Q9 In general is concrete a brittle or ductile failur ? Draw a figure of the load versus displacement curve of a given specimen ?

Q9 In general is concrete a brittle or ductile failur ? Draw a figure of the load versus displacement curve of a given specimen ?

Q9  In general is concrete a brittle or ductile failur … Read More...
The jib crane is pin connected at and supported by a pin connected collar on smooth rod at . If = 7.2 , determine the reactions on the jib crane at the pin and smooth collar . The load has a weight of 5600 .

The jib crane is pin connected at and supported by a pin connected collar on smooth rod at . If = 7.2 , determine the reactions on the jib crane at the pin and smooth collar . The load has a weight of 5600 .

   
The two members ACE and BCD are connected by a pin at C. The cable is attached to A, passes over the smooth pulley at B, and supports a 100-lb load. Determine: (a) The horizontal and vertical components, Dx and Dy, of the reaction force at D. (b) The horizontal and vertical components, Ex and Ey, of the reaction force at E. (c) The horizontal and vertical components, Cx and Cy, of the force that member BCD exerts on member ACE

The two members ACE and BCD are connected by a pin at C. The cable is attached to A, passes over the smooth pulley at B, and supports a 100-lb load. Determine: (a) The horizontal and vertical components, Dx and Dy, of the reaction force at D. (b) The horizontal and vertical components, Ex and Ey, of the reaction force at E. (c) The horizontal and vertical components, Cx and Cy, of the force that member BCD exerts on member ACE

 
The power crane is used to hoist the 2,3- Mg load upward at constant velocity. The 1.5-Mg jib BD, 0.4-Mg jib BC, and 6.8 -Mg counterweight C have centers of mass at G1, G2 and G3 respectively. determine the resultant moment produced by the load and the weight of the tower crane jib about point A and about point B.

The power crane is used to hoist the 2,3- Mg load upward at constant velocity. The 1.5-Mg jib BD, 0.4-Mg jib BC, and 6.8 -Mg counterweight C have centers of mass at G1, G2 and G3 respectively. determine the resultant moment produced by the load and the weight of the tower crane jib about point A and about point B.

8.8 For Problems 8-8 and 8-9, the shunt dc motor is reconnected separately excited,as shown in Figure P8-3. It has a fixed field voltage VF of 240V and an armature voltage VA that can be varied from 120V to 240V. What is the no load speed of this separately excited motor when Radj=175ohms and (a) VA=120V, (b) VA=180V, and (c) VA=240V?

8.8 For Problems 8-8 and 8-9, the shunt dc motor is reconnected separately excited,as shown in Figure P8-3. It has a fixed field voltage VF of 240V and an armature voltage VA that can be varied from 120V to 240V. What is the no load speed of this separately excited motor when Radj=175ohms and (a) VA=120V, (b) VA=180V, and (c) VA=240V?

MECET 423: Mechanics of Materials Chap. 7 HW Chap. 7 Homework Set 1. Consider the beam shown in the image below. Let F1 = 2 kN and F2 = 3 kN. Assume that points A, B and C represent pin connections and a wire rope connects points B and C. Consider the dimensions L1, L2, L3 and L4 to be 2 m, 4 m, 6 m, and 10 m, respectively. The beam is made from HSS 152 X 51 X 6.4 (Appendix A-9) and the longer side of the rectangle is vertical. What is the maximum normal stress (units: MPa) experienced by the beam? 2. Consider the beam and loading shown below. The beam has a total length of 12 ft. and a uniformly distributed load, w, of 125 lb./ft. The cross section of the beam is comprised of a standard steel channel (C6 X 13) which has a ½ in. plate of steel attached to its bottom. Determine the maximum normal stress in tension and compression that is experienced by this beam due to the described loading. MECET 423: Mechanics of Materials Chap. 7 HW 3. Consider the cantilever beam shown in the image below. The beam is experiencing a linearly varying distributed load with w1 = 50 lb./ft. and w2 = 10 lb./ft. The beam is to be made from ASTM A36 structural steel and is to be 8 ft. in length. Select the smallest standard schedule 40 steel pipe size (Appendix A-12) which will ensure a factor of safety of at least 3. 4. The beam shown below has been fabricated by combining two wooden boards into a T-section. The dimensions for these sizes can be found in Appendix A-4. The beam is 9 ft. in length overall and dimension L1 = 3 ft. Assume the beam is made from a wood which has an allowable bending stress of 1500 psi (in both tension and compression). What is the largest value of the force which can be applied? MECET 423: Mechanics of Materials Chap. 7 HW 5. The image below shows a hydraulic cylinder which is being utilized in a simple press-fit operation. As can be seen the cylinder is being suspended over the work piece using a cantilever beam. Note from the right view that there is a beam on either side of the cylinder. You may assume that each will be equally loaded by the cylinder. The beams are to be cut from AISI 1040 HR steel plate which has a thickness of 0.750 in. The proposed design includes the following dimensions (units: inch): H = 2.00, h = 1.00, r = 0.08, L1 = 8, and L2 = 18. Evaluate the design by calculating the resulting factor of safety with respect to the yield strength of the material at the location of the step if the total force generated by the cylinder is 1,000 lb. Also state whether or not yielding is predicted to occur. You may assume that bending in the thickness direction of the beams is negligible. 6. Consider the cantilever beam shown below. The beam has a length of 4 ft. and is made from a material whose design stress, σd, is equal to 10,000 psi. It is to carry a load of 200 lb. applied at its free end. The beam is to be designed as a beam of constant strength where the maximum normal stress experienced at each cross section is equal to the design normal stress. To achieve this the height will be held constant at 1.5 in. while the base will vary as a function of the position along the length of the beam. Determine the equation which describes the required length of the base as a function of the position along the length of the beam. For consistency, let the origin be located at point A and the positive x axis be directed toward the right. MECET 423: Mechanics of Materials Chap. 7 HW 7. Consider the overhanging beam shown in the image below. Assume that L = 5 ft. and L1 = 3 ft. The beam’s cross section is shown below. The centerline marks the horizontal centroidal axis. The moment of inertia about this axis is approx. 0.208 in4. Due to the geometry of the cross section and the material, the beam has different maximum allowable normal stresses in tension and compression. The design normal stress in tension is 24,000 psi while the design normal stress in compression is 18,000 psi. Using this data determine the maximum force, F, which can be applied to the beam.

MECET 423: Mechanics of Materials Chap. 7 HW Chap. 7 Homework Set 1. Consider the beam shown in the image below. Let F1 = 2 kN and F2 = 3 kN. Assume that points A, B and C represent pin connections and a wire rope connects points B and C. Consider the dimensions L1, L2, L3 and L4 to be 2 m, 4 m, 6 m, and 10 m, respectively. The beam is made from HSS 152 X 51 X 6.4 (Appendix A-9) and the longer side of the rectangle is vertical. What is the maximum normal stress (units: MPa) experienced by the beam? 2. Consider the beam and loading shown below. The beam has a total length of 12 ft. and a uniformly distributed load, w, of 125 lb./ft. The cross section of the beam is comprised of a standard steel channel (C6 X 13) which has a ½ in. plate of steel attached to its bottom. Determine the maximum normal stress in tension and compression that is experienced by this beam due to the described loading. MECET 423: Mechanics of Materials Chap. 7 HW 3. Consider the cantilever beam shown in the image below. The beam is experiencing a linearly varying distributed load with w1 = 50 lb./ft. and w2 = 10 lb./ft. The beam is to be made from ASTM A36 structural steel and is to be 8 ft. in length. Select the smallest standard schedule 40 steel pipe size (Appendix A-12) which will ensure a factor of safety of at least 3. 4. The beam shown below has been fabricated by combining two wooden boards into a T-section. The dimensions for these sizes can be found in Appendix A-4. The beam is 9 ft. in length overall and dimension L1 = 3 ft. Assume the beam is made from a wood which has an allowable bending stress of 1500 psi (in both tension and compression). What is the largest value of the force which can be applied? MECET 423: Mechanics of Materials Chap. 7 HW 5. The image below shows a hydraulic cylinder which is being utilized in a simple press-fit operation. As can be seen the cylinder is being suspended over the work piece using a cantilever beam. Note from the right view that there is a beam on either side of the cylinder. You may assume that each will be equally loaded by the cylinder. The beams are to be cut from AISI 1040 HR steel plate which has a thickness of 0.750 in. The proposed design includes the following dimensions (units: inch): H = 2.00, h = 1.00, r = 0.08, L1 = 8, and L2 = 18. Evaluate the design by calculating the resulting factor of safety with respect to the yield strength of the material at the location of the step if the total force generated by the cylinder is 1,000 lb. Also state whether or not yielding is predicted to occur. You may assume that bending in the thickness direction of the beams is negligible. 6. Consider the cantilever beam shown below. The beam has a length of 4 ft. and is made from a material whose design stress, σd, is equal to 10,000 psi. It is to carry a load of 200 lb. applied at its free end. The beam is to be designed as a beam of constant strength where the maximum normal stress experienced at each cross section is equal to the design normal stress. To achieve this the height will be held constant at 1.5 in. while the base will vary as a function of the position along the length of the beam. Determine the equation which describes the required length of the base as a function of the position along the length of the beam. For consistency, let the origin be located at point A and the positive x axis be directed toward the right. MECET 423: Mechanics of Materials Chap. 7 HW 7. Consider the overhanging beam shown in the image below. Assume that L = 5 ft. and L1 = 3 ft. The beam’s cross section is shown below. The centerline marks the horizontal centroidal axis. The moment of inertia about this axis is approx. 0.208 in4. Due to the geometry of the cross section and the material, the beam has different maximum allowable normal stresses in tension and compression. The design normal stress in tension is 24,000 psi while the design normal stress in compression is 18,000 psi. Using this data determine the maximum force, F, which can be applied to the beam.

info@checkyourstudy.com Whatsapp +919911743277