2. When Protagoras said “Man is the measure of all things,” why was this a different and new way of seeing the world? To what degree does contemporary US culture agree with Protagoras?

2. When Protagoras said “Man is the measure of all things,” why was this a different and new way of seeing the world? To what degree does contemporary US culture agree with Protagoras?

  2.    When Protagoras said “Man is the measure of … Read More...
Mendel’s law of independent assortment states thateach pair of alleles segregates independently of the other pairs of alleles during gamete formation. independent sorting of genes produces polyploid plants under some circumstances. genes are sorted concurrently during gamete formation. chromosomes sort independently of each other during mitosis and meiosis.

Mendel’s law of independent assortment states thateach pair of alleles segregates independently of the other pairs of alleles during gamete formation. independent sorting of genes produces polyploid plants under some circumstances. genes are sorted concurrently during gamete formation. chromosomes sort independently of each other during mitosis and meiosis.

each pair of alleles segregates independently of the other pairs … Read More...
1) Can two different forces, acting through the same point, produce the same torque on an object? Answer: Yes, as long as the component of the force perpendicular to the line joining the axis to the force is the same for both forces. 2) If you stand with your back towards a wall and your heels touching the wall, you cannot lean over to touch your toes. Why? Answer: As you bend over your center of gravity moves forward and eventually is beyond the area of the floor in touch with your feet. This does not happen when you do it away from the wall because part of your body moves back and the center of mass remains over your feet. 3) Two equal forces are applied to a door at the doorknob. The first force is applied perpendicular to the door; the second force is applied at 30° to the plane of the door. Which force exerts the greater torque? A) the first applied perpendicular to the door B) the second applied at an angle C) both exert equal non-zero torques D) both exert zero torques E) Additional information is needed. 4) A heavy boy and a lightweight girl are balanced on a massless seesaw. If they both move forward so that they are one-half their original distance from the pivot point, what will happen to the seesaw? A) It is impossible to say without knowing the masses. B) It is impossible to say without knowing the distances. C) The side the boy is sitting on will tilt downward. D) Nothing, the seesaw will still be balanced. E) The side the girl is sitting on will tilt downward. 5) A figure skater is spinning slowly with arms outstretched. She brings her arms in close to her body and her angular speed increases dramatically. The speed increase is a demonstration of A) conservation of energy: her moment of inertia is decreased, and so her angular speed must increase to conserve energy. B) conservation of angular momentum: her moment of inertia is decreased, and so her angular speed must increase to conserve angular momentum. C) Newton’s second law for rotational motion: she exerts a torque and so her angular speed increases. D) This has nothing to do with mechanics, it is simply a result of her natural ability to perform. 6) A girl weighing 450. N sits on one end of a seesaw that is 3.0 m long and is pivoted 1.3 m from the girl. If the seesaw is just balanced when a boy sits at the opposite end, what is his weight? Neglect the weight of the seesaw. 7) An 82.0 kg painter stands on a long horizontal board 1.55 m from one end. The 15.5 kg board is 5.50 m long. The board is supported at each end. (a) What is the total force provided by both supports? (b) With what force does the support, closest to the painter, push upward? FIGURE 11-4 8) The mobile shown in Figure 11-4 is perfectly balanced. What must be the masses of m1, m2, and m3?

1) Can two different forces, acting through the same point, produce the same torque on an object? Answer: Yes, as long as the component of the force perpendicular to the line joining the axis to the force is the same for both forces. 2) If you stand with your back towards a wall and your heels touching the wall, you cannot lean over to touch your toes. Why? Answer: As you bend over your center of gravity moves forward and eventually is beyond the area of the floor in touch with your feet. This does not happen when you do it away from the wall because part of your body moves back and the center of mass remains over your feet. 3) Two equal forces are applied to a door at the doorknob. The first force is applied perpendicular to the door; the second force is applied at 30° to the plane of the door. Which force exerts the greater torque? A) the first applied perpendicular to the door B) the second applied at an angle C) both exert equal non-zero torques D) both exert zero torques E) Additional information is needed. 4) A heavy boy and a lightweight girl are balanced on a massless seesaw. If they both move forward so that they are one-half their original distance from the pivot point, what will happen to the seesaw? A) It is impossible to say without knowing the masses. B) It is impossible to say without knowing the distances. C) The side the boy is sitting on will tilt downward. D) Nothing, the seesaw will still be balanced. E) The side the girl is sitting on will tilt downward. 5) A figure skater is spinning slowly with arms outstretched. She brings her arms in close to her body and her angular speed increases dramatically. The speed increase is a demonstration of A) conservation of energy: her moment of inertia is decreased, and so her angular speed must increase to conserve energy. B) conservation of angular momentum: her moment of inertia is decreased, and so her angular speed must increase to conserve angular momentum. C) Newton’s second law for rotational motion: she exerts a torque and so her angular speed increases. D) This has nothing to do with mechanics, it is simply a result of her natural ability to perform. 6) A girl weighing 450. N sits on one end of a seesaw that is 3.0 m long and is pivoted 1.3 m from the girl. If the seesaw is just balanced when a boy sits at the opposite end, what is his weight? Neglect the weight of the seesaw. 7) An 82.0 kg painter stands on a long horizontal board 1.55 m from one end. The 15.5 kg board is 5.50 m long. The board is supported at each end. (a) What is the total force provided by both supports? (b) With what force does the support, closest to the painter, push upward? FIGURE 11-4 8) The mobile shown in Figure 11-4 is perfectly balanced. What must be the masses of m1, m2, and m3?

info@checkyourstudy.com solution
Q1. On Tuesday Sasha writes back saying “Here is my cheque for £4,500” She puts it in the post that night. On Friday morning, Sasha’s letter has still not arrived. Later that day Arthur receives a text message from Simon, which reads, “I’ll give you £5000 for the car. I’ll pick it up tomorrow”. Arthur replied “OK”. Explain to Arthur with which party he will have a valid contract. Give full reasons with case law illustrations. (25 marks) 2. Explain with examples why goods should be of satisfactory quality and fit for purpose. (25 marks) 3. Explain with examples how terms are incorporated into a contract. (25 marks) 4. Explain with examples contractual remedies. (25 marks)

Q1. On Tuesday Sasha writes back saying “Here is my cheque for £4,500” She puts it in the post that night. On Friday morning, Sasha’s letter has still not arrived. Later that day Arthur receives a text message from Simon, which reads, “I’ll give you £5000 for the car. I’ll pick it up tomorrow”. Arthur replied “OK”. Explain to Arthur with which party he will have a valid contract. Give full reasons with case law illustrations. (25 marks) 2. Explain with examples why goods should be of satisfactory quality and fit for purpose. (25 marks) 3. Explain with examples how terms are incorporated into a contract. (25 marks) 4. Explain with examples contractual remedies. (25 marks)

info@checkyourstudy.com
The figures below show two different situations where a current may be induced in a loop according to Faraday’s Law, with the direction given by Lenz’ Law. The magnetic field is shown by the x’s in Fig. 2. Select ALL correct answers (i.e. B, AC, BCD) for the current in the loop. (The compass directions are defined in the usual way.)

The figures below show two different situations where a current may be induced in a loop according to Faraday’s Law, with the direction given by Lenz’ Law. The magnetic field is shown by the x’s in Fig. 2. Select ALL correct answers (i.e. B, AC, BCD) for the current in the loop. (The compass directions are defined in the usual way.)