Que 1: true of false a) Both silicon and germanium atoms have four valances electrons b) When forward-biased , a diode has a very high resistance c) A zener diode is designed to operate in the forward-bias region and has higher reverse breakdown voltage level than regular diode Write the word or phrase that best completes each statement or answers the questions: d) In semiconductor, in addition to the electron flow, there is also another kind of charge flow referred as………………. e) A silicon diode in placed in series with 2kΩresistor and a 14 V dc power supply. The current ID is: i) 6.65 mA ii) 2.2 mA iii)7.5 mA iv) 14 mA f) The series resistor that limits the forward current length through a silicon diode to 8 mA if the power supply voltage is 9.5V is : i) 1.1 kΩ ii) 2.2 kΩ iii) 9.5 mA iv) 4.7 mA FIGURE g) Determine the diode current IZ for the circuit of figure 1-2: assume VZ = 3.9 V i) 8.1 mA ii) 3.55 mA iii) 24.5 mA iv) 13.64 mA h) Determine the current through a 20 mA yellow LED when the power supply voltage is 15 V the series resistor is 2k ohm and the diode is put in backward. Assume VLED = 2V i) 20 mA ii) 0 mA iii) 10 mA iv) 6.5 mA Write the word or phrase that best completes each statement or answers the questions: i) Zener diode is a p-n junction diode that is desgined for specifc…………………voltage j) ………………………….is the process by which impurity atoms are introduced to the instrisic semiconductor in order to alter the balance between holes and electrons. 1) The average value of s full-wave rectifier with a peak vaue of 17V ia 108V 2) If the frequency of input signal of the full wave reflector is 60Hz, the output frequency is 120Hz 3) The cathode of a zener diode, when conducting is:y i) at 0.7V ii) more positive than anode iii) more negative than anode iv) -0.7V 4) A given transformer with turn ratio 12:1has an input of 115V at 60Hzthe paek output voltage v0 (p) is i) 9.58 V ii) 6.78V iii) 11.5 V iv) 13.55 V FIGURE 2-1 5) The output voltage of V0(DC)for the full wave rectifier of figure 2-1 is i) 18.07 V ii) 12.78 V iii) 8.3 V iv) 5.74 V FIGURE 2-2 6) The voltage V2(P) for the full-wavr bridge rectifier of figure 2-2 is i) 17.37 V ii)1 6.67 V iii) 12.78 V iv) 18.07 V 7) Assume the current I0(DC) in figure is 100mA and C= 2400µF .the ripple voltage vr (p-p) i) 694mV ii) 424 mV iii) 121 V iv) 347 V Use figure 2-3 for questions below: Assume that RS = 75, RL = 160 FIGURE 2-3 8) The output voltage V0 is i) 7.5 V ii) 10 V iii) 8.5 V iv) 12 V Write the word or phrase that best completes each statement or answers the questions: 9) The magnitude of the peak-to-peak ripple voltage vr (p-p) is directly proportional to the output …………………. 10) The ripple voltage at the filter section vr (p-p) can be reduced by increasing the value

Que 1: true of false a) Both silicon and germanium atoms have four valances electrons b) When forward-biased , a diode has a very high resistance c) A zener diode is designed to operate in the forward-bias region and has higher reverse breakdown voltage level than regular diode Write the word or phrase that best completes each statement or answers the questions: d) In semiconductor, in addition to the electron flow, there is also another kind of charge flow referred as………………. e) A silicon diode in placed in series with 2kΩresistor and a 14 V dc power supply. The current ID is: i) 6.65 mA ii) 2.2 mA iii)7.5 mA iv) 14 mA f) The series resistor that limits the forward current length through a silicon diode to 8 mA if the power supply voltage is 9.5V is : i) 1.1 kΩ ii) 2.2 kΩ iii) 9.5 mA iv) 4.7 mA FIGURE g) Determine the diode current IZ for the circuit of figure 1-2: assume VZ = 3.9 V i) 8.1 mA ii) 3.55 mA iii) 24.5 mA iv) 13.64 mA h) Determine the current through a 20 mA yellow LED when the power supply voltage is 15 V the series resistor is 2k ohm and the diode is put in backward. Assume VLED = 2V i) 20 mA ii) 0 mA iii) 10 mA iv) 6.5 mA Write the word or phrase that best completes each statement or answers the questions: i) Zener diode is a p-n junction diode that is desgined for specifc…………………voltage j) ………………………….is the process by which impurity atoms are introduced to the instrisic semiconductor in order to alter the balance between holes and electrons. 1) The average value of s full-wave rectifier with a peak vaue of 17V ia 108V 2) If the frequency of input signal of the full wave reflector is 60Hz, the output frequency is 120Hz 3) The cathode of a zener diode, when conducting is:y i) at 0.7V ii) more positive than anode iii) more negative than anode iv) -0.7V 4) A given transformer with turn ratio 12:1has an input of 115V at 60Hzthe paek output voltage v0 (p) is i) 9.58 V ii) 6.78V iii) 11.5 V iv) 13.55 V FIGURE 2-1 5) The output voltage of V0(DC)for the full wave rectifier of figure 2-1 is i) 18.07 V ii) 12.78 V iii) 8.3 V iv) 5.74 V FIGURE 2-2 6) The voltage V2(P) for the full-wavr bridge rectifier of figure 2-2 is i) 17.37 V ii)1 6.67 V iii) 12.78 V iv) 18.07 V 7) Assume the current I0(DC) in figure is 100mA and C= 2400µF .the ripple voltage vr (p-p) i) 694mV ii) 424 mV iii) 121 V iv) 347 V Use figure 2-3 for questions below: Assume that RS = 75, RL = 160 FIGURE 2-3 8) The output voltage V0 is i) 7.5 V ii) 10 V iii) 8.5 V iv) 12 V Write the word or phrase that best completes each statement or answers the questions: 9) The magnitude of the peak-to-peak ripple voltage vr (p-p) is directly proportional to the output …………………. 10) The ripple voltage at the filter section vr (p-p) can be reduced by increasing the value

“No Bats in the Belfry” by Dechaine and Johnson Page 1 by Jennifer M. Dechaine1,2 and James E. Johnson1 1Department of Biological Sciences 2Department of Science Education Central Washington University, Ellensburg, WA NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE Part I – The Basic Question Introduction Imagine going out for a brisk winter snowshoe and suddenly stumbling upon hundreds of bat carcasses littering the forest floor. Unfortunately, this unsettling sight has become all too common in the United States (Figure 1). White-nose syndrome (WNS), first discovered in 2006, has now spread to 20 states and has led to the deaths of over 5.5 million bats (as of January 2012). WNS is a disease caused by the fungus, Pseudogymnoascus destructans. Bats infected with WNS develop white fuzz on their noses (Figure 2, next page) and often exhibit unnatural behavior, such as flying outside during the winter when they should be hibernating. WNS affects at least six different bat species in the United States and quickly decimates bat populations (colony mortality is commonly greater than 90%). Scientists have predicted that if deaths continue at the current rate, several bat species will become locally extinct within 20 years. Bats provide natural pest control by eating harmful insects, such as crop pests and disease carrying insect species, and losing bat populations would have devastating consequences for the U.S. economy. Researchers have sprung into action to study how bats become infected with and transmit P. destructans, but a key component of this research is determining where the fungus came from in the first place. Some have suggested that it is an invasive species from a different country while others think it is a North American fungal species that has recently become better able to cause disease. In this case study, we examine the origin of P. destructans causing WNS in North America. Some Other Important Observations • WNS was first documented at four cave sites in New York State in 2006. • The fungus can be spread among bats by direct contact or spores can be transferred between caves by humans (on clothing) or other animals. • European strains of the fungus occur in low levels across Europe but have led to few bat deaths there. • Bats with WNS frequently awake during hibernation, causing them to use important fat reserves, leading to death. No Bats in the Belfry: The Origin of White- Nose Syndrome in Little Brown Bats Figure 1. Many bats dead in winter from white-nose syndrome. NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE “No Bats in the Belfry” by Dechaine and Johnson Page 2 Questions 1. What is the basic question of this study and why is it interesting? 2. What specific testable hypotheses can you develop to explain the observations and answer the basic question of this study? Write at least two alternative hypotheses. 3. What predictions about the effects of European strains of P. destructans on North American bats can you make if your hypotheses are correct? Write at least one prediction for each of your hypotheses. Figure 2. White fuzz on the muzzle of a little brown bat indicating infection by the disease. NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE “No Bats in the Belfry” by Dechaine and Johnson Page 3 Part II – The Hypothesis As discussed in Part I, researchers had preliminary data suggesting that the pathogen causing WNS is an invasive fungal species (P. destructans) brought to North America from Europe. They had also observed that P. destructans occurs on European bats but rarely causes their death. Preliminary research also suggested that one reason that bats have been dying from WNS is that the disorder arouses them from hibernation, causing the bats to waste fat reserves flying during the winter when food is not readily available. These observations led researchers to speculate that European P. destructans will affect North American bat hibernation at least as severely as does North American P. destructans (Warnecke et al. 2012). Questions 1. Explicitly state the researchers’ null (H0 ) and alternative hypotheses (HA) for this study. 2. Describe an experiment you could use to differentiate between these hypotheses (H0 and HA). NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE “No Bats in the Belfry” by Dechaine and Johnson Page 4 Part III – Experiments and Observations In 2010, Lisa Warnecke and colleagues (2012) isolated P. destructans fungal spores from Europe and North America. They collected 54 male little brown bats (Myotis lucifugus) from the wild and divided these bats equally into three treatment groups. • Group 1 was inoculated with the North American P. destructans spores (NAGd treatment). • Group 2 was inoculated with the European P. destructans spores (EUGd treatment). • Group 3 was inoculated using the inoculation serum with no spores (Control treatment). All three groups were put into separate dark chambers that simulated the environmental conditions of a cave. All bats began hibernating within the first week of the study. The researchers used infrared cameras to examine the bats’ hibernation over four consecutive intervals of 26 days each. They then used the cameras to determine the total number of times a bat was aroused from hibernation during each interval. Questions 1. Use the graph below to predict what the results will look like if the null hypothesis is supported. The total arousal counts in the control treatment at each interval is graphed for you (open bars). Justifiy your predictions. 2. Use the graph below to predict what the results will look like if the null hypothesis is rejected. The total arousal counts in the control treatment at each interval is graphed for you (open bars). Justify your predictions. Null Supported Total Arousal counts Interval Null Rejected Total Arousal counts Interval NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE “No Bats in the Belfry” by Dechaine and Johnson Page 5 2 Credits: Title block photo by David A. Riggs (http://www.flickr.com/photos/driggs/6933593833/sizes/l/), cropped, used in accordance with CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0/). Figure 1 photo by Kevin Wenner/Pennsylvania Game Commision (http://www. portal.state.pa.us/portal/server.pt/document/901415/white-nose_kills_hundreds_of_bats_in_lackawanna_county_pdf ). Figure 2 photo courtesy of Ryan von Linden/New York Department of Environmental Conservation, http://www.flickr.com/photos/usfwshq/5765048289/sizes/l/in/ set-72157626818845664/, used in accordance with CC BY 2.0 (http://creativecommons.org/licenses/by/2.0/deed.en). Case copyright held by the National Center for Case Study Teaching in Science, University at Buffalo, State University of New York. Originally published February 6, 2014. Please see our usage guidelines, which outline our policy concerning permissible reproduction of this work. Part IV – Results Figure 3 (below) shows the real data from the study. There is no data for interval 4 bats that were exposed to the European P. destructans (gray bar) because all of the bats in that group died. Questions 1. How do your predictions compare with the experimental results? Be specific. 2. Do the results support or reject the null hypothesis? 3. If the European P. destructans is causing WNS in North America, how come European bats aren’t dying from the same disease? References U.S. Fish and Wildlife Service. 2012. White-Nose Syndrome. Available at: http://whitenosesyndrome.org/. Last accessed December 20, 2013. Warnecke, L., et al. 2012. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. PNAS Online Early Edition: http://www.pnas.org/cgi/ doi/10.1073/pnas.1200374109. Last accessed December 20, 2013. Figure 3. Changes in hibernation patterns in M. lucifugus following inoculation with North American P. destructans (NAGd), European P. destructans (EUGd), or the control serum. Interval Total Arousal counts

“No Bats in the Belfry” by Dechaine and Johnson Page 1 by Jennifer M. Dechaine1,2 and James E. Johnson1 1Department of Biological Sciences 2Department of Science Education Central Washington University, Ellensburg, WA NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE Part I – The Basic Question Introduction Imagine going out for a brisk winter snowshoe and suddenly stumbling upon hundreds of bat carcasses littering the forest floor. Unfortunately, this unsettling sight has become all too common in the United States (Figure 1). White-nose syndrome (WNS), first discovered in 2006, has now spread to 20 states and has led to the deaths of over 5.5 million bats (as of January 2012). WNS is a disease caused by the fungus, Pseudogymnoascus destructans. Bats infected with WNS develop white fuzz on their noses (Figure 2, next page) and often exhibit unnatural behavior, such as flying outside during the winter when they should be hibernating. WNS affects at least six different bat species in the United States and quickly decimates bat populations (colony mortality is commonly greater than 90%). Scientists have predicted that if deaths continue at the current rate, several bat species will become locally extinct within 20 years. Bats provide natural pest control by eating harmful insects, such as crop pests and disease carrying insect species, and losing bat populations would have devastating consequences for the U.S. economy. Researchers have sprung into action to study how bats become infected with and transmit P. destructans, but a key component of this research is determining where the fungus came from in the first place. Some have suggested that it is an invasive species from a different country while others think it is a North American fungal species that has recently become better able to cause disease. In this case study, we examine the origin of P. destructans causing WNS in North America. Some Other Important Observations • WNS was first documented at four cave sites in New York State in 2006. • The fungus can be spread among bats by direct contact or spores can be transferred between caves by humans (on clothing) or other animals. • European strains of the fungus occur in low levels across Europe but have led to few bat deaths there. • Bats with WNS frequently awake during hibernation, causing them to use important fat reserves, leading to death. No Bats in the Belfry: The Origin of White- Nose Syndrome in Little Brown Bats Figure 1. Many bats dead in winter from white-nose syndrome. NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE “No Bats in the Belfry” by Dechaine and Johnson Page 2 Questions 1. What is the basic question of this study and why is it interesting? 2. What specific testable hypotheses can you develop to explain the observations and answer the basic question of this study? Write at least two alternative hypotheses. 3. What predictions about the effects of European strains of P. destructans on North American bats can you make if your hypotheses are correct? Write at least one prediction for each of your hypotheses. Figure 2. White fuzz on the muzzle of a little brown bat indicating infection by the disease. NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE “No Bats in the Belfry” by Dechaine and Johnson Page 3 Part II – The Hypothesis As discussed in Part I, researchers had preliminary data suggesting that the pathogen causing WNS is an invasive fungal species (P. destructans) brought to North America from Europe. They had also observed that P. destructans occurs on European bats but rarely causes their death. Preliminary research also suggested that one reason that bats have been dying from WNS is that the disorder arouses them from hibernation, causing the bats to waste fat reserves flying during the winter when food is not readily available. These observations led researchers to speculate that European P. destructans will affect North American bat hibernation at least as severely as does North American P. destructans (Warnecke et al. 2012). Questions 1. Explicitly state the researchers’ null (H0 ) and alternative hypotheses (HA) for this study. 2. Describe an experiment you could use to differentiate between these hypotheses (H0 and HA). NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE “No Bats in the Belfry” by Dechaine and Johnson Page 4 Part III – Experiments and Observations In 2010, Lisa Warnecke and colleagues (2012) isolated P. destructans fungal spores from Europe and North America. They collected 54 male little brown bats (Myotis lucifugus) from the wild and divided these bats equally into three treatment groups. • Group 1 was inoculated with the North American P. destructans spores (NAGd treatment). • Group 2 was inoculated with the European P. destructans spores (EUGd treatment). • Group 3 was inoculated using the inoculation serum with no spores (Control treatment). All three groups were put into separate dark chambers that simulated the environmental conditions of a cave. All bats began hibernating within the first week of the study. The researchers used infrared cameras to examine the bats’ hibernation over four consecutive intervals of 26 days each. They then used the cameras to determine the total number of times a bat was aroused from hibernation during each interval. Questions 1. Use the graph below to predict what the results will look like if the null hypothesis is supported. The total arousal counts in the control treatment at each interval is graphed for you (open bars). Justifiy your predictions. 2. Use the graph below to predict what the results will look like if the null hypothesis is rejected. The total arousal counts in the control treatment at each interval is graphed for you (open bars). Justify your predictions. Null Supported Total Arousal counts Interval Null Rejected Total Arousal counts Interval NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE “No Bats in the Belfry” by Dechaine and Johnson Page 5 2 Credits: Title block photo by David A. Riggs (http://www.flickr.com/photos/driggs/6933593833/sizes/l/), cropped, used in accordance with CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0/). Figure 1 photo by Kevin Wenner/Pennsylvania Game Commision (http://www. portal.state.pa.us/portal/server.pt/document/901415/white-nose_kills_hundreds_of_bats_in_lackawanna_county_pdf ). Figure 2 photo courtesy of Ryan von Linden/New York Department of Environmental Conservation, http://www.flickr.com/photos/usfwshq/5765048289/sizes/l/in/ set-72157626818845664/, used in accordance with CC BY 2.0 (http://creativecommons.org/licenses/by/2.0/deed.en). Case copyright held by the National Center for Case Study Teaching in Science, University at Buffalo, State University of New York. Originally published February 6, 2014. Please see our usage guidelines, which outline our policy concerning permissible reproduction of this work. Part IV – Results Figure 3 (below) shows the real data from the study. There is no data for interval 4 bats that were exposed to the European P. destructans (gray bar) because all of the bats in that group died. Questions 1. How do your predictions compare with the experimental results? Be specific. 2. Do the results support or reject the null hypothesis? 3. If the European P. destructans is causing WNS in North America, how come European bats aren’t dying from the same disease? References U.S. Fish and Wildlife Service. 2012. White-Nose Syndrome. Available at: http://whitenosesyndrome.org/. Last accessed December 20, 2013. Warnecke, L., et al. 2012. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. PNAS Online Early Edition: http://www.pnas.org/cgi/ doi/10.1073/pnas.1200374109. Last accessed December 20, 2013. Figure 3. Changes in hibernation patterns in M. lucifugus following inoculation with North American P. destructans (NAGd), European P. destructans (EUGd), or the control serum. Interval Total Arousal counts

checkyourstudy.com Whatsapp +919911743277
1 Lab Assignment Q1) The PIC16F1937 Memory Banks i) The Special Function Registers within the PIC16F1937 microcontroller are held within a number of memory banks. How many memory banks are there within the PIC16F1937 microcontroller? ii) Explain two methods to show how a special function register within a particular memory bank can be selected. Q1) The TRIS Registers The PIC16F61937 microcontroller has five TRIS registers, TRISA, TRISB, TRISC, TRISD, and TRISE situated in bank 1 in the special function register memory map. i) What is the function of the TRIS registers? ii) How can the TRIS registers in bank 1 be accessed? Write a short program to configure PORTA of the microcontroller as inputs and PORTB of the microcontroller as outputs. For the remaining exercises assume that PORTA is connected to switches and PORTB is connected to LEDs in common cathode configuration (i.e. output a 1 to illuminate). Q2) Key Press Accumulator It is required to produce a system incorporating a microcontroller that keeps count (in binary) of the number of times that a key has been pressed. The key is connected to bit RA0 of PORTA and when pressed should increment the binary value displayed on LEDs connected to PORTB. Write a program to meet the above specification, simulate the program to ensure correct operation, program a microcontroller and test. (Marks allocated for correct program demonstration). 2 Q3) Software Delays The PIC16F1937 assembly language program listed below is a software time delay incorporating two nested loops. value1 equ 0x20 value2 equ 0x21 org 0x00 delay movlw .65 movwf value1 outer movlw .255 movwf value2 inner decfsz value2 goto inner decfsz value1 goto outer wait goto wait By incorporating breakpoints and using the stopwatch determine the amount of time elapsed in the software delay assuming the microcontroller is operating from a 4 MHz crystal oscillator. Compare the value obtained above with that obtained by calculation. Are the time values equal? Q4) Travelling LED program It is required to produce a system incorporating a PIC16F1937 to produce the following sequence on LEDs (travelling LED). And repeat The LEDs are connected to PORTB and the sequence should only start after the key connected to RA0 has been asserted. Should key RA1 be pressed then all of the LEDs should be switched off. The sequence can be set off again by reasserting key RA0. Incorporate a 100ms delay between changes of state of the sequence. Write a program to carry out the above specification, simulate, program a microcontroller and test. (Marks allocated for correct program demonstration). 3 Lab Assignment Checklist Marks allocation: Q1) The PIC16F1937 memory banks Qi) 2% Qii) 2% Q1) TRIS Registers Qi) 2% Qii) 2% Configuration program 4% Q2) Key Press Accumulator Program Flowchart 8% Program 20% Explanation 5% Demonstration 5% Q3) Software Delays By stopwatch 6% By calculation 6% Q4) Travelling LED program Flowchart 8% Program 20% Explanation 5% Demonstration 5% TOTAL 100%

1 Lab Assignment Q1) The PIC16F1937 Memory Banks i) The Special Function Registers within the PIC16F1937 microcontroller are held within a number of memory banks. How many memory banks are there within the PIC16F1937 microcontroller? ii) Explain two methods to show how a special function register within a particular memory bank can be selected. Q1) The TRIS Registers The PIC16F61937 microcontroller has five TRIS registers, TRISA, TRISB, TRISC, TRISD, and TRISE situated in bank 1 in the special function register memory map. i) What is the function of the TRIS registers? ii) How can the TRIS registers in bank 1 be accessed? Write a short program to configure PORTA of the microcontroller as inputs and PORTB of the microcontroller as outputs. For the remaining exercises assume that PORTA is connected to switches and PORTB is connected to LEDs in common cathode configuration (i.e. output a 1 to illuminate). Q2) Key Press Accumulator It is required to produce a system incorporating a microcontroller that keeps count (in binary) of the number of times that a key has been pressed. The key is connected to bit RA0 of PORTA and when pressed should increment the binary value displayed on LEDs connected to PORTB. Write a program to meet the above specification, simulate the program to ensure correct operation, program a microcontroller and test. (Marks allocated for correct program demonstration). 2 Q3) Software Delays The PIC16F1937 assembly language program listed below is a software time delay incorporating two nested loops. value1 equ 0x20 value2 equ 0x21 org 0x00 delay movlw .65 movwf value1 outer movlw .255 movwf value2 inner decfsz value2 goto inner decfsz value1 goto outer wait goto wait By incorporating breakpoints and using the stopwatch determine the amount of time elapsed in the software delay assuming the microcontroller is operating from a 4 MHz crystal oscillator. Compare the value obtained above with that obtained by calculation. Are the time values equal? Q4) Travelling LED program It is required to produce a system incorporating a PIC16F1937 to produce the following sequence on LEDs (travelling LED). And repeat The LEDs are connected to PORTB and the sequence should only start after the key connected to RA0 has been asserted. Should key RA1 be pressed then all of the LEDs should be switched off. The sequence can be set off again by reasserting key RA0. Incorporate a 100ms delay between changes of state of the sequence. Write a program to carry out the above specification, simulate, program a microcontroller and test. (Marks allocated for correct program demonstration). 3 Lab Assignment Checklist Marks allocation: Q1) The PIC16F1937 memory banks Qi) 2% Qii) 2% Q1) TRIS Registers Qi) 2% Qii) 2% Configuration program 4% Q2) Key Press Accumulator Program Flowchart 8% Program 20% Explanation 5% Demonstration 5% Q3) Software Delays By stopwatch 6% By calculation 6% Q4) Travelling LED program Flowchart 8% Program 20% Explanation 5% Demonstration 5% TOTAL 100%

info@checkyourstudy.com Whatsapp +919911743277
EE214 Fall 2015 Problem Set1 I am submitting my own work in this exercise, and I am aware of the penalties for cheating that will be assessed if I submit work for credit that is not my own. Print Name Sign Name Date Contains material © Digilent, Inc. 7 pages 1. (15 points) Below are some circuit elements from a simple digital system. 3.3V 20mA VB 1Kohm VA 1.3V RB 1K RC RD SW1 SW2 RA VC When the pushbutton SW1 is not pressed, what is the voltage at VA? (1pt) When the SW1 is pressed, what is the voltage at VA? (1pt) When the SW1 is pressed, what current flows in the 1K resistor RA? (1pt) When SW1 is pressed, what power is dissipated in RA? (2pt) In the LED circuit, 1.3V is required at VB to forward-bias the LED and cause current to flow. Given there is a 1.3V drop across the LED, what resistance RB is required for 20mA to flow through the LED? (2pt) What power is dissipated in the LED? (1pt) In the circuit on the far right, if RC dissipates 25mW, what is VC? (2pt) Using the VC voltage you calculated, if RC is changed to 100Ohms, how much power would it dissipate? (2pt) Using the VC voltage you calculated and a 1K RC, if pressing SW2 causes the total circuit power to increase to 75mW, what value must RD be? (3pt) EE214 Problem Set 1 2. (20 points) Complete the truth tables below. Provide SOP equations for the bottom three tables. F <= Σ ( ) F <= Σ ( ) F <= Σ ( ) 3. (12 points) Write the number of transistors required for each logic gate below inside the gate symbol, and then write the logic gate name below the symbol. 4. (12 points) Complete truth tables for the circuits shown below A B F AND A B F OR A B F XOR A F INV A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ? = ? ̅ ∙ ? + ? A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ? = ? ∙ ? ∙? ̅ + ? ∙ ? A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ? = ? ∙? ̅+? ̅ ∙ ? A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 A F B C A B C Y EE214 Problem Set 1 5. (18 points) Show the total transistor count and gate/input number for the circuits below. Then sketch equivalent circuits using NAND gates that use fewer transistors (do not minimize the circuits). 6. (12 points) Sketch circuits for the following logic equations F = A̅ ∙ B ∙ C + A ∙B̅ ∙C̅ +A̅ ∙ C F = A̅ ∙ B ∙C̅ ̅̅̅̅̅̅̅̅̅̅ + ̅A̅̅+̅̅̅B̅ F = (? +? ̅ ) ∙ ̅̅?̅̅̅̅̅+̅̅̅̅̅̅̅?̅̅̅∙̅̅?̅̅ G AB C D AB C D H G F F AB C EE214 Problem Set 1 7. (22 points) Sketch a circuit similar to the figure below that asserts logic 1 only when both switches are closed. Label the switches 1 and 2, and complete the truth table below. Then circle the correct term (high or low, and open or closed) to complete the following sentences describing the AND and OR relationships: AND Relationship: The output F is [high / low] when SW1 is [open / closed], and SW2 is [open / closed]. OR Relationship: The output F is [high / low] when SW1 is [open / closed], or SW2 is [open / closed]. Sketch a circuit similar to the figure below that asserts logic 0 whenever one or both switches are closed. Label the switches 1 and 2, and complete the truth table below. Circle the correct term (high or low, and open or closed) to complete the following sentences describing the AND and OR relationships: AND Relationship: The output F is [high / low] when SW1 is [open / closed], and SW2 is [open / closed]. OR Relationship: The output F is [high / low] when SW1 is [open / closed], or SW2 is [open / closed]. 8. (4 points) Complete the following. A pFET turns [ ON / OFF ] with LLV and conducts [ LHV / LLV ] well (circle one in each bracket). An nFET turns [ ON / OFF ] with LLV and conducts [ LHV / LLV ] well (circle one in each bracket). Vdd GND F SW1 SW2 Vdd GND F SW1 SW2 SW1 SW2 F SW1 SW2 F EE214 Problem Set 1 9. (8 points) Sketch circuits and write Verilog assignment statements for the following equations. F = m(1, 2, 6) F = M(0, 7) 10. (21 points) Complete the truth tables below (enter “on” or “off” under each transistor entry, and “1” or “0” for output F), and enter the gate name and schematic shapes in the tables. You get 1/2 point for each correct column, and 1/2 point each for correct names and shapes. Q1 Q2 Q3 Q4 A B F Vdd Q2 Q1 Q3 Q4 A B F Vdd A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape EE214 Problem Set 1 Q2 Q1 Q3 Q4 A B F Q5 Q6 Vdd Q1 Q2 Q3 Q4 A B F Q5 Q6 Vdd (2 points) Enter the logic equation for the 3-input circuit above: A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape A B C Q1 Q2 Q3 Q4 Q5 Q6 F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 F = Q1 Q2 Q4 Q5 A B F Q6 Vdd C Q3 EE214 Problem Set 1 11. (20 points) In a logic function with n inputs, there are 2? unique combinations of inputs and 22? possible logic functions. The table below has four rows that show the four possible combinations of two inputs (22 = 4), and 16 output columns that show all possible two-input logic function (222 = 16). Six of these output columns are associated with common logic functions of two variables. Circle the six columns, and label them with the appropriate logic gate name. Draw the circuit symbols for the functions represented. INPUTS ALL POSSIBLE FUNCTIONS A B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 A table like the one above for 3 inputs would need _________ rows and _________ columns. A table like the one above for 4 inputs would need _________ rows and _________ columns. A table like the one above for 5 inputs would need _________ rows and _________ columns. 12. (15 points) Find global minimum circuits for the following three logic signal outputs that are all functions of the same three inputs. Show all work. F1 =  m (0, 3, 4) F2 =  m (1, 6, 7) F3 =  m (0, 1, 3, 4)

EE214 Fall 2015 Problem Set1 I am submitting my own work in this exercise, and I am aware of the penalties for cheating that will be assessed if I submit work for credit that is not my own. Print Name Sign Name Date Contains material © Digilent, Inc. 7 pages 1. (15 points) Below are some circuit elements from a simple digital system. 3.3V 20mA VB 1Kohm VA 1.3V RB 1K RC RD SW1 SW2 RA VC When the pushbutton SW1 is not pressed, what is the voltage at VA? (1pt) When the SW1 is pressed, what is the voltage at VA? (1pt) When the SW1 is pressed, what current flows in the 1K resistor RA? (1pt) When SW1 is pressed, what power is dissipated in RA? (2pt) In the LED circuit, 1.3V is required at VB to forward-bias the LED and cause current to flow. Given there is a 1.3V drop across the LED, what resistance RB is required for 20mA to flow through the LED? (2pt) What power is dissipated in the LED? (1pt) In the circuit on the far right, if RC dissipates 25mW, what is VC? (2pt) Using the VC voltage you calculated, if RC is changed to 100Ohms, how much power would it dissipate? (2pt) Using the VC voltage you calculated and a 1K RC, if pressing SW2 causes the total circuit power to increase to 75mW, what value must RD be? (3pt) EE214 Problem Set 1 2. (20 points) Complete the truth tables below. Provide SOP equations for the bottom three tables. F <= Σ ( ) F <= Σ ( ) F <= Σ ( ) 3. (12 points) Write the number of transistors required for each logic gate below inside the gate symbol, and then write the logic gate name below the symbol. 4. (12 points) Complete truth tables for the circuits shown below A B F AND A B F OR A B F XOR A F INV A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ? = ? ̅ ∙ ? + ? A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ? = ? ∙ ? ∙? ̅ + ? ∙ ? A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ? = ? ∙? ̅+? ̅ ∙ ? A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 A F B C A B C Y EE214 Problem Set 1 5. (18 points) Show the total transistor count and gate/input number for the circuits below. Then sketch equivalent circuits using NAND gates that use fewer transistors (do not minimize the circuits). 6. (12 points) Sketch circuits for the following logic equations F = A̅ ∙ B ∙ C + A ∙B̅ ∙C̅ +A̅ ∙ C F = A̅ ∙ B ∙C̅ ̅̅̅̅̅̅̅̅̅̅ + ̅A̅̅+̅̅̅B̅ F = (? +? ̅ ) ∙ ̅̅?̅̅̅̅̅+̅̅̅̅̅̅̅?̅̅̅∙̅̅?̅̅ G AB C D AB C D H G F F AB C EE214 Problem Set 1 7. (22 points) Sketch a circuit similar to the figure below that asserts logic 1 only when both switches are closed. Label the switches 1 and 2, and complete the truth table below. Then circle the correct term (high or low, and open or closed) to complete the following sentences describing the AND and OR relationships: AND Relationship: The output F is [high / low] when SW1 is [open / closed], and SW2 is [open / closed]. OR Relationship: The output F is [high / low] when SW1 is [open / closed], or SW2 is [open / closed]. Sketch a circuit similar to the figure below that asserts logic 0 whenever one or both switches are closed. Label the switches 1 and 2, and complete the truth table below. Circle the correct term (high or low, and open or closed) to complete the following sentences describing the AND and OR relationships: AND Relationship: The output F is [high / low] when SW1 is [open / closed], and SW2 is [open / closed]. OR Relationship: The output F is [high / low] when SW1 is [open / closed], or SW2 is [open / closed]. 8. (4 points) Complete the following. A pFET turns [ ON / OFF ] with LLV and conducts [ LHV / LLV ] well (circle one in each bracket). An nFET turns [ ON / OFF ] with LLV and conducts [ LHV / LLV ] well (circle one in each bracket). Vdd GND F SW1 SW2 Vdd GND F SW1 SW2 SW1 SW2 F SW1 SW2 F EE214 Problem Set 1 9. (8 points) Sketch circuits and write Verilog assignment statements for the following equations. F = m(1, 2, 6) F = M(0, 7) 10. (21 points) Complete the truth tables below (enter “on” or “off” under each transistor entry, and “1” or “0” for output F), and enter the gate name and schematic shapes in the tables. You get 1/2 point for each correct column, and 1/2 point each for correct names and shapes. Q1 Q2 Q3 Q4 A B F Vdd Q2 Q1 Q3 Q4 A B F Vdd A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape EE214 Problem Set 1 Q2 Q1 Q3 Q4 A B F Q5 Q6 Vdd Q1 Q2 Q3 Q4 A B F Q5 Q6 Vdd (2 points) Enter the logic equation for the 3-input circuit above: A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape A B C Q1 Q2 Q3 Q4 Q5 Q6 F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 F = Q1 Q2 Q4 Q5 A B F Q6 Vdd C Q3 EE214 Problem Set 1 11. (20 points) In a logic function with n inputs, there are 2? unique combinations of inputs and 22? possible logic functions. The table below has four rows that show the four possible combinations of two inputs (22 = 4), and 16 output columns that show all possible two-input logic function (222 = 16). Six of these output columns are associated with common logic functions of two variables. Circle the six columns, and label them with the appropriate logic gate name. Draw the circuit symbols for the functions represented. INPUTS ALL POSSIBLE FUNCTIONS A B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 A table like the one above for 3 inputs would need _________ rows and _________ columns. A table like the one above for 4 inputs would need _________ rows and _________ columns. A table like the one above for 5 inputs would need _________ rows and _________ columns. 12. (15 points) Find global minimum circuits for the following three logic signal outputs that are all functions of the same three inputs. Show all work. F1 =  m (0, 3, 4) F2 =  m (1, 6, 7) F3 =  m (0, 1, 3, 4)

info@checkyourstudy.com
Lab Assignment 2 CECS 201, Instructor: Brian Lojeck Date Assigned: 9/11/2015 Date Due: 1. Lab report: 9/25/2015 at the start of lecture, UPLOADED TO BEACHBOARD 2. Demonstration on-board to be done in lab after lecture on 9/25/2015 File Needed: LabAssignment2.ucf is available on the beachboard. Download the correct version for your board (Nexys3, Nexys2_500K, or Nexys2_1200K) Task: Using the lab lectures and the examples in the lab lecture documents use the Xylinx ISE software to design a circuit with 4 inputs (named SW0, SW1, SW2, SW3) and one output (named LED0). The inputs are the first 4 switches on the Digilent board, the output is the first LED light on the board. Note that the input and output names must match EXACTLY as shown above. The circuit will be a “voting” circuit. The output will be high (the led will turn on) whenever more outputs have a value of 1 then a value of 0. The output will be low (the led will turn off) whenever more outputs have a value of 0 then 1. If equal numbers of 1 and 0 are entered, the light should turn off. Design a truth table for the circuit using the description above. Use Karnaugh Maps to find the simplified SOP equation based on the truth table. Implement the equation in a schematic file. Test the schematic using a Verilog testbench. Download the project to your Digilent board to make sure it works properly. Note that you will need to download the code to your board in lab to demonstrate the project and receive full credit for the lab. Hand In For Your Lab Report, as a PDF file, or as a series of screenshots in a word document 1. A cover sheet for the report 2. The truth table for the circuit 3. The K-maps you used to simplify the equations (scans or decent cell-phone photos of the page are acceptable) 4. A printout of your schematic file (printed in landscape mode) 5. A printout of your testbench file (printed in portrait mode) 6. A printout of the results of your simulation (the timing diagram). Remember to print in landscape mode, and to use the printing menu to ensure the printout is readable (not zoomed out too far) and that all data is shown (not zoomed in too far)

Lab Assignment 2 CECS 201, Instructor: Brian Lojeck Date Assigned: 9/11/2015 Date Due: 1. Lab report: 9/25/2015 at the start of lecture, UPLOADED TO BEACHBOARD 2. Demonstration on-board to be done in lab after lecture on 9/25/2015 File Needed: LabAssignment2.ucf is available on the beachboard. Download the correct version for your board (Nexys3, Nexys2_500K, or Nexys2_1200K) Task: Using the lab lectures and the examples in the lab lecture documents use the Xylinx ISE software to design a circuit with 4 inputs (named SW0, SW1, SW2, SW3) and one output (named LED0). The inputs are the first 4 switches on the Digilent board, the output is the first LED light on the board. Note that the input and output names must match EXACTLY as shown above. The circuit will be a “voting” circuit. The output will be high (the led will turn on) whenever more outputs have a value of 1 then a value of 0. The output will be low (the led will turn off) whenever more outputs have a value of 0 then 1. If equal numbers of 1 and 0 are entered, the light should turn off. Design a truth table for the circuit using the description above. Use Karnaugh Maps to find the simplified SOP equation based on the truth table. Implement the equation in a schematic file. Test the schematic using a Verilog testbench. Download the project to your Digilent board to make sure it works properly. Note that you will need to download the code to your board in lab to demonstrate the project and receive full credit for the lab. Hand In For Your Lab Report, as a PDF file, or as a series of screenshots in a word document 1. A cover sheet for the report 2. The truth table for the circuit 3. The K-maps you used to simplify the equations (scans or decent cell-phone photos of the page are acceptable) 4. A printout of your schematic file (printed in landscape mode) 5. A printout of your testbench file (printed in portrait mode) 6. A printout of the results of your simulation (the timing diagram). Remember to print in landscape mode, and to use the printing menu to ensure the printout is readable (not zoomed out too far) and that all data is shown (not zoomed in too far)

info@checkyourstudy.com
Homework 1 (Homework) Vanessa Amador Introduction to General Physics II – PHYS 1022, section 001, Fall 2013 Instructor: Nikolaos Sparveris Current Score : – / 16 Due : Saturday, September 28 2013 06:00 PM EDT 1. –/1 points SerCP9 15.P.001. A 7.10 nC charge is located 1.64 m from a 3.94 nC point charge. (a) Find the magnitude of the electrostatic force that one charge exerts on the other. N (b) Is the force attractive or repulsive? attractive repulsive 2. –/2 points SerCP9 15.P.026. Three point charges are located on a circular arc as shown in the figure below. (Let r = 4.32 cm. Let to the right be the +x direction and up along the screen be the +y direction.) (a) What is the total electric field at P, the center of the arc? = + (b) Find the electric force that would be exerted on a point charge placed at P. = + WebAssign −5.2 nC Homework 1 http://www.webassign.net/web/Student/Assignment-Responses/last?dep… 1 of 6 9/27/2013 8:41 PM 3. –/2 points SerCP9 15.P.044. A charge q = +3.53 μC is located at the center of a regular tetrahedron (a four-sided surface) as in figure below. (a) Find the total electric flux through the tetrahedron. N · m 2 /C (b) Find the electric flux through one face of the tetrahedron. N · m2/C Homework 1 http://www.webassign.net/web/Student/Assignment-Responses/last?dep… 2 of 6 9/27/2013 8:41 PM 4. –/1 points SerCP9 15.P.051.WI. Three point charges are aligned along the x-axis as shown in the figure below. Find the electric field at the position x = +2.2 m, y = 0. magnitude N/C direction: The field is in the +y direction. The field is in the −x direction. The field is in the −y direction. The field is in the +x direction. There is no field at the position x = +2.2 m, y = 0. 5. –/3 points SerCP9 16.P.002. A proton is released from rest in a uniform electric field of magnitude 397 N/C. (a) Find the electric force on the proton. magnitude N direction (b) Find the acceleration of the proton. magnitude m/s 2 direction (c) Find the distance it travels in 2.04 μs. cm Homework 1 http://www.webassign.net/web/Student/Assignment-Responses/last?dep… 3 of 6 9/27/2013 8:41 PM 6. –/1 points SerCP9 16.P.005.soln. The potential difference between the accelerating plates of a TV set is about 30 kV. If the distance between the plates is 1.9 cm, find the magnitude of the uniform electric field in the region between the plates. N/C 7. –/2 points SerCP9 16.P.013.soln. Consider the following figure. (a) Find the electric potential, taking zero at infinity, at the upper right corner (the corner without a charge) of the rectangle in the figure. (Let y = 3.5 cm and x = 5.8 cm.) J/C (b) Repeat if the 2.00-μC charge is replaced with a charge of −2.00 μC. J/C Homework 1 http://www.webassign.net/web/Student/Assignment-Responses/last?dep… 4 of 6 9/27/2013 8:41 PM 8. –/1 points SerCP9 16.P.023.WI. In Rutherford’s famous scattering experiments that led to the planetary model of the atom, alpha particles (having charges of +2e and masses of 6.64 × 10−27 kg) were fired toward a gold nucleus with charge +79e. An alpha particle, initially very far from the gold nucleus, is fired at 2.0 10 7 m/s directly toward the nucleus, as in the figure below. How close does the alpha particle get to the gold nucleus before turning around? Assume the gold nucleus remains stationary. m Homework 1 http://www.webassign.net/web/Student/Assignment-Responses/last?dep… 5 of 6 9/27/2013 8:41 PM 9. –/3 points SerCP9 16.P.037. For the system of capacitors shown in the figure below, find the following. (Let C 1 = 4.00 μF and C 2 = 8.00 μF.) (a) the equivalent capacitance of the system μF (b) the charge on each capacitor on C 1 μC on C 2 μC on the 6.00 μF capacitor μC on the 2.00 μF capacitor μC (c) the potential difference across each capacitor across C 1 V across C 2 V across the 6.00 μF capacitor V across the 2.00 μF capacitor V Homework 1 http://www.webassign.net/web/Student/Assignment-Responses/last?dep… 6 of 6 9/27/2013 8:41 PM

Homework 1 (Homework) Vanessa Amador Introduction to General Physics II – PHYS 1022, section 001, Fall 2013 Instructor: Nikolaos Sparveris Current Score : – / 16 Due : Saturday, September 28 2013 06:00 PM EDT 1. –/1 points SerCP9 15.P.001. A 7.10 nC charge is located 1.64 m from a 3.94 nC point charge. (a) Find the magnitude of the electrostatic force that one charge exerts on the other. N (b) Is the force attractive or repulsive? attractive repulsive 2. –/2 points SerCP9 15.P.026. Three point charges are located on a circular arc as shown in the figure below. (Let r = 4.32 cm. Let to the right be the +x direction and up along the screen be the +y direction.) (a) What is the total electric field at P, the center of the arc? = + (b) Find the electric force that would be exerted on a point charge placed at P. = + WebAssign −5.2 nC Homework 1 http://www.webassign.net/web/Student/Assignment-Responses/last?dep… 1 of 6 9/27/2013 8:41 PM 3. –/2 points SerCP9 15.P.044. A charge q = +3.53 μC is located at the center of a regular tetrahedron (a four-sided surface) as in figure below. (a) Find the total electric flux through the tetrahedron. N · m 2 /C (b) Find the electric flux through one face of the tetrahedron. N · m2/C Homework 1 http://www.webassign.net/web/Student/Assignment-Responses/last?dep… 2 of 6 9/27/2013 8:41 PM 4. –/1 points SerCP9 15.P.051.WI. Three point charges are aligned along the x-axis as shown in the figure below. Find the electric field at the position x = +2.2 m, y = 0. magnitude N/C direction: The field is in the +y direction. The field is in the −x direction. The field is in the −y direction. The field is in the +x direction. There is no field at the position x = +2.2 m, y = 0. 5. –/3 points SerCP9 16.P.002. A proton is released from rest in a uniform electric field of magnitude 397 N/C. (a) Find the electric force on the proton. magnitude N direction (b) Find the acceleration of the proton. magnitude m/s 2 direction (c) Find the distance it travels in 2.04 μs. cm Homework 1 http://www.webassign.net/web/Student/Assignment-Responses/last?dep… 3 of 6 9/27/2013 8:41 PM 6. –/1 points SerCP9 16.P.005.soln. The potential difference between the accelerating plates of a TV set is about 30 kV. If the distance between the plates is 1.9 cm, find the magnitude of the uniform electric field in the region between the plates. N/C 7. –/2 points SerCP9 16.P.013.soln. Consider the following figure. (a) Find the electric potential, taking zero at infinity, at the upper right corner (the corner without a charge) of the rectangle in the figure. (Let y = 3.5 cm and x = 5.8 cm.) J/C (b) Repeat if the 2.00-μC charge is replaced with a charge of −2.00 μC. J/C Homework 1 http://www.webassign.net/web/Student/Assignment-Responses/last?dep… 4 of 6 9/27/2013 8:41 PM 8. –/1 points SerCP9 16.P.023.WI. In Rutherford’s famous scattering experiments that led to the planetary model of the atom, alpha particles (having charges of +2e and masses of 6.64 × 10−27 kg) were fired toward a gold nucleus with charge +79e. An alpha particle, initially very far from the gold nucleus, is fired at 2.0 10 7 m/s directly toward the nucleus, as in the figure below. How close does the alpha particle get to the gold nucleus before turning around? Assume the gold nucleus remains stationary. m Homework 1 http://www.webassign.net/web/Student/Assignment-Responses/last?dep… 5 of 6 9/27/2013 8:41 PM 9. –/3 points SerCP9 16.P.037. For the system of capacitors shown in the figure below, find the following. (Let C 1 = 4.00 μF and C 2 = 8.00 μF.) (a) the equivalent capacitance of the system μF (b) the charge on each capacitor on C 1 μC on C 2 μC on the 6.00 μF capacitor μC on the 2.00 μF capacitor μC (c) the potential difference across each capacitor across C 1 V across C 2 V across the 6.00 μF capacitor V across the 2.00 μF capacitor V Homework 1 http://www.webassign.net/web/Student/Assignment-Responses/last?dep… 6 of 6 9/27/2013 8:41 PM

info@checkyourstudy.com
A crush of popular social-media toys – Facebook, Twitter, Google, Yahoo, Yelp, social games, Skype, YouTube and Quora, to name a few – has opened the lines of communication between millions of people as never before. But the glut of tools and their features – chat, messages, instant messages, texting and tweets – has led to multiple conversations that can be head-spinning. People are drowning in a deluge of data. Corporate users received about 110 messages a day in 2010, says market researcher Radicati Group. There are 110 million tweets a day, Twitter says. Researcher Basex has pegged business productivity losses due to the “cost of unnecessary interruptions” at $650 billion in 2007. What can you do to manage social media? Is there a way to use social media in a positive way in the workplace?

A crush of popular social-media toys – Facebook, Twitter, Google, Yahoo, Yelp, social games, Skype, YouTube and Quora, to name a few – has opened the lines of communication between millions of people as never before. But the glut of tools and their features – chat, messages, instant messages, texting and tweets – has led to multiple conversations that can be head-spinning. People are drowning in a deluge of data. Corporate users received about 110 messages a day in 2010, says market researcher Radicati Group. There are 110 million tweets a day, Twitter says. Researcher Basex has pegged business productivity losses due to the “cost of unnecessary interruptions” at $650 billion in 2007. What can you do to manage social media? Is there a way to use social media in a positive way in the workplace?

Social media use in the workplace is ordinary, of uncertain … Read More...
Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

The objectification of women has been a very controversial topic … Read More...