You are to create and administer a public opinion survey. • Step 1: choose a topic – person, issue, event, opinion, etc. • Step 2: write at least 10 questions asking for opinions on your chosen topic. Use a standard scale 1-10 (to show direction and intensity). Do not ask open-ended (what do you think/feel ) questions! • Step 3: poll a random sample (at least 10 individuals) of your target group (everyone, men/women, old/young, student, unemployed, etc.) • Step 4: Write a brief analysis of the actual survey you created and the results of your poll. (1-2 pages) Submit the analysis, an original copy of the survey, and all survey responses. You will be graded on the survey quality and analysis, NOT on the topic – issue or candidate. Please remember: o You cannot poll your classmates. You must find a random sample of other individuals. o Make sure your questions aren’t leading their opinion. o Consider the placement of your questions – is it leading as well? o In your analysis, think about the margin of error, the people who did/did not respond, the quality of questions, the situational factors, etc. o Use your book for assistance. o Additional websites to look for guidance (not copy/paste): www.polllingreport.com / www.gallup.com ***NOTE: You may work with a partner for this assignment. IF you choose to do so, you MUST increase to a minimum of 20 individuals surveyed.

You are to create and administer a public opinion survey. • Step 1: choose a topic – person, issue, event, opinion, etc. • Step 2: write at least 10 questions asking for opinions on your chosen topic. Use a standard scale 1-10 (to show direction and intensity). Do not ask open-ended (what do you think/feel ) questions! • Step 3: poll a random sample (at least 10 individuals) of your target group (everyone, men/women, old/young, student, unemployed, etc.) • Step 4: Write a brief analysis of the actual survey you created and the results of your poll. (1-2 pages) Submit the analysis, an original copy of the survey, and all survey responses. You will be graded on the survey quality and analysis, NOT on the topic – issue or candidate. Please remember: o You cannot poll your classmates. You must find a random sample of other individuals. o Make sure your questions aren’t leading their opinion. o Consider the placement of your questions – is it leading as well? o In your analysis, think about the margin of error, the people who did/did not respond, the quality of questions, the situational factors, etc. o Use your book for assistance. o Additional websites to look for guidance (not copy/paste): www.polllingreport.com / www.gallup.com ***NOTE: You may work with a partner for this assignment. IF you choose to do so, you MUST increase to a minimum of 20 individuals surveyed.

No expert has answered this question yet. You can browse … Read More...
NAME: ARTIFACT: Describe your artifact. Why do you think it would work well for this project? _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ ASSIGNMENT CRITERIA Please answer “yes” or “no” to the following questions. Is your artifact something that was made by people? ___yes ___no Is your artifact specific? (i.e., not a broad concept) ___yes ___no Can you point to your artifact? (i.e., not an abstract idea) ___yes ___no Does your artifact contain enough material to analyze? ___yes ___no Does your artifact relate to the course theme? ___yes ___no Did you bring your artifact to class today? ___yes ___no If you answered no, why not? _________________________________________ REVIEW Take a moment to quickly review the fundamental moves of analysis with your artifact. Do you notice patterns of frequency? ___yes ___no Do you notice patterns of contrast? ___yes ___no Do you notice anomalies? ___yes ___no Do you notice intensity or specific moments of intensity? ___yes ___no Record notes from this exercise in the space provided. What patterns, anomalies, and moments of intensity have you identified that you’d like to keep in mind moving forward? _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ WILL IT WORK? Talk over your responses with a partner before recording an answer to this question. If you or your partner answered “no” to half or more than half of these questions, you may want to reconsider the artifact you have chosen to analyze. Will your artifact work for this project? ___yes ___no FINAL STEPS If you have determined—yes—your artifact will work for this project, record any notes you’d like to save from this exercise in your class notebook and hand this checklist in to your instructor. If you have determined—no—your artifact will not work for this project, take a few minutes to brainstorm other potential artifacts that better fit the assignment criteria and lend themselves to analysis (at least 3). Record your ideas in the space provided and in your class notebook, and hand this checklist in to your instructor. _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ If you have determined—I don’t know—or if you’re not sure if your artifact will work for this project, take a few minutes to write down concerns and questions this exercised has raised. Record them in the space provided and in your class notebook, and hand this checklist in to your instructor. _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ That’s it, you’re done! Expect an email in response to this exercise before the next class period.

NAME: ARTIFACT: Describe your artifact. Why do you think it would work well for this project? _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ ASSIGNMENT CRITERIA Please answer “yes” or “no” to the following questions. Is your artifact something that was made by people? ___yes ___no Is your artifact specific? (i.e., not a broad concept) ___yes ___no Can you point to your artifact? (i.e., not an abstract idea) ___yes ___no Does your artifact contain enough material to analyze? ___yes ___no Does your artifact relate to the course theme? ___yes ___no Did you bring your artifact to class today? ___yes ___no If you answered no, why not? _________________________________________ REVIEW Take a moment to quickly review the fundamental moves of analysis with your artifact. Do you notice patterns of frequency? ___yes ___no Do you notice patterns of contrast? ___yes ___no Do you notice anomalies? ___yes ___no Do you notice intensity or specific moments of intensity? ___yes ___no Record notes from this exercise in the space provided. What patterns, anomalies, and moments of intensity have you identified that you’d like to keep in mind moving forward? _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ WILL IT WORK? Talk over your responses with a partner before recording an answer to this question. If you or your partner answered “no” to half or more than half of these questions, you may want to reconsider the artifact you have chosen to analyze. Will your artifact work for this project? ___yes ___no FINAL STEPS If you have determined—yes—your artifact will work for this project, record any notes you’d like to save from this exercise in your class notebook and hand this checklist in to your instructor. If you have determined—no—your artifact will not work for this project, take a few minutes to brainstorm other potential artifacts that better fit the assignment criteria and lend themselves to analysis (at least 3). Record your ideas in the space provided and in your class notebook, and hand this checklist in to your instructor. _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ If you have determined—I don’t know—or if you’re not sure if your artifact will work for this project, take a few minutes to write down concerns and questions this exercised has raised. Record them in the space provided and in your class notebook, and hand this checklist in to your instructor. _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ That’s it, you’re done! Expect an email in response to this exercise before the next class period.

A beam of light is diffracted by a single slit. The distance between the positions of zero intensity (m = ±1) is 4.54 mm.Estimate the wavelength of the laser light. Use a small angle approximation sin θ = tan θ .

A beam of light is diffracted by a single slit. The distance between the positions of zero intensity (m = ±1) is 4.54 mm.Estimate the wavelength of the laser light. Use a small angle approximation sin θ = tan θ .

In case the body have to stay in lower temperature for extended time period (more than 1 hour), how does the body regulate its response?

In case the body have to stay in lower temperature for extended time period (more than 1 hour), how does the body regulate its response?

Arterioles transporting blood to external capillaries beneath the surface of … Read More...
According to previous research, women are generally higher than men in affect intensity. This finding may provide evidence for why ________. it is more adaptive for women to express their anger than it is for men women are more emotionally intelligent compared to men women have a higher threshold for pain compared to men women are more prone to depression compared to men

According to previous research, women are generally higher than men in affect intensity. This finding may provide evidence for why ________. it is more adaptive for women to express their anger than it is for men women are more emotionally intelligent compared to men women have a higher threshold for pain compared to men women are more prone to depression compared to men

According to previous research, women are generally higher than men … Read More...
Lab #02 Relationship between distance & illumination As engineers, we deal with the effects of light on many projects. The first key to working with light is understanding how the light waves propagate. Once we understand light waves, we will test a manufacturers claim that lower wattage fluorescent bulbs output the same quantity of light as incandescent bulbs. This experiment is designed for you to work as a class to collect data regarding a given light source and then, working within your individual group, attempt to determine the re-lationship(s) between the measured parameter (lux) and the distance (meter) from the source. Measure and record data, in the manner described below, as a class. Work on your so-lutions as a group of 2-3. Your first task is to develop a mathematical formula, or a simple relationship that predicts the amount of lux that can be expected at a given distance from the light source. Purpose: The purpose of this assignment is to accomplish the following goals: • Gain experience collecting data in a controlled, systematic fashion. • Practice working as a group to infer relationships between variables from your collected data. • Use the data you collect to draw conclusions. In this case, to evaluate the hypothesis that the fluorescent and incandescent bulb output the same quantity of light. • Become accustomed to working in teams (note, teamwork often requires individual work as well). • Learn to balance workload across your team. (Individuals will be responsible for certain tasks, and ensure they are performed on time and to the desired quality level. • Demonstrate to me what your group’s attention to detail is, as well as your ability to construct a written explanation of work. Problem: What effect does distance have on the lux, intensity, emitted from a light source and are the 5 light bulbs producing the same intensity light? Use the rough protocol listed below and the data sheet provided to collect your data, then complete the assignment outlined below. 1. Set up a light source on one of the lab tables. 2. Using the illumination meter, measure the lux at 0.5 meter increments from the source back to 3 meters from the source. • Be sure the keep the meter perpendicular to the horizontal line from the source at all times! 3. Record your measurements on your data sheets. 4. Measurements should be taken in a random order 5. Repeat the experiment 3 times, using different people and a different order of collection and different colors. Assignment Requirements: 1. Create the appropriate graph(s) to express the data you have collected. Your report must, at the minimum, contain the following: a. An X-Y Scatter plot showing the data from both bulbs. The chart should follow all conventions taught in lecture, and display the equation for the trend-line you choose. b. A column or bar chart of your choosing showing the difference, if any, between the two bulbs. 2. Write an introduction, briefly explaining what you are accomplishing with this exper-iment. 3. Create a hierarchal outline that states, step by step, each activity that was performed to conduct the experiment and analyze the experimental data. 4. Anova analysis for data collected 5. Write a verbal explanation of what each of the charts from requirement #1 are showing. 6. Include, at the end of the document, a summary of all the tasks required to complete the assignment, including the 5 listed above, and which member or members of the group were principally responsible for completing those tasks. This should be in the form of a simple list. 7. Write at least 3 possible applications of the experiment with detailed explanation. DUE DATE: This assignment is to be completed and turned in at the beginning of your laboratory meeting during the week of 18th February Microsoft office package: Excel: Insert, page layout tab functions, Mean, standard deviation, graph functions

Lab #02 Relationship between distance & illumination As engineers, we deal with the effects of light on many projects. The first key to working with light is understanding how the light waves propagate. Once we understand light waves, we will test a manufacturers claim that lower wattage fluorescent bulbs output the same quantity of light as incandescent bulbs. This experiment is designed for you to work as a class to collect data regarding a given light source and then, working within your individual group, attempt to determine the re-lationship(s) between the measured parameter (lux) and the distance (meter) from the source. Measure and record data, in the manner described below, as a class. Work on your so-lutions as a group of 2-3. Your first task is to develop a mathematical formula, or a simple relationship that predicts the amount of lux that can be expected at a given distance from the light source. Purpose: The purpose of this assignment is to accomplish the following goals: • Gain experience collecting data in a controlled, systematic fashion. • Practice working as a group to infer relationships between variables from your collected data. • Use the data you collect to draw conclusions. In this case, to evaluate the hypothesis that the fluorescent and incandescent bulb output the same quantity of light. • Become accustomed to working in teams (note, teamwork often requires individual work as well). • Learn to balance workload across your team. (Individuals will be responsible for certain tasks, and ensure they are performed on time and to the desired quality level. • Demonstrate to me what your group’s attention to detail is, as well as your ability to construct a written explanation of work. Problem: What effect does distance have on the lux, intensity, emitted from a light source and are the 5 light bulbs producing the same intensity light? Use the rough protocol listed below and the data sheet provided to collect your data, then complete the assignment outlined below. 1. Set up a light source on one of the lab tables. 2. Using the illumination meter, measure the lux at 0.5 meter increments from the source back to 3 meters from the source. • Be sure the keep the meter perpendicular to the horizontal line from the source at all times! 3. Record your measurements on your data sheets. 4. Measurements should be taken in a random order 5. Repeat the experiment 3 times, using different people and a different order of collection and different colors. Assignment Requirements: 1. Create the appropriate graph(s) to express the data you have collected. Your report must, at the minimum, contain the following: a. An X-Y Scatter plot showing the data from both bulbs. The chart should follow all conventions taught in lecture, and display the equation for the trend-line you choose. b. A column or bar chart of your choosing showing the difference, if any, between the two bulbs. 2. Write an introduction, briefly explaining what you are accomplishing with this exper-iment. 3. Create a hierarchal outline that states, step by step, each activity that was performed to conduct the experiment and analyze the experimental data. 4. Anova analysis for data collected 5. Write a verbal explanation of what each of the charts from requirement #1 are showing. 6. Include, at the end of the document, a summary of all the tasks required to complete the assignment, including the 5 listed above, and which member or members of the group were principally responsible for completing those tasks. This should be in the form of a simple list. 7. Write at least 3 possible applications of the experiment with detailed explanation. DUE DATE: This assignment is to be completed and turned in at the beginning of your laboratory meeting during the week of 18th February Microsoft office package: Excel: Insert, page layout tab functions, Mean, standard deviation, graph functions

info@checkyourstudy.com Lab #02 Relationship between distance & illumination As engineers, … Read More...
7.[ Book Section 8.2] A 2mC charge with velocity ˙u = 5˙ax − ˙ay + 12˙azm/s enters a region with a magnetic flux density of 20˙az Wb/m2 (a) Calculate the force on the charge (b) Determine the electric field intensity necessary to make the velocity of the charge constant

7.[ Book Section 8.2] A 2mC charge with velocity ˙u = 5˙ax − ˙ay + 12˙azm/s enters a region with a magnetic flux density of 20˙az Wb/m2 (a) Calculate the force on the charge (b) Determine the electric field intensity necessary to make the velocity of the charge constant

light that has a wavelength equal to 420 nm falls normally on four slits. Each slit is 2.00 um wide and the center-to-center separation between it and the next slit is 8.00 um. (a) find the angular width of the central intensity maximum of the single slit diffraction pattern on a distant screen. This is the angle between the two minima adjacent to the central bright maximum of one of the four slits. (b) Find the angular position of all of the interference intensity maxima that lie inside the central diffraction maximum . sketch the positions of these maxima.

light that has a wavelength equal to 420 nm falls normally on four slits. Each slit is 2.00 um wide and the center-to-center separation between it and the next slit is 8.00 um. (a) find the angular width of the central intensity maximum of the single slit diffraction pattern on a distant screen. This is the angle between the two minima adjacent to the central bright maximum of one of the four slits. (b) Find the angular position of all of the interference intensity maxima that lie inside the central diffraction maximum . sketch the positions of these maxima.

Question 1, chap 33, sect 3. part 1 of 2 10 points The compound eyes of bees and other insects are highly sensitive to light in the ultraviolet portion of the spectrum, particularly light with frequencies between 7.5 × 1014 Hz and 1.0 × 1015 Hz. The speed of light is 3 × 108 m/s. What is the largest wavelength to which these frequencies correspond? Question 3, chap 33, sect 3. part 1 of 3 10 points A plane electromagnetic sinusoidal wave of frequency 10.7 MHz travels in free space. The speed of light is 2.99792 × 108 m/s. Determine the wavelength of the wave. Question 4, chap 33, sect 3. part 2 of 3 10 points Find the period of the wave. Question 2, chap 33, sect 3. part 2 of 2 10 points What is the smallest wavelength? Question 5, chap 33, sect 3. part 3 of 3 10 points At some point and some instant, the electric field has has a value of 998 N/C. Calculate the magnitude of the magnetic field at this point and this instant. Question 6, chap 33, sect 3. part 1 of 2 10 points A plane electromagnetic sinusoidal wave of frequency 10.7 MHz travels in free space. The speed of light is 2.99792 × 108 m/s. Determine the wavelength of the wave. Question 8, chap 33, sect 3. part 1 of 1 10 points The magnetic field amplitude of an electromagnetic wave is 9.9 × 10−6 T. The speed of light is 2.99792 × 108 m/s . Calculate the amplitude of the electric field if the wave is traveling in free space. Question 7, chap 33, sect 3. part 2 of 2 10 points At some point and some instant, the electric field has has a value of 998 V/m. Calculate the magnitude of the magnetic field at this point and this instant. Question 9, chap 33, sect 5. part 1 of 1 10 points The cable is carrying the current I(t). at the surface of a long transmission cable of resistivity ρ, length ℓ and radius a, using the expression ~S = 1 μ0 ~E × ~B . Question 10, chap 33, sect 5. part 1 of 1 10 points In 1965 Penzias and Wilson discovered the cosmic microwave radiation left over from the Big Bang expansion of the universe. The energy density of this radiation is 7.64 × 10−14 J/m3. The speed of light 2.99792 × 108 m/s and the permeability of free space is 4π × 10−7 N/A2. Determine the corresponding electric field amplQuestion 11, chap 33, sect 5. part 1 of 5 10 points Consider a monochromatic electromagnetic plane wave propagating in the x direction. At a particular point in space, the magnitude of the electric field has an instantaneous value of 998 V/m in the positive y-direction. The wave is traveling in the positive x-direction. x y z E wave propagation The speed of light is 2.99792×108 m/s, the permeability of free space is 4π×10−7 T ・ N/A and the permittivity of free space 8.85419 × 10−12 C2/N ・ m2. Compute the instantaneous magnitude of the magnetic field at the same point and time.itude. Question 12, chap 33, sect 5. part 2 of 5 10 points What is the instantaneous magnitude of the Poynting vector at the same point and time? Question 13, chap 33, sect 5. part 3 of 5 10 points What are the directions of the instantaneous magnetic field and theQuestion 14, chap 33, sect 5. part 4 of 5 10 points What is the instantaneous value of the energy density of the electric field? Question 16, chap 33, sect 6. part 1 of 4 10 points Consider an electromagnetic plane wave with time average intensity 104 W/m2 . The speed of light is 2.99792 × 108 m/s and the permeability of free space is 4 π × 10−7 T・m/A. What is its maximum electric field? What is the instantaneous value of the energy density of the magnetic field? Question 17, chap 33, sect 6. part 2 of 4 10 points What is the the maximum magnetic field? Question 19, chap 33, sect 6. part 4 of 4 10 points Consider an electromagnetic wave pattern as shown in the figure below. Question 18, chap 33, sect 6. part 3 of 4 10 points What is the pressure on a surface which is perpendicular to the beam and is totally reflective? Question 20, chap 33, sect 8. part 1 of 1 10 points A coin is at the bottom of a beaker. The beaker is filled with 1.6 cm of water (n1 = 1.33) covered by 2.1 cm of liquid (n2 = 1.4) floating on the water. How deep does the coin appear to be from the upper surface of the liquid (near the top of the beaker)? An cylindrical opaque drinking glass has a diameter 3 cm and height h, as shown in the figure. An observer’s eye is placed as shown (the observer is just barely looking over the rim of the glass). When empty, the observer can just barely see the edge of the bottom of the glass. When filled to the brim with a transparent liquid, the observer can just barely see the center of the bottom of the glass. The liquid in the drinking glass has an index of refraction of 1.4 . θi h d θr eye Calculate the angle θr . Question 22, chap 33, sect 8. part 2 of 2 10 points Calculate the height h of the glass.

Question 1, chap 33, sect 3. part 1 of 2 10 points The compound eyes of bees and other insects are highly sensitive to light in the ultraviolet portion of the spectrum, particularly light with frequencies between 7.5 × 1014 Hz and 1.0 × 1015 Hz. The speed of light is 3 × 108 m/s. What is the largest wavelength to which these frequencies correspond? Question 3, chap 33, sect 3. part 1 of 3 10 points A plane electromagnetic sinusoidal wave of frequency 10.7 MHz travels in free space. The speed of light is 2.99792 × 108 m/s. Determine the wavelength of the wave. Question 4, chap 33, sect 3. part 2 of 3 10 points Find the period of the wave. Question 2, chap 33, sect 3. part 2 of 2 10 points What is the smallest wavelength? Question 5, chap 33, sect 3. part 3 of 3 10 points At some point and some instant, the electric field has has a value of 998 N/C. Calculate the magnitude of the magnetic field at this point and this instant. Question 6, chap 33, sect 3. part 1 of 2 10 points A plane electromagnetic sinusoidal wave of frequency 10.7 MHz travels in free space. The speed of light is 2.99792 × 108 m/s. Determine the wavelength of the wave. Question 8, chap 33, sect 3. part 1 of 1 10 points The magnetic field amplitude of an electromagnetic wave is 9.9 × 10−6 T. The speed of light is 2.99792 × 108 m/s . Calculate the amplitude of the electric field if the wave is traveling in free space. Question 7, chap 33, sect 3. part 2 of 2 10 points At some point and some instant, the electric field has has a value of 998 V/m. Calculate the magnitude of the magnetic field at this point and this instant. Question 9, chap 33, sect 5. part 1 of 1 10 points The cable is carrying the current I(t). at the surface of a long transmission cable of resistivity ρ, length ℓ and radius a, using the expression ~S = 1 μ0 ~E × ~B . Question 10, chap 33, sect 5. part 1 of 1 10 points In 1965 Penzias and Wilson discovered the cosmic microwave radiation left over from the Big Bang expansion of the universe. The energy density of this radiation is 7.64 × 10−14 J/m3. The speed of light 2.99792 × 108 m/s and the permeability of free space is 4π × 10−7 N/A2. Determine the corresponding electric field amplQuestion 11, chap 33, sect 5. part 1 of 5 10 points Consider a monochromatic electromagnetic plane wave propagating in the x direction. At a particular point in space, the magnitude of the electric field has an instantaneous value of 998 V/m in the positive y-direction. The wave is traveling in the positive x-direction. x y z E wave propagation The speed of light is 2.99792×108 m/s, the permeability of free space is 4π×10−7 T ・ N/A and the permittivity of free space 8.85419 × 10−12 C2/N ・ m2. Compute the instantaneous magnitude of the magnetic field at the same point and time.itude. Question 12, chap 33, sect 5. part 2 of 5 10 points What is the instantaneous magnitude of the Poynting vector at the same point and time? Question 13, chap 33, sect 5. part 3 of 5 10 points What are the directions of the instantaneous magnetic field and theQuestion 14, chap 33, sect 5. part 4 of 5 10 points What is the instantaneous value of the energy density of the electric field? Question 16, chap 33, sect 6. part 1 of 4 10 points Consider an electromagnetic plane wave with time average intensity 104 W/m2 . The speed of light is 2.99792 × 108 m/s and the permeability of free space is 4 π × 10−7 T・m/A. What is its maximum electric field? What is the instantaneous value of the energy density of the magnetic field? Question 17, chap 33, sect 6. part 2 of 4 10 points What is the the maximum magnetic field? Question 19, chap 33, sect 6. part 4 of 4 10 points Consider an electromagnetic wave pattern as shown in the figure below. Question 18, chap 33, sect 6. part 3 of 4 10 points What is the pressure on a surface which is perpendicular to the beam and is totally reflective? Question 20, chap 33, sect 8. part 1 of 1 10 points A coin is at the bottom of a beaker. The beaker is filled with 1.6 cm of water (n1 = 1.33) covered by 2.1 cm of liquid (n2 = 1.4) floating on the water. How deep does the coin appear to be from the upper surface of the liquid (near the top of the beaker)? An cylindrical opaque drinking glass has a diameter 3 cm and height h, as shown in the figure. An observer’s eye is placed as shown (the observer is just barely looking over the rim of the glass). When empty, the observer can just barely see the edge of the bottom of the glass. When filled to the brim with a transparent liquid, the observer can just barely see the center of the bottom of the glass. The liquid in the drinking glass has an index of refraction of 1.4 . θi h d θr eye Calculate the angle θr . Question 22, chap 33, sect 8. part 2 of 2 10 points Calculate the height h of the glass.