Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide: PbCO3 (s) PbO (s) + CO2 (g) __________ grams of carbondioxide will be produced by the decomposition of 7.50 g of lead (II) carbonate? A) 1.23 B) 2.50 C) 0.00936 D) 6.26 E) 7.83

Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide: PbCO3 (s) PbO (s) + CO2 (g) __________ grams of carbondioxide will be produced by the decomposition of 7.50 g of lead (II) carbonate? A) 1.23 B) 2.50 C) 0.00936 D) 6.26 E) 7.83

A) 1.23
Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = -60 % s t = 0 s cm cm/s 0 = -2.09 rad Correct Part B What is the phase at ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part C What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: t = 0.5 s  = 0 rad t = 1.0 s  = 2.09 rad t = 1.5 s  = 4.19 rad Correct Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct g cm s 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 0.628 s 5.00 Nm -0.785 rad Part E The initial coordinate of the mass. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part F The initial velocity. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part G The maximum speed. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 1.41 cm 14.1 cms 20.0 cms Part H The total energy. Express your answer to one decimal place and include the appropriate units. ANSWER: Correct Part I The velocity at . Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? 1.0 mJ t = 0.40 s 1.46 cms N/m cm s Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum m = 110 g vmax = 49 cms A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. m L T T L T = 2 Lg −−  g T/2 T ‘2T 2T g/6 ANSWER: Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. T/6 T/’6 ‘6T 6T It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. g % s L = 19 cm m lmoon = 0.35 m m g 1.0 MHz Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 94.2%. You received 135.71 out of a possible total of 144 points. N amax = 6.6 μm vmax = 41 ms

Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = -60 % s t = 0 s cm cm/s 0 = -2.09 rad Correct Part B What is the phase at ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part C What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: t = 0.5 s  = 0 rad t = 1.0 s  = 2.09 rad t = 1.5 s  = 4.19 rad Correct Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct g cm s 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 0.628 s 5.00 Nm -0.785 rad Part E The initial coordinate of the mass. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part F The initial velocity. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part G The maximum speed. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 1.41 cm 14.1 cms 20.0 cms Part H The total energy. Express your answer to one decimal place and include the appropriate units. ANSWER: Correct Part I The velocity at . Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? 1.0 mJ t = 0.40 s 1.46 cms N/m cm s Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum m = 110 g vmax = 49 cms A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. m L T T L T = 2 Lg −−  g T/2 T ‘2T 2T g/6 ANSWER: Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. T/6 T/’6 ‘6T 6T It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. g % s L = 19 cm m lmoon = 0.35 m m g 1.0 MHz Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 94.2%. You received 135.71 out of a possible total of 144 points. N amax = 6.6 μm vmax = 41 ms

please email info@checkyourstudy.com
The third task : Tutorial Topic 5 – IT and Information Systems Search business magazines and other sources of information for recent articles that discuss the use of information technology in delivering significant business benefits to an organisation. Use other sources to find additional information about the organisation. For the tutorial, prepare a brief report on your findings, and identify the application area(s) in the organisation that IT has supported. HOW TO DO THIS: 1. Identify an organisation big enough to have material published about it. 2. Write short introduction/description of the organisation 3. Identify business magazines that publish articles about IT 4. Other sources of information could be the organisations website 5. Or the company that is selling the information technology 6. Brief report – what is a report? what is the writing style of a report? Examples of information sourses: 1. http://www.infoworld.com/about 2. http://www.emeraldinsight.com/learning/management_thinking/articles/?subject=ebusiness 3. http://www.computerworlduk.com/it-business/ 4. http://www.businessweek.com/reports 5. http://www.informationweek.com/ 6. http://www.webroot.com/us/en/business/resources/articles/ or search for Business IT articles

The third task : Tutorial Topic 5 – IT and Information Systems Search business magazines and other sources of information for recent articles that discuss the use of information technology in delivering significant business benefits to an organisation. Use other sources to find additional information about the organisation. For the tutorial, prepare a brief report on your findings, and identify the application area(s) in the organisation that IT has supported. HOW TO DO THIS: 1. Identify an organisation big enough to have material published about it. 2. Write short introduction/description of the organisation 3. Identify business magazines that publish articles about IT 4. Other sources of information could be the organisations website 5. Or the company that is selling the information technology 6. Brief report – what is a report? what is the writing style of a report? Examples of information sourses: 1. http://www.infoworld.com/about 2. http://www.emeraldinsight.com/learning/management_thinking/articles/?subject=ebusiness 3. http://www.computerworlduk.com/it-business/ 4. http://www.businessweek.com/reports 5. http://www.informationweek.com/ 6. http://www.webroot.com/us/en/business/resources/articles/ or search for Business IT articles

Toyota Motor Corporation  Ever since 1957, after the Crown was … Read More...
EBIO/ECHM 100 – Homework #6 2015 Due Thursday October 8, 2015 1. Flow rates – in most bio- or chemical engineering problems, you will be working with flow rates rather than a singular amount of mass, moles or volume. When working with gases, a molar flow rate (mol/time) or a volumetric flow rate (volume/time) can be used in the ideal gas law. Consider a mixed gas consisting of 60% Hydrogen, 20% Nitrogen and 20% Carbon Monoxide (CO) which has a molar flow rate of 175 lbmol/min. The temperature is 200oF and pressure is 3 atm gauge. a. Calculate the individual molar flow rates of each component (mol/min) b. Calculate the total volumetric flow rate in ft3/min c. Determine the molar density of the mixed gas (mol/ft3) d. Determine the mass flow rate of the gas (g/min) e. Determine the mass fraction of hydrogen in the gas Read Section 6.5 of your textbook and/or watch the mini-lecture on statistics. That information will help you complete problems 2-4 In previous years, students in EBIO/ECHM 100 would test their ability to brew a repeatable batch of coffee. Let’s say you tried your best to brew three identical batches of coffee – you ground your own beans and measured exactly how many grounds you added to the pot. You took three samples from each batch and measured the absorbance. Representative data for the absorbance readings is given below. Batch 1 Batch 2 Batch 3 Measurement 1 0.343 0.374 0.327 Measurement 2 0.342 0.372 0.327 Measurement 3 0.371 0.375 0.328 2. For each batch of coffee (data in a vertical column), calculate the mean and standard deviation of the absorbance measurement of the three measurements taken from each batch (batch 1 has 3 absorbance measurements of .343, 0.342 and 0.371). Show at least one hand calculation on engineering paper, but you can do the rest in Excel if you wish, using the functions for average, =average(), and standard deviation, =stdev(). For example if you put data from batch 1 in column B, cells B2, B3 and B4 you could tell Excel to compute the average of those numbers by entering the equation =average(B2,B3,B4) in a neighboring cell. An alternate to way compute the average would be to type =(B2+B3+B4)/3. While you get the same answer with both methods, the second method become more cumbersome as your number of samples goes up. 3. Now, calculate the mean and standard deviation for the combination of all nine samples. 4. Why is the standard deviation calculated in #3 greater than those calculated in #2? Discuss this question in terms of experimental factors that could lead to scatter in your data (think back to the steps of making coffee and try to come up with at least 3 factors – these can address sample to sample variations or batch to batch variations). Staple the spreadsheet to the rest of your HW if using Excel. Adjust numbers so they report correct significant figures.

EBIO/ECHM 100 – Homework #6 2015 Due Thursday October 8, 2015 1. Flow rates – in most bio- or chemical engineering problems, you will be working with flow rates rather than a singular amount of mass, moles or volume. When working with gases, a molar flow rate (mol/time) or a volumetric flow rate (volume/time) can be used in the ideal gas law. Consider a mixed gas consisting of 60% Hydrogen, 20% Nitrogen and 20% Carbon Monoxide (CO) which has a molar flow rate of 175 lbmol/min. The temperature is 200oF and pressure is 3 atm gauge. a. Calculate the individual molar flow rates of each component (mol/min) b. Calculate the total volumetric flow rate in ft3/min c. Determine the molar density of the mixed gas (mol/ft3) d. Determine the mass flow rate of the gas (g/min) e. Determine the mass fraction of hydrogen in the gas Read Section 6.5 of your textbook and/or watch the mini-lecture on statistics. That information will help you complete problems 2-4 In previous years, students in EBIO/ECHM 100 would test their ability to brew a repeatable batch of coffee. Let’s say you tried your best to brew three identical batches of coffee – you ground your own beans and measured exactly how many grounds you added to the pot. You took three samples from each batch and measured the absorbance. Representative data for the absorbance readings is given below. Batch 1 Batch 2 Batch 3 Measurement 1 0.343 0.374 0.327 Measurement 2 0.342 0.372 0.327 Measurement 3 0.371 0.375 0.328 2. For each batch of coffee (data in a vertical column), calculate the mean and standard deviation of the absorbance measurement of the three measurements taken from each batch (batch 1 has 3 absorbance measurements of .343, 0.342 and 0.371). Show at least one hand calculation on engineering paper, but you can do the rest in Excel if you wish, using the functions for average, =average(), and standard deviation, =stdev(). For example if you put data from batch 1 in column B, cells B2, B3 and B4 you could tell Excel to compute the average of those numbers by entering the equation =average(B2,B3,B4) in a neighboring cell. An alternate to way compute the average would be to type =(B2+B3+B4)/3. While you get the same answer with both methods, the second method become more cumbersome as your number of samples goes up. 3. Now, calculate the mean and standard deviation for the combination of all nine samples. 4. Why is the standard deviation calculated in #3 greater than those calculated in #2? Discuss this question in terms of experimental factors that could lead to scatter in your data (think back to the steps of making coffee and try to come up with at least 3 factors – these can address sample to sample variations or batch to batch variations). Staple the spreadsheet to the rest of your HW if using Excel. Adjust numbers so they report correct significant figures.

Chapter 6 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, March 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy PSS 6.1 Equilibrium Problems Learning Goal: To practice Problem-Solving Strategy 6.1 for equilibrium problems. A pair of students are lifting a heavy trunk on move-in day. Using two ropes tied to a small ring at the center of the top of the trunk, they pull the trunk straight up at a constant velocity . Each rope makes an angle with respect to the vertical. The gravitational force acting on the trunk has magnitude . Find the tension in each rope. PROBLEM-SOLVING STRATEGY 6.1 Equilibrium problems MODEL: Make simplifying assumptions. VISUALIZE: Establish a coordinate system, define symbols, and identify what the problem is asking you to find. This is the process of translating words into symbols. Identify all forces acting on the object, and show them on a free-body diagram. These elements form the pictorial representation of the problem. SOLVE: The mathematical representation is based on Newton’s first law: . The vector sum of the forces is found directly from the free-body diagram. v  FG T F  = = net i F  i 0 ASSESS: Check if your result has the correct units, is reasonable, and answers the question. Model The trunk is moving at a constant velocity. This means that you can model it as a particle in dynamic equilibrium and apply the strategy above. Furthermore, you can ignore the masses of the ropes and the ring because it is reasonable to assume that their combined weight is much less than the weight of the trunk. Visualize Part A The most convenient coordinate system for this problem is one in which the y axis is vertical and the ropes both lie in the xy plane, as shown below. Identify the forces acting on the trunk, and then draw a free-body diagram of the trunk in the diagram below. The black dot represents the trunk as it is lifted by the students. Draw the vectors starting at the black dot. The location and orientation of the vectors will be graded. The length of the vectors will not be graded. ANSWER: Part B This question will be shown after you complete previous question(s). Solve Part C This question will be shown after you complete previous question(s). Assess Part D This question will be shown after you complete previous question(s). A Gymnast on a Rope A gymnast of mass 70.0 hangs from a vertical rope attached to the ceiling. You can ignore the weight of the rope and assume that the rope does not stretch. Use the value for the acceleration of gravity. Part A Calculate the tension in the rope if the gymnast hangs motionless on the rope. Express your answer in newtons. You did not open hints for this part. ANSWER: Part B Calculate the tension in the rope if the gymnast climbs the rope at a constant rate. Express your answer in newtons. You did not open hints for this part. kg 9.81m/s2 T T = N T ANSWER: Part C Calculate the tension in the rope if the gymnast climbs up the rope with an upward acceleration of magnitude 1.10 . Express your answer in newtons. You did not open hints for this part. ANSWER: Part D Calculate the tension in the rope if the gymnast slides down the rope with a downward acceleration of magnitude 1.10 . Express your answer in newtons. You did not open hints for this part. ANSWER: T = N T m/s2 T = N T m/s2 T = N Applying Newton’s 2nd Law Learning Goal: To learn a systematic approach to solving Newton’s 2nd law problems using a simple example. Once you have decided to solve a problem using Newton’s 2nd law, there are steps that will lead you to a solution. One such prescription is the following: Visualize the problem and identify special cases. Isolate each body and draw the forces acting on it. Choose a coordinate system for each body. Apply Newton’s 2nd law to each body. Write equations for the constraints and other given information. Solve the resulting equations symbolically. Check that your answer has the correct dimensions and satisfies special cases. If numbers are given in the problem, plug them in and check that the answer makes sense. Think about generalizations or simplfications of the problem. As an example, we will apply this procedure to find the acceleration of a block of mass that is pulled up a frictionless plane inclined at angle with respect to the horizontal by a perfect string that passes over a perfect pulley to a block of mass that is hanging vertically. Visualize the problem and identify special cases First examine the problem by drawing a picture and visualizing the motion. Apply Newton’s 2nd law, , to each body in your mind. Don’t worry about which quantities are given. Think about the forces on each body: How are these consistent with the direction of the acceleration for that body? Can you think of any special cases that you can solve quickly now and use to test your understanding later? m2  m1 F = ma One special case in this problem is if , in which case block 1 would simply fall freely under the acceleration of gravity: . Part A Consider another special case in which the inclined plane is vertical ( ). In this case, for what value of would the acceleration of the two blocks be equal to zero? Express your answer in terms of some or all of the variables and . ANSWER: Isolate each body and draw the forces acting on it A force diagram should include only real forces that act on the body and satisfy Newton’s 3rd law. One way to check if the forces are real is to detrmine whether they are part of a Newton’s 3rd law pair, that is, whether they result from a physical interaction that also causes an opposite force on some other body, which may not be part of the problem. Do not decompose the forces into components, and do not include resultant forces that are combinations of other real forces like centripetal force or fictitious forces like the “centrifugal” force. Assign each force a symbol, but don’t start to solve the problem at this point. Part B Which of the four drawings is a correct force diagram for this problem? = 0 m2 = −g a 1 j ^  = /2 m1 m2 g m1 = ANSWER: Choose a coordinate system for each body Newton’s 2nd law, , is a vector equation. To add or subtract vectors it is often easiest to decompose each vector into components. Whereas a particular set of vector components is only valid in a particular coordinate system, the vector equality holds in any coordinate system, giving you freedom to pick a coordinate system that most simplifies the equations that result from the component equations. It’s generally best to pick a coordinate system where the acceleration of the system lies directly on one of the coordinate axes. If there is no acceleration, then pick a coordinate system with as many unknowns as possible along the coordinate axes. Vectors that lie along the axes appear in only one of the equations for each component, rather than in two equations with trigonometric prefactors. Note that it is sometimes advantageous to use different coordinate systems for each body in the problem. In this problem, you should use Cartesian coordinates and your axes should be stationary with respect to the inclined plane. Part C Given the criteria just described, what orientation of the coordinate axes would be best to use in this problem? In the answer options, “tilted” means with the x axis oriented parallel to the plane (i.e., at angle to the horizontal), and “level” means with the x axis horizontal. ANSWER: Apply Newton’s 2nd law to each body a b c d F  = ma  tilted for both block 1 and block 2 tilted for block 1 and level for block 2 level for block 1 and tilted for block 2 level for both block 1 and block 2 Part D What is , the sum of the x components of the forces acting on block 2? Take forces acting up the incline to be positive. Express your answer in terms of some or all of the variables tension , , the magnitude of the acceleration of gravity , and . You did not open hints for this part. ANSWER: Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Lifting a Bucket A 6- bucket of water is being pulled straight up by a string at a constant speed. F2x T m2 g  m2a2x =F2x = kg Part A What is the tension in the rope? ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Friction Force on a Dancer on a Drawbridge A dancer is standing on one leg on a drawbridge that is about to open. The coefficients of static and kinetic friction between the drawbridge and the dancer’s foot are and , respectively. represents the normal force exerted on the dancer by the bridge, and represents the gravitational force exerted on the dancer, as shown in the drawing . For all the questions, we can assume that the bridge is a perfectly flat surface and lacks the curvature characteristic of most bridges. about 42 about 60 about 78 0 because the bucket has no acceleration. N N N N μs μk n F  g Part A Before the drawbridge starts to open, it is perfectly level with the ground. The dancer is standing still on one leg. What is the x component of the friction force, ? Express your answer in terms of some or all of the variables , , and/or . You did not open hints for this part. ANSWER: Part B The drawbridge then starts to rise and the dancer continues to stand on one leg. The drawbridge stops just at the point where the dancer is on the verge of slipping. What is the magnitude of the frictional force now? Express your answer in terms of some or all of the variables , , and/or . The angle should not appear in your answer. F  f n μs μk Ff = Ff n μs μk  You did not open hints for this part. ANSWER: Part C Then, because the bridge is old and poorly designed, it falls a little bit and then jerks. This causes the person to start to slide down the bridge at a constant speed. What is the magnitude of the frictional force now? Express your answer in terms of some or all of the variables , , and/or . The angle should not appear in your answer. ANSWER: Part D The bridge starts to come back down again. The dancer stops sliding. However, again because of the age and design of the bridge it never makes it all the way down; rather it stops half a meter short. This half a meter corresponds to an angle degree (see the diagram, which has the angle exaggerated). What is the force of friction now? Express your answer in terms of some or all of the variables , , and . Ff = Ff n μs μk  Ff =   1 Ff  n Fg You did not open hints for this part. ANSWER: Kinetic Friction Ranking Task Below are eight crates of different mass. The crates are attached to massless ropes, as indicated in the picture, where the ropes are marked by letters. Each crate is being pulled to the right at the same constant speed. The coefficient of kinetic friction between each crate and the surface on which it slides is the same for all eight crates. Ff = Part A Rank the ropes on the basis of the force each exerts on the crate immediately to its left. Rank from largest to smallest. To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: Pushing a Block Learning Goal: To understand kinetic and static friction. A block of mass lies on a horizontal table. The coefficient of static friction between the block and the table is . The coefficient of kinetic friction is , with . Part A m μs μk μk < μs If the block is at rest (and the only forces acting on the block are the force due to gravity and the normal force from the table), what is the magnitude of the force due to friction? You did not open hints for this part. ANSWER: Part B Suppose you want to move the block, but you want to push it with the least force possible to get it moving. With what force must you be pushing the block just before the block begins to move? Express the magnitude of in terms of some or all the variables , , and , as well as the acceleration due to gravity . You did not open hints for this part. ANSWER: Part C Suppose you push horizontally with half the force needed to just make the block move. What is the magnitude of the friction force? Express your answer in terms of some or all of the variables , , and , as well as the acceleration due to gravity . You did not open hints for this part. Ffriction = F F μs μk m g F = μs μk m g ANSWER: Part D Suppose you push horizontally with precisely enough force to make the block start to move, and you continue to apply the same amount of force even after it starts moving. Find the acceleration of the block after it begins to move. Express your answer in terms of some or all of the variables , , and , as well as the acceleration due to gravity . You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. Ffriction = a μs μk m g a =

Chapter 6 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, March 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy PSS 6.1 Equilibrium Problems Learning Goal: To practice Problem-Solving Strategy 6.1 for equilibrium problems. A pair of students are lifting a heavy trunk on move-in day. Using two ropes tied to a small ring at the center of the top of the trunk, they pull the trunk straight up at a constant velocity . Each rope makes an angle with respect to the vertical. The gravitational force acting on the trunk has magnitude . Find the tension in each rope. PROBLEM-SOLVING STRATEGY 6.1 Equilibrium problems MODEL: Make simplifying assumptions. VISUALIZE: Establish a coordinate system, define symbols, and identify what the problem is asking you to find. This is the process of translating words into symbols. Identify all forces acting on the object, and show them on a free-body diagram. These elements form the pictorial representation of the problem. SOLVE: The mathematical representation is based on Newton’s first law: . The vector sum of the forces is found directly from the free-body diagram. v  FG T F  = = net i F  i 0 ASSESS: Check if your result has the correct units, is reasonable, and answers the question. Model The trunk is moving at a constant velocity. This means that you can model it as a particle in dynamic equilibrium and apply the strategy above. Furthermore, you can ignore the masses of the ropes and the ring because it is reasonable to assume that their combined weight is much less than the weight of the trunk. Visualize Part A The most convenient coordinate system for this problem is one in which the y axis is vertical and the ropes both lie in the xy plane, as shown below. Identify the forces acting on the trunk, and then draw a free-body diagram of the trunk in the diagram below. The black dot represents the trunk as it is lifted by the students. Draw the vectors starting at the black dot. The location and orientation of the vectors will be graded. The length of the vectors will not be graded. ANSWER: Part B This question will be shown after you complete previous question(s). Solve Part C This question will be shown after you complete previous question(s). Assess Part D This question will be shown after you complete previous question(s). A Gymnast on a Rope A gymnast of mass 70.0 hangs from a vertical rope attached to the ceiling. You can ignore the weight of the rope and assume that the rope does not stretch. Use the value for the acceleration of gravity. Part A Calculate the tension in the rope if the gymnast hangs motionless on the rope. Express your answer in newtons. You did not open hints for this part. ANSWER: Part B Calculate the tension in the rope if the gymnast climbs the rope at a constant rate. Express your answer in newtons. You did not open hints for this part. kg 9.81m/s2 T T = N T ANSWER: Part C Calculate the tension in the rope if the gymnast climbs up the rope with an upward acceleration of magnitude 1.10 . Express your answer in newtons. You did not open hints for this part. ANSWER: Part D Calculate the tension in the rope if the gymnast slides down the rope with a downward acceleration of magnitude 1.10 . Express your answer in newtons. You did not open hints for this part. ANSWER: T = N T m/s2 T = N T m/s2 T = N Applying Newton’s 2nd Law Learning Goal: To learn a systematic approach to solving Newton’s 2nd law problems using a simple example. Once you have decided to solve a problem using Newton’s 2nd law, there are steps that will lead you to a solution. One such prescription is the following: Visualize the problem and identify special cases. Isolate each body and draw the forces acting on it. Choose a coordinate system for each body. Apply Newton’s 2nd law to each body. Write equations for the constraints and other given information. Solve the resulting equations symbolically. Check that your answer has the correct dimensions and satisfies special cases. If numbers are given in the problem, plug them in and check that the answer makes sense. Think about generalizations or simplfications of the problem. As an example, we will apply this procedure to find the acceleration of a block of mass that is pulled up a frictionless plane inclined at angle with respect to the horizontal by a perfect string that passes over a perfect pulley to a block of mass that is hanging vertically. Visualize the problem and identify special cases First examine the problem by drawing a picture and visualizing the motion. Apply Newton’s 2nd law, , to each body in your mind. Don’t worry about which quantities are given. Think about the forces on each body: How are these consistent with the direction of the acceleration for that body? Can you think of any special cases that you can solve quickly now and use to test your understanding later? m2  m1 F = ma One special case in this problem is if , in which case block 1 would simply fall freely under the acceleration of gravity: . Part A Consider another special case in which the inclined plane is vertical ( ). In this case, for what value of would the acceleration of the two blocks be equal to zero? Express your answer in terms of some or all of the variables and . ANSWER: Isolate each body and draw the forces acting on it A force diagram should include only real forces that act on the body and satisfy Newton’s 3rd law. One way to check if the forces are real is to detrmine whether they are part of a Newton’s 3rd law pair, that is, whether they result from a physical interaction that also causes an opposite force on some other body, which may not be part of the problem. Do not decompose the forces into components, and do not include resultant forces that are combinations of other real forces like centripetal force or fictitious forces like the “centrifugal” force. Assign each force a symbol, but don’t start to solve the problem at this point. Part B Which of the four drawings is a correct force diagram for this problem? = 0 m2 = −g a 1 j ^  = /2 m1 m2 g m1 = ANSWER: Choose a coordinate system for each body Newton’s 2nd law, , is a vector equation. To add or subtract vectors it is often easiest to decompose each vector into components. Whereas a particular set of vector components is only valid in a particular coordinate system, the vector equality holds in any coordinate system, giving you freedom to pick a coordinate system that most simplifies the equations that result from the component equations. It’s generally best to pick a coordinate system where the acceleration of the system lies directly on one of the coordinate axes. If there is no acceleration, then pick a coordinate system with as many unknowns as possible along the coordinate axes. Vectors that lie along the axes appear in only one of the equations for each component, rather than in two equations with trigonometric prefactors. Note that it is sometimes advantageous to use different coordinate systems for each body in the problem. In this problem, you should use Cartesian coordinates and your axes should be stationary with respect to the inclined plane. Part C Given the criteria just described, what orientation of the coordinate axes would be best to use in this problem? In the answer options, “tilted” means with the x axis oriented parallel to the plane (i.e., at angle to the horizontal), and “level” means with the x axis horizontal. ANSWER: Apply Newton’s 2nd law to each body a b c d F  = ma  tilted for both block 1 and block 2 tilted for block 1 and level for block 2 level for block 1 and tilted for block 2 level for both block 1 and block 2 Part D What is , the sum of the x components of the forces acting on block 2? Take forces acting up the incline to be positive. Express your answer in terms of some or all of the variables tension , , the magnitude of the acceleration of gravity , and . You did not open hints for this part. ANSWER: Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Lifting a Bucket A 6- bucket of water is being pulled straight up by a string at a constant speed. F2x T m2 g  m2a2x =F2x = kg Part A What is the tension in the rope? ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Friction Force on a Dancer on a Drawbridge A dancer is standing on one leg on a drawbridge that is about to open. The coefficients of static and kinetic friction between the drawbridge and the dancer’s foot are and , respectively. represents the normal force exerted on the dancer by the bridge, and represents the gravitational force exerted on the dancer, as shown in the drawing . For all the questions, we can assume that the bridge is a perfectly flat surface and lacks the curvature characteristic of most bridges. about 42 about 60 about 78 0 because the bucket has no acceleration. N N N N μs μk n F  g Part A Before the drawbridge starts to open, it is perfectly level with the ground. The dancer is standing still on one leg. What is the x component of the friction force, ? Express your answer in terms of some or all of the variables , , and/or . You did not open hints for this part. ANSWER: Part B The drawbridge then starts to rise and the dancer continues to stand on one leg. The drawbridge stops just at the point where the dancer is on the verge of slipping. What is the magnitude of the frictional force now? Express your answer in terms of some or all of the variables , , and/or . The angle should not appear in your answer. F  f n μs μk Ff = Ff n μs μk  You did not open hints for this part. ANSWER: Part C Then, because the bridge is old and poorly designed, it falls a little bit and then jerks. This causes the person to start to slide down the bridge at a constant speed. What is the magnitude of the frictional force now? Express your answer in terms of some or all of the variables , , and/or . The angle should not appear in your answer. ANSWER: Part D The bridge starts to come back down again. The dancer stops sliding. However, again because of the age and design of the bridge it never makes it all the way down; rather it stops half a meter short. This half a meter corresponds to an angle degree (see the diagram, which has the angle exaggerated). What is the force of friction now? Express your answer in terms of some or all of the variables , , and . Ff = Ff n μs μk  Ff =   1 Ff  n Fg You did not open hints for this part. ANSWER: Kinetic Friction Ranking Task Below are eight crates of different mass. The crates are attached to massless ropes, as indicated in the picture, where the ropes are marked by letters. Each crate is being pulled to the right at the same constant speed. The coefficient of kinetic friction between each crate and the surface on which it slides is the same for all eight crates. Ff = Part A Rank the ropes on the basis of the force each exerts on the crate immediately to its left. Rank from largest to smallest. To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: Pushing a Block Learning Goal: To understand kinetic and static friction. A block of mass lies on a horizontal table. The coefficient of static friction between the block and the table is . The coefficient of kinetic friction is , with . Part A m μs μk μk < μs If the block is at rest (and the only forces acting on the block are the force due to gravity and the normal force from the table), what is the magnitude of the force due to friction? You did not open hints for this part. ANSWER: Part B Suppose you want to move the block, but you want to push it with the least force possible to get it moving. With what force must you be pushing the block just before the block begins to move? Express the magnitude of in terms of some or all the variables , , and , as well as the acceleration due to gravity . You did not open hints for this part. ANSWER: Part C Suppose you push horizontally with half the force needed to just make the block move. What is the magnitude of the friction force? Express your answer in terms of some or all of the variables , , and , as well as the acceleration due to gravity . You did not open hints for this part. Ffriction = F F μs μk m g F = μs μk m g ANSWER: Part D Suppose you push horizontally with precisely enough force to make the block start to move, and you continue to apply the same amount of force even after it starts moving. Find the acceleration of the block after it begins to move. Express your answer in terms of some or all of the variables , , and , as well as the acceleration due to gravity . You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. Ffriction = a μs μk m g a =

please email info@checkyourstudy.com
Question 1 1. When the rules of perspective are applied in order to represent unusual points of view, we call this ________. a. foreshortening b. chiaroscuro c. convergence d. highlight e. overlapping 10 points Question 2 1. A flat work of art has two dimensions: ________ and width. a. breadth b. depth c. size d. mass e. height 10 points Question 3 1. Méret Oppenheim was part of an art movement that rejected rational, conscious thought. Her fur-lined teacup and saucer, Object, conjures an unexpected and illogical sensation for the viewer by using ________ texture. a. smooth b. familiar c. expected d. subversive e. silky 10 points Question 4 1. In James Allen’s etching The Connectors, an image of workers erecting the Empire State Building, the artist created a feeling of great height by using ________ line to lead the viewer’s eye diagonally downward. a. horizontal b. communicative c. regular d. directional e. implied 10 points Question 5 1. Because it is three-dimensional, a form has these three spatial measurements: height, width, and ________. a. mass b. length c. size d. depth e. strength 10 points Question 6 1. The ancient Egyptian depiction of the journey of the Sun god Re (0.1) was painted on ________. a. stone b. a coffin c. the wall of a tomb d. copper e. a vase 10 points Question 7 1. The area covered by a pattern is called the ________. a. field b. motif c. background d. size e. foreground 10 points Question 8 1. ________ balance is achieved when two halves of a composition are not mirror images of each other. a. unified b. radial c. varied d. asymmetrical e. symmetrical 10 points Question 9 1. In Audrey Flack’s Marilyn Monroe, the burning candle, the flower, and the hourglass are typical of a kind of symbolism in art that reminds us of death. This kind of symbolism is known as ________. a. vanitas b. feminism c. abstract d. eternal e. none of the other answers 10 points Question 10 1. Tibetan Buddhist monks create colored sand images with a radial design. This representation of the universe is called a ________. a. prayer wheel b. rotunda c. mandala d. prayer flag e. lotus 10 points Question 11 1. In The School of Athens, Raphael focused our attention on two Greek philosophers positioned in the center of the work. They are ________ and ________. a. Plato . . . Aristotle b. Aristotle . . . Socrates c. Diogenes . . . Socrates d. Diogenes . . . Aristotle e. Socrates . . . Plato 10 points Question 12 1. In his Obey campaign poster Shepard Fairey used a striking contrast between positive and ________ shapes to attract the attention of the public. a. figure–ground reversal b. implied c. geometric d. organic e. negative 10 points Question 13 1. The Italian architect Andrea Palladio created a radial design in his plan for the Villa Capra. This building is also called the ________. a. Colosseum b. Pantheon c. Villa Rotonda d. Villa Caprese e. Parthenon 10 points Question 14 1. The French artist Georges Seurat employed a new technique to create a jewel-like diffusion of light and vibration of color in his work The Circus. This type of painting, made up of small dots of color, is known as ________. a. Fauvism b. Luminism c. pointillism d. Pop art e. Impressionism 10 points Question 15 1. The rarity of an artwork, and its value, are often closely related. True False 10 points Question 16 1. By orienting lines so that they attract attention to a specific area of a work of art the artist is using ________. a. actual line b. implied line c. directional line d. measured line e. chaotic line 10 points Question 17 1. Kindred Spirits by Asher Brown Durand uses the effects of ________ to give a sense of the vastness of the American landscape. a. pencil drawing b. geometry c. atmospheric perspective d. foreshortening e. color 10 points Question 18 1. The opposite of emphasis is ________. a. subordination b. tone c. focal point d. color e. proportion 10 points Question 19 1. Gustav Klimt’s portrait of Adele Bloch-Bauer was typical of his portraits of the wives and sisters of ________. a. foreign tourists b. Nazi rulers c. German scientists d. Austrian businessmen e. important politicians 10 points Question 20 1. The combination of jarring vertical and diagonal lines in Vincent van Gogh’s The Bedroom creates an atmosphere of ________. a. happiness b. rest c. anxiety d. expectation e. calm 10 points Question 21 1. If the clothing of the saint was the only light area in The Funeral of St. Bonaventure, the viewer’s eye would not be easily drawn to any other areas of the composition. True False 10 points Question 22 1. Miriam Schapiro’s collage Baby Blocks combines two different kinds of shape. ________ is the term used to describe a shape that suggests the natural world, while the term geometric suggests mathematical regularity. a. conceptual b. implied c. organic d. regular e. artificial 10 points Question 23 1. Any of the ________ of art can help focus our interest on specific areas of a work of art. a. styles b. elements c. periods d. tones e. themes 10 points Question 24 1. An artwork can be described as non-objective if its subject matter is ________. a. three-dimensional b. difficult c. unrecognizable d. recognizable e. animals 10 points Question 25 1. Match the methodological approach with its definition: biographical analysis feminist analysis formal analysis contextual analysis 2. iconographical analysis a. analyzes the use of formal elements in a work. b. considers the role of women in an artwork c. interprets objects and figures in the artwork as symbols d. considers the artist’s personal experiences e. considers the religious, political, and social environment in which the artwork was made and viewed 10 points Question 26 1. Alexander Calder invented the ________, a type of suspended, balanced sculpture that uses air currents to power its movement. a. mime b. relief c. mobile d. stabile e. zoetrope 10 points Question 27 1. Louise Nevelson’s work White Vertical Water is a realistic depiction of fish in a river. True False 10 points Question 28 1. William G. Wall’s Fort Edward was published as a ________. a. print b. watercolor c. photograph d. oil painting e. newspaper article 10 points Question 29 1. Artemisia Gentileschi worked during this stylistic and historical period. a. Surrealism b. Impressionism c. Baroque d. Renaissance e. Pop art 10 points Question 30 1. The process of using a series of parallel lines set close to one another to differentiate planes of value in a work of art is called ________. a. highlight b. core shadow c. perspective d. hatching e. palette 10 points Question 31 1. The artist Canaletto, in his drawing of the Ducal Palace in Venice, created an impression of three dimensions by using line to show the division between ________. a. planes b. two figures c. colors d. time periods e. mountains 10 points Question 32 1. Marisol’s work Father Damien was created to memorialize the heroism of a priest who lost his life helping the victims of leprosy. This sculpture stands in front of the State Capitol Building in the U.S. State of ________. a. Arizona b. Pennsylvania c. Utah d. Tennessee e. Hawaii 10 points Question 33 1. The medium of Marc Quinn’s Self is: a. clay b. the artist’s toenail clippings c. wood d. real human hair e. the artist’s own blood 10 points Question 34 1. The work now known as the Watts Towers was in fact given a different title by its creator. That title was ________. a. Nuestro Pueblo b. LA Towers c. Found Objects d. it had no title originally e. Skyscrapers 1 and 2 10 points Question 35 1. Why do we presume that the head of a woman from Benin (0.18) was made for someone wealthy? a. because it was made to be shown in a museum b. because it strongly resembles the Queen c. because it has a price carved on the back d. because it was made from rare ivory e. it was definitely not made for anyone wealthy 10 points Question 36 1. Shahzia Sikander’s art is best described as Abstract Expressionism Naturalist sculpture Pop Art Miniature Painting 10 points Question 37 1. A sunset is a work of art. True False 10 points Question 38 1. A mens’ urinal became a well known artwork in the 20th century. True False 10 points Question 39 1. Which artist has torn out people’s lawns to design and build edible gardens across the country? Andrea Zittel Fritz Haeg Ruben Ortiz Torres Mark Newport

Question 1 1. When the rules of perspective are applied in order to represent unusual points of view, we call this ________. a. foreshortening b. chiaroscuro c. convergence d. highlight e. overlapping 10 points Question 2 1. A flat work of art has two dimensions: ________ and width. a. breadth b. depth c. size d. mass e. height 10 points Question 3 1. Méret Oppenheim was part of an art movement that rejected rational, conscious thought. Her fur-lined teacup and saucer, Object, conjures an unexpected and illogical sensation for the viewer by using ________ texture. a. smooth b. familiar c. expected d. subversive e. silky 10 points Question 4 1. In James Allen’s etching The Connectors, an image of workers erecting the Empire State Building, the artist created a feeling of great height by using ________ line to lead the viewer’s eye diagonally downward. a. horizontal b. communicative c. regular d. directional e. implied 10 points Question 5 1. Because it is three-dimensional, a form has these three spatial measurements: height, width, and ________. a. mass b. length c. size d. depth e. strength 10 points Question 6 1. The ancient Egyptian depiction of the journey of the Sun god Re (0.1) was painted on ________. a. stone b. a coffin c. the wall of a tomb d. copper e. a vase 10 points Question 7 1. The area covered by a pattern is called the ________. a. field b. motif c. background d. size e. foreground 10 points Question 8 1. ________ balance is achieved when two halves of a composition are not mirror images of each other. a. unified b. radial c. varied d. asymmetrical e. symmetrical 10 points Question 9 1. In Audrey Flack’s Marilyn Monroe, the burning candle, the flower, and the hourglass are typical of a kind of symbolism in art that reminds us of death. This kind of symbolism is known as ________. a. vanitas b. feminism c. abstract d. eternal e. none of the other answers 10 points Question 10 1. Tibetan Buddhist monks create colored sand images with a radial design. This representation of the universe is called a ________. a. prayer wheel b. rotunda c. mandala d. prayer flag e. lotus 10 points Question 11 1. In The School of Athens, Raphael focused our attention on two Greek philosophers positioned in the center of the work. They are ________ and ________. a. Plato . . . Aristotle b. Aristotle . . . Socrates c. Diogenes . . . Socrates d. Diogenes . . . Aristotle e. Socrates . . . Plato 10 points Question 12 1. In his Obey campaign poster Shepard Fairey used a striking contrast between positive and ________ shapes to attract the attention of the public. a. figure–ground reversal b. implied c. geometric d. organic e. negative 10 points Question 13 1. The Italian architect Andrea Palladio created a radial design in his plan for the Villa Capra. This building is also called the ________. a. Colosseum b. Pantheon c. Villa Rotonda d. Villa Caprese e. Parthenon 10 points Question 14 1. The French artist Georges Seurat employed a new technique to create a jewel-like diffusion of light and vibration of color in his work The Circus. This type of painting, made up of small dots of color, is known as ________. a. Fauvism b. Luminism c. pointillism d. Pop art e. Impressionism 10 points Question 15 1. The rarity of an artwork, and its value, are often closely related. True False 10 points Question 16 1. By orienting lines so that they attract attention to a specific area of a work of art the artist is using ________. a. actual line b. implied line c. directional line d. measured line e. chaotic line 10 points Question 17 1. Kindred Spirits by Asher Brown Durand uses the effects of ________ to give a sense of the vastness of the American landscape. a. pencil drawing b. geometry c. atmospheric perspective d. foreshortening e. color 10 points Question 18 1. The opposite of emphasis is ________. a. subordination b. tone c. focal point d. color e. proportion 10 points Question 19 1. Gustav Klimt’s portrait of Adele Bloch-Bauer was typical of his portraits of the wives and sisters of ________. a. foreign tourists b. Nazi rulers c. German scientists d. Austrian businessmen e. important politicians 10 points Question 20 1. The combination of jarring vertical and diagonal lines in Vincent van Gogh’s The Bedroom creates an atmosphere of ________. a. happiness b. rest c. anxiety d. expectation e. calm 10 points Question 21 1. If the clothing of the saint was the only light area in The Funeral of St. Bonaventure, the viewer’s eye would not be easily drawn to any other areas of the composition. True False 10 points Question 22 1. Miriam Schapiro’s collage Baby Blocks combines two different kinds of shape. ________ is the term used to describe a shape that suggests the natural world, while the term geometric suggests mathematical regularity. a. conceptual b. implied c. organic d. regular e. artificial 10 points Question 23 1. Any of the ________ of art can help focus our interest on specific areas of a work of art. a. styles b. elements c. periods d. tones e. themes 10 points Question 24 1. An artwork can be described as non-objective if its subject matter is ________. a. three-dimensional b. difficult c. unrecognizable d. recognizable e. animals 10 points Question 25 1. Match the methodological approach with its definition: biographical analysis feminist analysis formal analysis contextual analysis 2. iconographical analysis a. analyzes the use of formal elements in a work. b. considers the role of women in an artwork c. interprets objects and figures in the artwork as symbols d. considers the artist’s personal experiences e. considers the religious, political, and social environment in which the artwork was made and viewed 10 points Question 26 1. Alexander Calder invented the ________, a type of suspended, balanced sculpture that uses air currents to power its movement. a. mime b. relief c. mobile d. stabile e. zoetrope 10 points Question 27 1. Louise Nevelson’s work White Vertical Water is a realistic depiction of fish in a river. True False 10 points Question 28 1. William G. Wall’s Fort Edward was published as a ________. a. print b. watercolor c. photograph d. oil painting e. newspaper article 10 points Question 29 1. Artemisia Gentileschi worked during this stylistic and historical period. a. Surrealism b. Impressionism c. Baroque d. Renaissance e. Pop art 10 points Question 30 1. The process of using a series of parallel lines set close to one another to differentiate planes of value in a work of art is called ________. a. highlight b. core shadow c. perspective d. hatching e. palette 10 points Question 31 1. The artist Canaletto, in his drawing of the Ducal Palace in Venice, created an impression of three dimensions by using line to show the division between ________. a. planes b. two figures c. colors d. time periods e. mountains 10 points Question 32 1. Marisol’s work Father Damien was created to memorialize the heroism of a priest who lost his life helping the victims of leprosy. This sculpture stands in front of the State Capitol Building in the U.S. State of ________. a. Arizona b. Pennsylvania c. Utah d. Tennessee e. Hawaii 10 points Question 33 1. The medium of Marc Quinn’s Self is: a. clay b. the artist’s toenail clippings c. wood d. real human hair e. the artist’s own blood 10 points Question 34 1. The work now known as the Watts Towers was in fact given a different title by its creator. That title was ________. a. Nuestro Pueblo b. LA Towers c. Found Objects d. it had no title originally e. Skyscrapers 1 and 2 10 points Question 35 1. Why do we presume that the head of a woman from Benin (0.18) was made for someone wealthy? a. because it was made to be shown in a museum b. because it strongly resembles the Queen c. because it has a price carved on the back d. because it was made from rare ivory e. it was definitely not made for anyone wealthy 10 points Question 36 1. Shahzia Sikander’s art is best described as Abstract Expressionism Naturalist sculpture Pop Art Miniature Painting 10 points Question 37 1. A sunset is a work of art. True False 10 points Question 38 1. A mens’ urinal became a well known artwork in the 20th century. True False 10 points Question 39 1. Which artist has torn out people’s lawns to design and build edible gardens across the country? Andrea Zittel Fritz Haeg Ruben Ortiz Torres Mark Newport

This content is for CheckYourstudy.com Members members only.Kindly register or … Read More...
6. What is meant by the threshold service level of a least-cost system?

6. What is meant by the threshold service level of a least-cost system?

What is meant by the threshold service level of a … Read More...
Fact Debate Brief Introduction Crime doesn’t pay; it should be punished. Even since childhood, a slap on the hand has prevented possible criminals from ever committing the same offense; whether it was successful or not depended on how much that child wanted that cookie. While a slap on the wrist might or might not be an effective deterrent, the same can be said about the death penalty. Every day, somewhere in the world, a criminal is stopped permanently from committing any future costs, but this is by the means of the death. While effective in stopping one person permanently, it does nothing about the crime world as a whole. While it is necessary to end the career of a criminal, no matter what his or her crime is, we must not end it by taking a life. Through this paper, the death penalty will be proven ineffective at deterring crime by use of other environmental factors. Definition: The death penalty is defined as the universal punishment of death as legally applied by a fair court system. It is important for it to be a fair legal system, as not to confuse it with genocide, mob mentality, or any other ruling without trial. Claim 1: Use of the death penalty is in decline Ground 1: According to the book The Death Penalty: A Worldwide Perspective by Roger Hood and Carolyn Hoyle, published Dec. 8th, 2014, the Oxford professors in criminology say “As in most of the rest of the world, the death penalty in the US is in decline and distributed unevenly in frequency of use” even addressing that, as of April 2014, 18 states no longer have a death penalty, and even Oregon and Washington are considering removing their death penalty laws. Furthermore, in 2013, only 9 of these states still retaining the death penalty actually executed someone. Warrant 1: The death penalty can be reinstated at any time, but so far, it hasn’t been. At the same time, more states consider getting rid of it altogether. Therefore, it becomes clear that even states don’t want to be involved with this process showing that this is a disliked process. Claim 2: Even states with death penalty in effect still have high crime rates. Ground 2: With the reports gathered from fbi.gov, lawstreetmedia.com, a website based around political expertise and research determined the ranking of each state based on violent crime, published September 12th, 2014. Of the top ten most violent states, only three of which had the death penalty instituted (Maryland #9, New Mexico #4, Alaska #3). The other seven still had the system in place, and, despite it, still have a high amount of violent crime. On the opposite end of the spectrum, at the bottom ten most violent states, four of which, including the bottom-most states, do not have the death penalty in place. Warrant 2: With this ranking, it literally proves that the death penalty does not deter crime, or that there is a correlation between having the death penalty and having a decrease in the crime rate. Therefore, the idea of death penalty deterring crime is a null term in the sense that there is no, or a flawed connection. Claim 3: Violent crime is decreasing (but not because if the death penalty) Ground 3 A: According to an article published by The Economist, dated July 23rd, 2013, the rate of violent crime is in fact decreasing, but not because of the death penalty, but rather, because we have more police. From 1995 to 2010, policing has increased one-fifth, and with it, a decline in crime rate. In fact, in cities such as Detroit where policing has been cut, an opposite effect, an increase in crime, has been reported. Ground 3 B: An article from the Wall Street Journal, dated May 28th, 2011, also cites a decline in violent, only this time, citing the reason as a correlation with poverty levels. In 2009, at the start of the housing crisis, crime rates also dropped noticeably. Oddly enough, this article points out the belief that unemployment is often associated with crime; instead, the evidence presented is environmental in nature. Warrant 3: Crime rate isn’t deterred by death penalty, but rather, our surroundings. Seeing as how conditions have improved, so has the state of peace. Therefore, it becomes clear that the death penalty is ineffective at deterring crime because other key factors present more possibility for improvement of society. Claim 4: The death penalty is a historically flawed system. Ground 4A: According to the book The Death Penalty: Constitutional Issues, Commentaries, and Case Briefs by Scott Vollum, published in 2005, addresses how the case of the death penalty emerged to where it is today. While the book is now a decade old, it is used for historical context, particularly, in describing the first execution that took place in 1608. While it is true that most of these executions weren’t as well-grounded as the modern ones that take place now, they still had no effect in deterring crime. Why? Because even after America was established and more sane, the death penalty still had to be used because criminals still had violent behaviors. Ground 4B: According to data from Mother Jones, published May 17th, 2013, the reason why the crime rate was so high in the past could possibly be due to yet another environmental factor (affected by change over time), exposure to lead. Since the removal of lead from paint started over a hundred years ago, there has been a decline in homicide. Why is this important? Lead poisoning in child’s brain, if not lethal, can affect development and lead to mental disability, lower IQ, and lack of reasoning. Warrant 4: By examining history as a whole, there is a greater correlation between other factors that have resulted in a decline in violent crime. The decline in the crime rate has been an ongoing process, but has shown a faster decline due to other environmental factors, rather than the instatement of the death penalty. Claim 5: The world’s violent crime rate is changing, but not due to the death penalty. Ground 5A: According to article published by Amnesty USA in March of 2014, the number of executions under the death penalty reported in 2013 had increased by 15%. However, the rate of violent crime in the world has decreased significantly in the last decade. But, Latvia, for example, has permanently banned the death penalty since 2012. In 2014, the country was viewed overall as safe and low in violent crime rate. Ground 5B: However, while it is true that there is a decline in violent crime rate worldwide, The World Bank, April 17, 2013, reports that the rate of global poverty is decreasing. In a similar vein to the US, because wealth is being distributed better and conditions are improving overall, there is a steady decline in crime rate. Warrant 5: By examining the world as a whole, it becomes clear that it doesn’t matter if the death penalty is in place, violent crime will still exist. However, mirroring the US, as simple conditions improve, so does lifestyle. The death penalty does not deter crime in the world, rather a better quality of life is responsible for that. Works Cited “Death Sentences and Executions 2013.” Amnesty International USA. Amnesty USA, 26 Mar. 2014. Web. 15 Mar. 2015. <http://www.amnestyusa.org/research/reports/death-sentences-and-executions-2013>. D. K. “Why Is Crime Falling?” The Economist. The Economist Newspaper, 23 July 2013. Web. 12 Mar. 2015. <http://www.economist.com/blogs/economist-explains/2013/07/economist-explains-16>. Drum, Kevin. “The US Murder Rate Is on Track to Be Lowest in a Century.”Mother Jones. Mother Jones, 17 May 2013. Web. 13 Mar. 2015. <http://www.motherjones.com/kevin-drum/2013/05/us-murder-rate-track-be-lowest-century>. Hood, Roger, and Carolyn Hoyle. The Death Penalty: A Worldwide Perspective. Oxford: Oxford UP, 2002. 45. Print. Rizzo, Kevin. “Slideshow: America’s Safest and Most Dangerous States 2014.”Law Street Media. Law Street TM, 12 Sept. 2014. Web. 12 Mar. 2015. <http://lawstreetmedia.com/blogs/crime/safest-and-most-dangerous-states-2014/#slideshow>. Vollum, Scott. The Death Penalty: Constitutional Issues, Commentaries, and Case Briefs. Newark, NJ: LexisNexis, 2005. 2. Print. Theis, David. “Remarkable Declines in Global Poverty, But Major Challenges Remain.” The World Bank. The World Bank, 17 Apr. 2013. Web. 15 Mar. 2015. <http://www.worldbank.org/en/news/press-release/2013/04/17/remarkable-declines-in-global-poverty-but-major-challenges-remain>. Wilson, James Q. “Hard Times, Fewer Crimes.” WSJ. The Wall Street Journal, 28 May 2011. Web. 13 Mar. 2015. <http://www.wsj.com/articles/SB10001424052702304066504576345553135009870>.

Fact Debate Brief Introduction Crime doesn’t pay; it should be punished. Even since childhood, a slap on the hand has prevented possible criminals from ever committing the same offense; whether it was successful or not depended on how much that child wanted that cookie. While a slap on the wrist might or might not be an effective deterrent, the same can be said about the death penalty. Every day, somewhere in the world, a criminal is stopped permanently from committing any future costs, but this is by the means of the death. While effective in stopping one person permanently, it does nothing about the crime world as a whole. While it is necessary to end the career of a criminal, no matter what his or her crime is, we must not end it by taking a life. Through this paper, the death penalty will be proven ineffective at deterring crime by use of other environmental factors. Definition: The death penalty is defined as the universal punishment of death as legally applied by a fair court system. It is important for it to be a fair legal system, as not to confuse it with genocide, mob mentality, or any other ruling without trial. Claim 1: Use of the death penalty is in decline Ground 1: According to the book The Death Penalty: A Worldwide Perspective by Roger Hood and Carolyn Hoyle, published Dec. 8th, 2014, the Oxford professors in criminology say “As in most of the rest of the world, the death penalty in the US is in decline and distributed unevenly in frequency of use” even addressing that, as of April 2014, 18 states no longer have a death penalty, and even Oregon and Washington are considering removing their death penalty laws. Furthermore, in 2013, only 9 of these states still retaining the death penalty actually executed someone. Warrant 1: The death penalty can be reinstated at any time, but so far, it hasn’t been. At the same time, more states consider getting rid of it altogether. Therefore, it becomes clear that even states don’t want to be involved with this process showing that this is a disliked process. Claim 2: Even states with death penalty in effect still have high crime rates. Ground 2: With the reports gathered from fbi.gov, lawstreetmedia.com, a website based around political expertise and research determined the ranking of each state based on violent crime, published September 12th, 2014. Of the top ten most violent states, only three of which had the death penalty instituted (Maryland #9, New Mexico #4, Alaska #3). The other seven still had the system in place, and, despite it, still have a high amount of violent crime. On the opposite end of the spectrum, at the bottom ten most violent states, four of which, including the bottom-most states, do not have the death penalty in place. Warrant 2: With this ranking, it literally proves that the death penalty does not deter crime, or that there is a correlation between having the death penalty and having a decrease in the crime rate. Therefore, the idea of death penalty deterring crime is a null term in the sense that there is no, or a flawed connection. Claim 3: Violent crime is decreasing (but not because if the death penalty) Ground 3 A: According to an article published by The Economist, dated July 23rd, 2013, the rate of violent crime is in fact decreasing, but not because of the death penalty, but rather, because we have more police. From 1995 to 2010, policing has increased one-fifth, and with it, a decline in crime rate. In fact, in cities such as Detroit where policing has been cut, an opposite effect, an increase in crime, has been reported. Ground 3 B: An article from the Wall Street Journal, dated May 28th, 2011, also cites a decline in violent, only this time, citing the reason as a correlation with poverty levels. In 2009, at the start of the housing crisis, crime rates also dropped noticeably. Oddly enough, this article points out the belief that unemployment is often associated with crime; instead, the evidence presented is environmental in nature. Warrant 3: Crime rate isn’t deterred by death penalty, but rather, our surroundings. Seeing as how conditions have improved, so has the state of peace. Therefore, it becomes clear that the death penalty is ineffective at deterring crime because other key factors present more possibility for improvement of society. Claim 4: The death penalty is a historically flawed system. Ground 4A: According to the book The Death Penalty: Constitutional Issues, Commentaries, and Case Briefs by Scott Vollum, published in 2005, addresses how the case of the death penalty emerged to where it is today. While the book is now a decade old, it is used for historical context, particularly, in describing the first execution that took place in 1608. While it is true that most of these executions weren’t as well-grounded as the modern ones that take place now, they still had no effect in deterring crime. Why? Because even after America was established and more sane, the death penalty still had to be used because criminals still had violent behaviors. Ground 4B: According to data from Mother Jones, published May 17th, 2013, the reason why the crime rate was so high in the past could possibly be due to yet another environmental factor (affected by change over time), exposure to lead. Since the removal of lead from paint started over a hundred years ago, there has been a decline in homicide. Why is this important? Lead poisoning in child’s brain, if not lethal, can affect development and lead to mental disability, lower IQ, and lack of reasoning. Warrant 4: By examining history as a whole, there is a greater correlation between other factors that have resulted in a decline in violent crime. The decline in the crime rate has been an ongoing process, but has shown a faster decline due to other environmental factors, rather than the instatement of the death penalty. Claim 5: The world’s violent crime rate is changing, but not due to the death penalty. Ground 5A: According to article published by Amnesty USA in March of 2014, the number of executions under the death penalty reported in 2013 had increased by 15%. However, the rate of violent crime in the world has decreased significantly in the last decade. But, Latvia, for example, has permanently banned the death penalty since 2012. In 2014, the country was viewed overall as safe and low in violent crime rate. Ground 5B: However, while it is true that there is a decline in violent crime rate worldwide, The World Bank, April 17, 2013, reports that the rate of global poverty is decreasing. In a similar vein to the US, because wealth is being distributed better and conditions are improving overall, there is a steady decline in crime rate. Warrant 5: By examining the world as a whole, it becomes clear that it doesn’t matter if the death penalty is in place, violent crime will still exist. However, mirroring the US, as simple conditions improve, so does lifestyle. The death penalty does not deter crime in the world, rather a better quality of life is responsible for that. Works Cited “Death Sentences and Executions 2013.” Amnesty International USA. Amnesty USA, 26 Mar. 2014. Web. 15 Mar. 2015. . D. K. “Why Is Crime Falling?” The Economist. The Economist Newspaper, 23 July 2013. Web. 12 Mar. 2015. . Drum, Kevin. “The US Murder Rate Is on Track to Be Lowest in a Century.”Mother Jones. Mother Jones, 17 May 2013. Web. 13 Mar. 2015. . Hood, Roger, and Carolyn Hoyle. The Death Penalty: A Worldwide Perspective. Oxford: Oxford UP, 2002. 45. Print. Rizzo, Kevin. “Slideshow: America’s Safest and Most Dangerous States 2014.”Law Street Media. Law Street TM, 12 Sept. 2014. Web. 12 Mar. 2015. . Vollum, Scott. The Death Penalty: Constitutional Issues, Commentaries, and Case Briefs. Newark, NJ: LexisNexis, 2005. 2. Print. Theis, David. “Remarkable Declines in Global Poverty, But Major Challenges Remain.” The World Bank. The World Bank, 17 Apr. 2013. Web. 15 Mar. 2015. . Wilson, James Q. “Hard Times, Fewer Crimes.” WSJ. The Wall Street Journal, 28 May 2011. Web. 13 Mar. 2015. .

Fact Debate Brief Introduction Crime doesn’t pay; it should be … Read More...