it is the system “Earth-ball.” Although we will often talk about “the gravitational potential energy of an elevated object,” it is useful to keep in mind that the energy, in fact, is associated with the interactions between the earth and the elevated object. Part C The potential energy of the object at the moment of launch __________. ANSWER: Both kinetic and potential energy decrease. Both kinetic and potential energy increase. Kinetic energy decreases; potential energy increases. Kinetic energy increases; potential energy decreases. Both kinetic and potential energy are at their maximum values. Both kinetic and potential energy are at their minimum values. Kinetic energy is at a maximum; potential energy is at a minimum. Kinetic energy is at a minimum; potential energy is at a maximum. Correct Usually, the zero level is chosen so as to make the relevant calculations simpler. In this case, it makes good sense to assume that at the ground level–but this is not, by any means, the only choice! Part D Using conservation of energy, find the maximum height to which the object will rise. Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: Correct You may remember this result from kinematics. It is comforting to know that our new approach yields the same answer. Part E At what height above the ground does the projectile have a speed of ? Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: is negative is positive is zero depends on the choice of the “zero level” of potential energy U = 0 hmax v g hmax = v2 2g h 0.5v v g h = 3 v2 8g Correct Part F What is the speed of the object at the height of ? Express your answer in terms of and . Use three significant figures in the numeric coefficient. Hint 1. How to approach the problem You are being asked for the speed at half of the maximum height. You know that at the initial height ( ), the speed is . All of the energy is kinetic energy, and so, the total energy is . At the maximum height, all of the energy is potential energy. Since the gravitational potential energy is proportional to , half of the initial kinetic energy must have been converted to potential energy when the projectile is at . Thus, the kinetic energy must be half of its original value (i.e., when ). You need to determine the speed, as a multiple of , that corresponds to such a kinetic energy. ANSWER: Correct Let us now consider objects launched at an angle. For such situations, using conservation of energy leads to a quicker solution than can be produced by kinematics. Part G A ball is launched as a projectile with initial speed at an angle above the horizontal. Using conservation of energy, find the maximum height of the ball’s flight. Express your answer in terms of , , and . Hint 1. Find the final kinetic energy Find the final kinetic energy of the ball. Here, the best choice of “final” moment is the point at which the ball reaches its maximum height, since this is the point we are interested in. u (1/2)hmax v g h = 0 v (1/2)mv2 h (1/2)hmax (1/4)mv2 h = (1/2)hmax v u = 0.707v v hmax v g Kf Express your answer in terms of , , and . Hint 1. Find the speed at the maximum height The speed of the ball at the maximum height is __________. ANSWER: ANSWER: ANSWER: Correct Part H A ball is launched with initial speed from ground level up a frictionless slope. The slope makes an angle with the horizontal. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of , , and . You may or may not use all of these quantities. v m 0 v v cos v sin v tan Kf = 0.5m(vcos( ))2 hmax = (vsin( ))2 2g v hmax v g ANSWER: Correct Interestingly, the answer does not depend on . The difference between this situation and the projectile case is that the ball moving up a slope has no kinetic energy at the top of its trajectory whereas the projectile launched at an angle does. Part I A ball is launched with initial speed from the ground level up a frictionless hill. The hill becomes steeper as the ball slides up; however, the ball remains in contact with the hill at all times. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of and . ANSWER: Correct The profile of the hill does not matter; the equation would have the same terms regardless of the steepness of the hill. Problem 10.14 A 12- -long spring is attached to the ceiling. When a 2.2 mass is hung from it, the spring stretches to a length of 17 . Part A What is the spring constant ? Express your answer to two significant figures and include the appropriate units. hmax = v2 2g v hmax v g hmax = v2 2g Ki + Ui = Kf + Uf cm kg cm k ANSWER: Correct Part B How long is the spring when a 3.0 mass is suspended from it? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.17 A 6.2 mass hanging from a spring scale is slowly lowered onto a vertical spring, as shown in . You may want to review ( pages 255 – 257) . For help with math skills, you may want to review: Solving Algebraic Equations = 430 k Nm kg y = 19 cm kg Part A What does the spring scale read just before the mass touches the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass before it touches the scale. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? ANSWER: Correct Part B The scale reads 22 when the lower spring has been compressed by 2.7 . What is the value of the spring constant for the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? Use these to determine the force on the mass by the spring, taking note of the directions from your picture. How is the spring constant related to the force by the spring and the compression of the spring? Check your units. ANSWER: F = 61 N N cm k = 1400 k Nm Correct Part C At what compression length will the scale read zero? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces on the mass. When the scale reads zero, what is the force on the mass due to the scale? What is the gravitational force on the mass? What is the force on the mass by the spring? How is the compression length related to the force by the spring and the spring constant? Check your units. ANSWER: Correct Problem 10.18 Part A How far must you stretch a spring with = 800 to store 180 of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: y = 4.2 cm k N/m J Correct Problem 10.22 A 15 runaway grocery cart runs into a spring with spring constant 230 and compresses it by 57 . Part A What was the speed of the cart just before it hit the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Spring Gun A spring-loaded toy gun is used to shoot a ball straight up in the air. The ball reaches a maximum height , measured from the equilibrium position of the spring. s = 0.67 m kg N/m cm v = 2.2 ms H Part A The same ball is shot straight up a second time from the same gun, but this time the spring is compressed only half as far before firing. How far up does the ball go this time? Neglect friction. Assume that the spring is ideal and that the distance by which the spring is compressed is negligible compared to . Hint 1. Potential energy of the spring The potential energy of a spring is proportional to the square of the distance the spring is compressed. The spring was compressed half the distance, so the mass, when launched, has one quarter of the energy as in the first trial. Hint 2. Potential energy of the ball At the highest point in the ball’s trajectory, all of the spring’s potential energy has been converted into gravitational potential energy of the ball. ANSWER: Correct A Bullet Is Fired into a Wooden Block A bullet of mass is fired horizontally with speed at a wooden block of mass resting on a frictionless table. The bullet hits the block and becomes completely embedded within it. After the bullet has come to rest within the block, the block, with the bullet in it, is traveling at speed . H height = H 4 mb vi mw vf Part A Which of the following best describes this collision? Hint 1. Types of collisions An inelastic collision is a collision in which kinetic energy is not conserved. In a partially inelastic collision, kinetic energy is lost, but the objects colliding do not stick together. From this information, you can infer what completely inelastic and elastic collisions are. ANSWER: Correct Part B Which of the following quantities, if any, are conserved during this collision? Hint 1. When is kinetic energy conserved? Kinetic energy is conserved only in perfectly elastic collisions. ANSWER: perfectly elastic partially inelastic perfectly inelastic Correct Part C What is the speed of the block/bullet system after the collision? Express your answer in terms of , , and . Hint 1. Find the momentum after the collision What is the total momentum of the block/bullet system after the collision? Express your answer in terms of and other given quantities. ANSWER: Hint 2. Use conservation of momentum The momentum of the block/bullet system is conserved. Therefore, the momentum before the collision is the same as the momentum after the collision. Find a second expression for , this time expressed as the total momentum of the system before the collision. Express your answer in terms of and other given quantities. ANSWER: kinetic energy only momentum only kinetic energy and momentum neither momentum nor kinetic energy vi mw mb ptotal vf ptotal = (mw + mb)vf ptotal vi ptotal = mbvi ANSWER: Correct Problem 10.31 Ball 1, with a mass of 150 and traveling at 15.0 , collides head on with ball 2, which has a mass of 340 and is initially at rest. Part A What are the final velocities of each ball if the collision is perfectly elastic? Express your answer with the appropriate units. ANSWER: Correct Part B Express your answer with the appropriate units. ANSWER: Correct Part C vf = mb vi mb+mw g m/s g (vfx) = -5.82 1 ms (vfx) = 9.18 2 ms What are the final velocities of each ball if the collision is perfectly inelastic? Express your answer with the appropriate units. ANSWER: Correct Part D Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.43 A package of mass is released from rest at a warehouse loading dock and slides down the = 2.2 – high, frictionless chute to a waiting truck. Unfortunately, the truck driver went on a break without having removed the previous package, of mass , from the bottom of the chute. You may want to review ( pages 265 – 269) . For help with math skills, you may want to review: Solving Algebraic Equations (vfx) = 4.59 1 ms (vfx) = 4.59 2 ms m h m 2m Part A Suppose the packages stick together. What is their common speed after the collision? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are two parts to this problem: the block sliding down the frictionless incline and the collision. What conservation laws are valid in each part? In terms of , what are the kinetic and potential energies of the block at the top of the incline? What is the potential energy of the same block at the bottom just before the collision? What are the kinetic energy and velocity of block just before the collision? What is conserved during the collision? What is the total momentum of the two blocks before the collision? What is the momentum of the two blocks stuck together after the collision? What is the velocity of the two blocks after the collision? ANSWER: Correct Part B Suppose the collision between the packages is perfectly elastic. To what height does the package of mass rebound? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are three parts to this problem: the block sliding down the incline, the collision, and mass going back up the incline. What conservation laws are valid in each part? m m v = 2.2 ms m m What is an elastic collision? For an elastic collision, how are the initial and final velocities related when one of the masses is initially at rest? Using the velocity of just before the collision from Part A, what is the velocity of just after the collision in this case? What are the kinetic and potential energies of mass just after the collision? What is the kinetic energy of mass at its maximum rebound height? Using conservation of energy, what is the potential energy of mass at its maximum height? What is the maximum height? ANSWER: Correct Problem 10.35 A cannon tilted up at a 35.0 angle fires a cannon ball at 79.0 from atop a 21.0 -high fortress wall. Part A What is the ball’s impact speed on the ground below? Express your answer with the appropriate units. ANSWER: Correct Problem 10.45 A 1000 safe is 2.5 above a heavy-duty spring when the rope holding the safe breaks. The safe hits the spring and compresses it 48 . m m m m m h = 24 cm $ m/s m vf = 81.6 ms kg m cm Part A What is the spring constant of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.49 A 100 block on a frictionless table is firmly attached to one end of a spring with = 21 . The other end of the spring is anchored to the wall. A 30 ball is thrown horizontally toward the block with a speed of 6.0 . Part A If the collision is perfectly elastic, what is the ball’s speed immediately after the collision? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the maximum compression of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: = 2.5×105 k Nm g k N/m g m/s v = 3.2 ms Correct Part C Repeat part A for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D Repeat part B for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 99.4%. You received 120.28 out of a possible total of 121 points. x = 0.19 m v = 1.4 ms x = 0.11 m

Assignment 8 Due: 11:59pm on Friday, April 4, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 10.3 Part A If a particle’s speed increases by a factor of 5, by what factor does its kinetic energy change? ANSWER: Correct Conceptual Question 10.11 A spring is compressed 1.5 . Part A How far must you compress a spring with twice the spring constant to store the same amount of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct = 25 K2 K1 cm x = 1.1 cm Problem 10.2 The lowest point in Death Valley is below sea level. The summit of nearby Mt. Whitney has an elevation of 4420 . Part A What is the change in potential energy of an energetic 80 hiker who makes it from the floor of Death Valley to the top of Mt.Whitney? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.3 Part A At what speed does a 1800 compact car have the same kinetic energy as a 1.80×104 truck going 21.0 ? Express your answer with the appropriate units. ANSWER: Correct Problem 10.5 A boy reaches out of a window and tosses a ball straight up with a speed of 13 . The ball is 21 above the ground as he releases it. 85m m kg U = 3.5×106 J kg kg km/hr vc = 66.4 km hr m/s m Part A Use energy to find the ball’s maximum height above the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B Use energy to find the ball’s speed as it passes the window on its way down. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C Use energy to find the speed of impact on the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Hmax = 30 m v = 13 ms v = 24 ms Problem 10.8 A 59.0 skateboarder wants to just make it to the upper edge of a “quarter pipe,” a track that is one-quarter of a circle with a radius of 2.30 . Part A What speed does he need at the bottom? Express your answer with the appropriate units. ANSWER: Correct Problem 10.12 A 1500 car traveling at 12 suddenly runs out of gas while approaching the valley shown in the figure. The alert driver immediately puts the car in neutral so that it will roll. Part A kg m 6.71 ms kg m/s What will be the car’s speed as it coasts into the gas station on the other side of the valley? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Ups and Downs Learning Goal: To apply the law of conservation of energy to an object launched upward in the gravitational field of the earth. In the absence of nonconservative forces such as friction and air resistance, the total mechanical energy in a closed system is conserved. This is one particular case of the law of conservation of energy. In this problem, you will apply the law of conservation of energy to different objects launched from the earth. The energy transformations that take place involve the object’s kinetic energy and its gravitational potential energy . The law of conservation of energy for such cases implies that the sum of the object’s kinetic energy and potential energy does not change with time. This idea can be expressed by the equation , where “i” denotes the “initial” moment and “f” denotes the “final” moment. Since any two moments will work, the choice of the moments to consider is, technically, up to you. That choice, though, is usually suggested by the question posed in the problem. First, let us consider an object launched vertically upward with an initial speed . Neglect air resistance. Part A As the projectile goes upward, what energy changes take place? ANSWER: v = 6.8 ms K = (1/2)mv2 U = mgh Ki + Ui = Kf + Uf v Correct Part B At the top point of the flight, what can be said about the projectile’s kinetic and potential energy? ANSWER: Correct Strictly speaking, it is not the ball that possesses potential energy; rather, it is the system “Earth-ball.” Although we will often talk about “the gravitational potential energy of an elevated object,” it is useful to keep in mind that the energy, in fact, is associated with the interactions between the earth and the elevated object. Part C The potential energy of the object at the moment of launch __________. ANSWER: Both kinetic and potential energy decrease. Both kinetic and potential energy increase. Kinetic energy decreases; potential energy increases. Kinetic energy increases; potential energy decreases. Both kinetic and potential energy are at their maximum values. Both kinetic and potential energy are at their minimum values. Kinetic energy is at a maximum; potential energy is at a minimum. Kinetic energy is at a minimum; potential energy is at a maximum. Correct Usually, the zero level is chosen so as to make the relevant calculations simpler. In this case, it makes good sense to assume that at the ground level–but this is not, by any means, the only choice! Part D Using conservation of energy, find the maximum height to which the object will rise. Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: Correct You may remember this result from kinematics. It is comforting to know that our new approach yields the same answer. Part E At what height above the ground does the projectile have a speed of ? Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: is negative is positive is zero depends on the choice of the “zero level” of potential energy U = 0 hmax v g hmax = v2 2g h 0.5v v g h = 3 v2 8g Correct Part F What is the speed of the object at the height of ? Express your answer in terms of and . Use three significant figures in the numeric coefficient. Hint 1. How to approach the problem You are being asked for the speed at half of the maximum height. You know that at the initial height ( ), the speed is . All of the energy is kinetic energy, and so, the total energy is . At the maximum height, all of the energy is potential energy. Since the gravitational potential energy is proportional to , half of the initial kinetic energy must have been converted to potential energy when the projectile is at . Thus, the kinetic energy must be half of its original value (i.e., when ). You need to determine the speed, as a multiple of , that corresponds to such a kinetic energy. ANSWER: Correct Let us now consider objects launched at an angle. For such situations, using conservation of energy leads to a quicker solution than can be produced by kinematics. Part G A ball is launched as a projectile with initial speed at an angle above the horizontal. Using conservation of energy, find the maximum height of the ball’s flight. Express your answer in terms of , , and . Hint 1. Find the final kinetic energy Find the final kinetic energy of the ball. Here, the best choice of “final” moment is the point at which the ball reaches its maximum height, since this is the point we are interested in. u (1/2)hmax v g h = 0 v (1/2)mv2 h (1/2)hmax (1/4)mv2 h = (1/2)hmax v u = 0.707v v hmax v g Kf Express your answer in terms of , , and . Hint 1. Find the speed at the maximum height The speed of the ball at the maximum height is __________. ANSWER: ANSWER: ANSWER: Correct Part H A ball is launched with initial speed from ground level up a frictionless slope. The slope makes an angle with the horizontal. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of , , and . You may or may not use all of these quantities. v m 0 v v cos v sin v tan Kf = 0.5m(vcos( ))2 hmax = (vsin( ))2 2g v hmax v g ANSWER: Correct Interestingly, the answer does not depend on . The difference between this situation and the projectile case is that the ball moving up a slope has no kinetic energy at the top of its trajectory whereas the projectile launched at an angle does. Part I A ball is launched with initial speed from the ground level up a frictionless hill. The hill becomes steeper as the ball slides up; however, the ball remains in contact with the hill at all times. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of and . ANSWER: Correct The profile of the hill does not matter; the equation would have the same terms regardless of the steepness of the hill. Problem 10.14 A 12- -long spring is attached to the ceiling. When a 2.2 mass is hung from it, the spring stretches to a length of 17 . Part A What is the spring constant ? Express your answer to two significant figures and include the appropriate units. hmax = v2 2g v hmax v g hmax = v2 2g Ki + Ui = Kf + Uf cm kg cm k ANSWER: Correct Part B How long is the spring when a 3.0 mass is suspended from it? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.17 A 6.2 mass hanging from a spring scale is slowly lowered onto a vertical spring, as shown in . You may want to review ( pages 255 – 257) . For help with math skills, you may want to review: Solving Algebraic Equations = 430 k Nm kg y = 19 cm kg Part A What does the spring scale read just before the mass touches the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass before it touches the scale. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? ANSWER: Correct Part B The scale reads 22 when the lower spring has been compressed by 2.7 . What is the value of the spring constant for the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? Use these to determine the force on the mass by the spring, taking note of the directions from your picture. How is the spring constant related to the force by the spring and the compression of the spring? Check your units. ANSWER: F = 61 N N cm k = 1400 k Nm Correct Part C At what compression length will the scale read zero? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces on the mass. When the scale reads zero, what is the force on the mass due to the scale? What is the gravitational force on the mass? What is the force on the mass by the spring? How is the compression length related to the force by the spring and the spring constant? Check your units. ANSWER: Correct Problem 10.18 Part A How far must you stretch a spring with = 800 to store 180 of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: y = 4.2 cm k N/m J Correct Problem 10.22 A 15 runaway grocery cart runs into a spring with spring constant 230 and compresses it by 57 . Part A What was the speed of the cart just before it hit the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Spring Gun A spring-loaded toy gun is used to shoot a ball straight up in the air. The ball reaches a maximum height , measured from the equilibrium position of the spring. s = 0.67 m kg N/m cm v = 2.2 ms H Part A The same ball is shot straight up a second time from the same gun, but this time the spring is compressed only half as far before firing. How far up does the ball go this time? Neglect friction. Assume that the spring is ideal and that the distance by which the spring is compressed is negligible compared to . Hint 1. Potential energy of the spring The potential energy of a spring is proportional to the square of the distance the spring is compressed. The spring was compressed half the distance, so the mass, when launched, has one quarter of the energy as in the first trial. Hint 2. Potential energy of the ball At the highest point in the ball’s trajectory, all of the spring’s potential energy has been converted into gravitational potential energy of the ball. ANSWER: Correct A Bullet Is Fired into a Wooden Block A bullet of mass is fired horizontally with speed at a wooden block of mass resting on a frictionless table. The bullet hits the block and becomes completely embedded within it. After the bullet has come to rest within the block, the block, with the bullet in it, is traveling at speed . H height = H 4 mb vi mw vf Part A Which of the following best describes this collision? Hint 1. Types of collisions An inelastic collision is a collision in which kinetic energy is not conserved. In a partially inelastic collision, kinetic energy is lost, but the objects colliding do not stick together. From this information, you can infer what completely inelastic and elastic collisions are. ANSWER: Correct Part B Which of the following quantities, if any, are conserved during this collision? Hint 1. When is kinetic energy conserved? Kinetic energy is conserved only in perfectly elastic collisions. ANSWER: perfectly elastic partially inelastic perfectly inelastic Correct Part C What is the speed of the block/bullet system after the collision? Express your answer in terms of , , and . Hint 1. Find the momentum after the collision What is the total momentum of the block/bullet system after the collision? Express your answer in terms of and other given quantities. ANSWER: Hint 2. Use conservation of momentum The momentum of the block/bullet system is conserved. Therefore, the momentum before the collision is the same as the momentum after the collision. Find a second expression for , this time expressed as the total momentum of the system before the collision. Express your answer in terms of and other given quantities. ANSWER: kinetic energy only momentum only kinetic energy and momentum neither momentum nor kinetic energy vi mw mb ptotal vf ptotal = (mw + mb)vf ptotal vi ptotal = mbvi ANSWER: Correct Problem 10.31 Ball 1, with a mass of 150 and traveling at 15.0 , collides head on with ball 2, which has a mass of 340 and is initially at rest. Part A What are the final velocities of each ball if the collision is perfectly elastic? Express your answer with the appropriate units. ANSWER: Correct Part B Express your answer with the appropriate units. ANSWER: Correct Part C vf = mb vi mb+mw g m/s g (vfx) = -5.82 1 ms (vfx) = 9.18 2 ms What are the final velocities of each ball if the collision is perfectly inelastic? Express your answer with the appropriate units. ANSWER: Correct Part D Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.43 A package of mass is released from rest at a warehouse loading dock and slides down the = 2.2 – high, frictionless chute to a waiting truck. Unfortunately, the truck driver went on a break without having removed the previous package, of mass , from the bottom of the chute. You may want to review ( pages 265 – 269) . For help with math skills, you may want to review: Solving Algebraic Equations (vfx) = 4.59 1 ms (vfx) = 4.59 2 ms m h m 2m Part A Suppose the packages stick together. What is their common speed after the collision? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are two parts to this problem: the block sliding down the frictionless incline and the collision. What conservation laws are valid in each part? In terms of , what are the kinetic and potential energies of the block at the top of the incline? What is the potential energy of the same block at the bottom just before the collision? What are the kinetic energy and velocity of block just before the collision? What is conserved during the collision? What is the total momentum of the two blocks before the collision? What is the momentum of the two blocks stuck together after the collision? What is the velocity of the two blocks after the collision? ANSWER: Correct Part B Suppose the collision between the packages is perfectly elastic. To what height does the package of mass rebound? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are three parts to this problem: the block sliding down the incline, the collision, and mass going back up the incline. What conservation laws are valid in each part? m m v = 2.2 ms m m What is an elastic collision? For an elastic collision, how are the initial and final velocities related when one of the masses is initially at rest? Using the velocity of just before the collision from Part A, what is the velocity of just after the collision in this case? What are the kinetic and potential energies of mass just after the collision? What is the kinetic energy of mass at its maximum rebound height? Using conservation of energy, what is the potential energy of mass at its maximum height? What is the maximum height? ANSWER: Correct Problem 10.35 A cannon tilted up at a 35.0 angle fires a cannon ball at 79.0 from atop a 21.0 -high fortress wall. Part A What is the ball’s impact speed on the ground below? Express your answer with the appropriate units. ANSWER: Correct Problem 10.45 A 1000 safe is 2.5 above a heavy-duty spring when the rope holding the safe breaks. The safe hits the spring and compresses it 48 . m m m m m h = 24 cm $ m/s m vf = 81.6 ms kg m cm Part A What is the spring constant of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.49 A 100 block on a frictionless table is firmly attached to one end of a spring with = 21 . The other end of the spring is anchored to the wall. A 30 ball is thrown horizontally toward the block with a speed of 6.0 . Part A If the collision is perfectly elastic, what is the ball’s speed immediately after the collision? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the maximum compression of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: = 2.5×105 k Nm g k N/m g m/s v = 3.2 ms Correct Part C Repeat part A for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D Repeat part B for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 99.4%. You received 120.28 out of a possible total of 121 points. x = 0.19 m v = 1.4 ms x = 0.11 m

please email info@checkyourstudy.com