A beam of light is diffracted by a single slit. The distance between the positions of zero intensity (m = ±1) is 4.54 mm.Estimate the wavelength of the laser light. Use a small angle approximation sin θ = tan θ .

A beam of light is diffracted by a single slit. The distance between the positions of zero intensity (m = ±1) is 4.54 mm.Estimate the wavelength of the laser light. Use a small angle approximation sin θ = tan θ .

In case the body have to stay in lower temperature for extended time period (more than 1 hour), how does the body regulate its response?

In case the body have to stay in lower temperature for extended time period (more than 1 hour), how does the body regulate its response?

Arterioles transporting blood to external capillaries beneath the surface of … Read More...
According to previous research, women are generally higher than men in affect intensity. This finding may provide evidence for why ________. it is more adaptive for women to express their anger than it is for men women are more emotionally intelligent compared to men women have a higher threshold for pain compared to men women are more prone to depression compared to men

According to previous research, women are generally higher than men in affect intensity. This finding may provide evidence for why ________. it is more adaptive for women to express their anger than it is for men women are more emotionally intelligent compared to men women have a higher threshold for pain compared to men women are more prone to depression compared to men

According to previous research, women are generally higher than men … Read More...

info@checkyourstudy.com Lab #02 Relationship between distance & illumination As engineers, … Read More...
7.[ Book Section 8.2] A 2mC charge with velocity ˙u = 5˙ax − ˙ay + 12˙azm/s enters a region with a magnetic flux density of 20˙az Wb/m2 (a) Calculate the force on the charge (b) Determine the electric field intensity necessary to make the velocity of the charge constant

7.[ Book Section 8.2] A 2mC charge with velocity ˙u = 5˙ax − ˙ay + 12˙azm/s enters a region with a magnetic flux density of 20˙az Wb/m2 (a) Calculate the force on the charge (b) Determine the electric field intensity necessary to make the velocity of the charge constant

Q7 consider sound db level is increase from 70 dB to 83dB. what is the intensity increase ?

Q7 consider sound db level is increase from 70 dB to 83dB. what is the intensity increase ?

Ans
light that has a wavelength equal to 420 nm falls normally on four slits. Each slit is 2.00 um wide and the center-to-center separation between it and the next slit is 8.00 um. (a) find the angular width of the central intensity maximum of the single slit diffraction pattern on a distant screen. This is the angle between the two minima adjacent to the central bright maximum of one of the four slits. (b) Find the angular position of all of the interference intensity maxima that lie inside the central diffraction maximum . sketch the positions of these maxima.

light that has a wavelength equal to 420 nm falls normally on four slits. Each slit is 2.00 um wide and the center-to-center separation between it and the next slit is 8.00 um. (a) find the angular width of the central intensity maximum of the single slit diffraction pattern on a distant screen. This is the angle between the two minima adjacent to the central bright maximum of one of the four slits. (b) Find the angular position of all of the interference intensity maxima that lie inside the central diffraction maximum . sketch the positions of these maxima.

Question 1, chap 33, sect 3. part 1 of 2 10 points The compound eyes of bees and other insects are highly sensitive to light in the ultraviolet portion of the spectrum, particularly light with frequencies between 7.5 × 1014 Hz and 1.0 × 1015 Hz. The speed of light is 3 × 108 m/s. What is the largest wavelength to which these frequencies correspond? Question 3, chap 33, sect 3. part 1 of 3 10 points A plane electromagnetic sinusoidal wave of frequency 10.7 MHz travels in free space. The speed of light is 2.99792 × 108 m/s. Determine the wavelength of the wave. Question 4, chap 33, sect 3. part 2 of 3 10 points Find the period of the wave. Question 2, chap 33, sect 3. part 2 of 2 10 points What is the smallest wavelength? Question 5, chap 33, sect 3. part 3 of 3 10 points At some point and some instant, the electric field has has a value of 998 N/C. Calculate the magnitude of the magnetic field at this point and this instant. Question 6, chap 33, sect 3. part 1 of 2 10 points A plane electromagnetic sinusoidal wave of frequency 10.7 MHz travels in free space. The speed of light is 2.99792 × 108 m/s. Determine the wavelength of the wave. Question 8, chap 33, sect 3. part 1 of 1 10 points The magnetic field amplitude of an electromagnetic wave is 9.9 × 10−6 T. The speed of light is 2.99792 × 108 m/s . Calculate the amplitude of the electric field if the wave is traveling in free space. Question 7, chap 33, sect 3. part 2 of 2 10 points At some point and some instant, the electric field has has a value of 998 V/m. Calculate the magnitude of the magnetic field at this point and this instant. Question 9, chap 33, sect 5. part 1 of 1 10 points The cable is carrying the current I(t). at the surface of a long transmission cable of resistivity ρ, length ℓ and radius a, using the expression ~S = 1 μ0 ~E × ~B . Question 10, chap 33, sect 5. part 1 of 1 10 points In 1965 Penzias and Wilson discovered the cosmic microwave radiation left over from the Big Bang expansion of the universe. The energy density of this radiation is 7.64 × 10−14 J/m3. The speed of light 2.99792 × 108 m/s and the permeability of free space is 4π × 10−7 N/A2. Determine the corresponding electric field amplQuestion 11, chap 33, sect 5. part 1 of 5 10 points Consider a monochromatic electromagnetic plane wave propagating in the x direction. At a particular point in space, the magnitude of the electric field has an instantaneous value of 998 V/m in the positive y-direction. The wave is traveling in the positive x-direction. x y z E wave propagation The speed of light is 2.99792×108 m/s, the permeability of free space is 4π×10−7 T ・ N/A and the permittivity of free space 8.85419 × 10−12 C2/N ・ m2. Compute the instantaneous magnitude of the magnetic field at the same point and time.itude. Question 12, chap 33, sect 5. part 2 of 5 10 points What is the instantaneous magnitude of the Poynting vector at the same point and time? Question 13, chap 33, sect 5. part 3 of 5 10 points What are the directions of the instantaneous magnetic field and theQuestion 14, chap 33, sect 5. part 4 of 5 10 points What is the instantaneous value of the energy density of the electric field? Question 16, chap 33, sect 6. part 1 of 4 10 points Consider an electromagnetic plane wave with time average intensity 104 W/m2 . The speed of light is 2.99792 × 108 m/s and the permeability of free space is 4 π × 10−7 T・m/A. What is its maximum electric field? What is the instantaneous value of the energy density of the magnetic field? Question 17, chap 33, sect 6. part 2 of 4 10 points What is the the maximum magnetic field? Question 19, chap 33, sect 6. part 4 of 4 10 points Consider an electromagnetic wave pattern as shown in the figure below. Question 18, chap 33, sect 6. part 3 of 4 10 points What is the pressure on a surface which is perpendicular to the beam and is totally reflective? Question 20, chap 33, sect 8. part 1 of 1 10 points A coin is at the bottom of a beaker. The beaker is filled with 1.6 cm of water (n1 = 1.33) covered by 2.1 cm of liquid (n2 = 1.4) floating on the water. How deep does the coin appear to be from the upper surface of the liquid (near the top of the beaker)? An cylindrical opaque drinking glass has a diameter 3 cm and height h, as shown in the figure. An observer’s eye is placed as shown (the observer is just barely looking over the rim of the glass). When empty, the observer can just barely see the edge of the bottom of the glass. When filled to the brim with a transparent liquid, the observer can just barely see the center of the bottom of the glass. The liquid in the drinking glass has an index of refraction of 1.4 . θi h d θr eye Calculate the angle θr . Question 22, chap 33, sect 8. part 2 of 2 10 points Calculate the height h of the glass.