1 REQUIREMENTS You will need to complete the following tasks and deliver your finding in a written report by August 6th. Research the six scenarios given below in option 1 for added capacity to uncover any additional costs/benefits to society these options might pose. Write a two page summary describing each scenario. Discuss the pros and cons of each scenario, including such items as renewable sources of fuel, environmental factors, etc. Give examples of each type of project by name and location and indicate the sources of your information. Please use either IEEE or APA style. Do an economic analysis of the six scenarios. Use a 20-year period and assume an inflation rate of 4 percent. Include your calculations and any assumptions in the report. Also answer the following questions: Which scenario is the best from an economic basis? Are there any other considerations, such as environmental/health/social issues, which should be considered? Which scenario have you selected based on the answers to a and b? What is the estimated timeframe to implement the different options? (base your timelines on existing projects of similar size if possible, use MS Project/Project Libre to generate the timelines) Make a recommendation regarding the best option for the utility. 2 Situations A utility company in one of the western states is considering the addition of 50 megawatts of generating capacity to meet expected demands for electrical energy by the year 2025. The three options that the utility has are: Add generating capacity. Constructing one of the scenarios below would do this. Purchase power from Canada under terms of a 20-year contract. Do neither of the above. This assumes that brownouts will occur during high demand periods. The utility presently has 200 megawatts of installed capacity and generates an average of 1.2 billion kilowatt-hours annually. Maximum generation capability is 1.3 billion kW-hours. By the year 2025, this reserve of 100,000,000 kW-hours will be used. 2.1 OPTION 1 – ADD GENERATING CAPACITY For this option there are six possible scenarios: Hydroelectric dam. Initial cost is $ 50 million. Annual operating and maintenance cost is $ 1.7 million. Project life is 30 years before a major rebuild is required. Wind farm. Initial cost is $ 28 million. Annual operating and maintenance cost is $ 2.5 million. Project life is 12 years. At this time new equipment will be required. Solar power. Initial cost is $ 32 million. Annual operating and maintenance cost is $ 1.1 million. Project life is 10 years. Natural gas turbines. Initial cost is $ 14 million. Annual operating and maintenance cost is $2.0 million. Project life is 12 years. Nuclear plant. Initial cost is $ 70 million. Annual operating and maintenance cost is $ 2.0 million. Project life is 25 years. Coal-fired turbines. Initial cost is $ 35 million. Annual operating and maintenance cost is $ 2.7 million. Project life is 28 years. 2.2 OPTION 2 – BUY POWER FROM CANADA The annual additional energy requirement is 350,000,000 kilowatt-hours. The cost of energy from Canada is 1.48 cents per kilowatt-hour for the first year. The price will be escalated at 4 percent annually for the 20-year contract period. 2.3 OPTION 3 – DO NOTHING Local municipalities are very opposed to this option since companies may have to close down for short periods of time. Also, it would be very difficult to attract new businesses. If nothing is done, by the year 2025 it is anticipated that some companies will be without power for short periods of time during the summer months. These are known as brownouts. It is estimated, based on historical data that these outages will occur once a week during July and August for periods of 6 hours.

1 REQUIREMENTS You will need to complete the following tasks and deliver your finding in a written report by August 6th. Research the six scenarios given below in option 1 for added capacity to uncover any additional costs/benefits to society these options might pose. Write a two page summary describing each scenario. Discuss the pros and cons of each scenario, including such items as renewable sources of fuel, environmental factors, etc. Give examples of each type of project by name and location and indicate the sources of your information. Please use either IEEE or APA style. Do an economic analysis of the six scenarios. Use a 20-year period and assume an inflation rate of 4 percent. Include your calculations and any assumptions in the report. Also answer the following questions: Which scenario is the best from an economic basis? Are there any other considerations, such as environmental/health/social issues, which should be considered? Which scenario have you selected based on the answers to a and b? What is the estimated timeframe to implement the different options? (base your timelines on existing projects of similar size if possible, use MS Project/Project Libre to generate the timelines) Make a recommendation regarding the best option for the utility. 2 Situations A utility company in one of the western states is considering the addition of 50 megawatts of generating capacity to meet expected demands for electrical energy by the year 2025. The three options that the utility has are: Add generating capacity. Constructing one of the scenarios below would do this. Purchase power from Canada under terms of a 20-year contract. Do neither of the above. This assumes that brownouts will occur during high demand periods. The utility presently has 200 megawatts of installed capacity and generates an average of 1.2 billion kilowatt-hours annually. Maximum generation capability is 1.3 billion kW-hours. By the year 2025, this reserve of 100,000,000 kW-hours will be used. 2.1 OPTION 1 – ADD GENERATING CAPACITY For this option there are six possible scenarios: Hydroelectric dam. Initial cost is $ 50 million. Annual operating and maintenance cost is $ 1.7 million. Project life is 30 years before a major rebuild is required. Wind farm. Initial cost is $ 28 million. Annual operating and maintenance cost is $ 2.5 million. Project life is 12 years. At this time new equipment will be required. Solar power. Initial cost is $ 32 million. Annual operating and maintenance cost is $ 1.1 million. Project life is 10 years. Natural gas turbines. Initial cost is $ 14 million. Annual operating and maintenance cost is $2.0 million. Project life is 12 years. Nuclear plant. Initial cost is $ 70 million. Annual operating and maintenance cost is $ 2.0 million. Project life is 25 years. Coal-fired turbines. Initial cost is $ 35 million. Annual operating and maintenance cost is $ 2.7 million. Project life is 28 years. 2.2 OPTION 2 – BUY POWER FROM CANADA The annual additional energy requirement is 350,000,000 kilowatt-hours. The cost of energy from Canada is 1.48 cents per kilowatt-hour for the first year. The price will be escalated at 4 percent annually for the 20-year contract period. 2.3 OPTION 3 – DO NOTHING Local municipalities are very opposed to this option since companies may have to close down for short periods of time. Also, it would be very difficult to attract new businesses. If nothing is done, by the year 2025 it is anticipated that some companies will be without power for short periods of time during the summer months. These are known as brownouts. It is estimated, based on historical data that these outages will occur once a week during July and August for periods of 6 hours.

1 REQUIREMENTS You will need to complete the following tasks … Read More...
New York Project The assignment is to write a five paragraph paper in which you plan a theatre trip to New York City to see FOUR shows. To complete this work, use internet sources, the most thorough of which is the New York Times Theater section (see below for this and other options). The first paragraph should explain the trip’s rationale, who will be going with you (church group, theatre group, friends, etc), and a proposed budget. You should then find possible flights and hotel accommodations. In each subsequent paragraph (paragraphs 2, 3, 4, and 5), name the shows (four in total—one per paragraph) you have decided to see. Include in each paragraph the reason you have chosen to see this particular show. You will need to quote portions of reviews, both professional and reader’s, as part of your justification for your choice. Be sure to cite the name of the reviewer as well as the source from which the review was found. (Example: Ben Brantley of the New York Times calls Shrek the Musical, “Quote from review.”— or similar format.) It is not necessary to provide a “Works Cited” page, but you must reference your source within your paper as noted in the previous sentence. You must also include ticket prices and the theater where the show is playing, as well as any other pertinent information (such as a prominent actor in the cast, etc.). Be sure to follow your budget; try not to plan to see four Broadway musicals as this could eat up your budget very quickly. Mix and match with Off and Off Off Broadway, where the tickets are cheaper. Try to find at least one or two shows you have never heard of but which sound interesting because of your research into the reviews. Sources for research: New York Times page at www.nytimes.com. Select the “Arts” section (left menu). On the Arts page, select THEATER (menu near top of page). On the THEATER page, you can click on the Broadway, Off Broadway, & Off Off Broadway headings (menu near top of page), which will provide you with a list of what’s playing. Click on the show title to gain access to information such as the show’s location, ticket prices, and links to reviews, both professional and reader’s.

New York Project The assignment is to write a five paragraph paper in which you plan a theatre trip to New York City to see FOUR shows. To complete this work, use internet sources, the most thorough of which is the New York Times Theater section (see below for this and other options). The first paragraph should explain the trip’s rationale, who will be going with you (church group, theatre group, friends, etc), and a proposed budget. You should then find possible flights and hotel accommodations. In each subsequent paragraph (paragraphs 2, 3, 4, and 5), name the shows (four in total—one per paragraph) you have decided to see. Include in each paragraph the reason you have chosen to see this particular show. You will need to quote portions of reviews, both professional and reader’s, as part of your justification for your choice. Be sure to cite the name of the reviewer as well as the source from which the review was found. (Example: Ben Brantley of the New York Times calls Shrek the Musical, “Quote from review.”— or similar format.) It is not necessary to provide a “Works Cited” page, but you must reference your source within your paper as noted in the previous sentence. You must also include ticket prices and the theater where the show is playing, as well as any other pertinent information (such as a prominent actor in the cast, etc.). Be sure to follow your budget; try not to plan to see four Broadway musicals as this could eat up your budget very quickly. Mix and match with Off and Off Off Broadway, where the tickets are cheaper. Try to find at least one or two shows you have never heard of but which sound interesting because of your research into the reviews. Sources for research: New York Times page at www.nytimes.com. Select the “Arts” section (left menu). On the Arts page, select THEATER (menu near top of page). On the THEATER page, you can click on the Broadway, Off Broadway, & Off Off Broadway headings (menu near top of page), which will provide you with a list of what’s playing. Click on the show title to gain access to information such as the show’s location, ticket prices, and links to reviews, both professional and reader’s.

Chapter 13 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Matter of Some Gravity Learning Goal: To understand Newton’s law of gravitation and the distinction between inertial and gravitational masses. In this problem, you will practice using Newton’s law of gravitation. According to that law, the magnitude of the gravitational force between two small particles of masses and , separated by a distance , is given by , where is the universal gravitational constant, whose numerical value (in SI units) is . This formula applies not only to small particles, but also to spherical objects. In fact, the gravitational force between two uniform spheres is the same as if we concentrated all the mass of each sphere at its center. Thus, by modeling the Earth and the Moon as uniform spheres, you can use the particle approximation when calculating the force of gravity between them. Be careful in using Newton’s law to choose the correct value for . To calculate the force of gravitational attraction between two uniform spheres, the distance in the equation for Newton’s law of gravitation is the distance between the centers of the spheres. For instance, if a small object such as an elephant is located on the surface of the Earth, the radius of the Earth would be used in the equation. Note that the force of gravity acting on an object located near the surface of a planet is often called weight. Also note that in situations involving satellites, you are often given the altitude of the satellite, that is, the distance from the satellite to the surface of the planet; this is not the distance to be used in the formula for the law of gravitation. There is a potentially confusing issue involving mass. Mass is defined as a measure of an object’s inertia, that is, its ability to resist acceleration. Newton’s second law demonstrates the relationship between mass, acceleration, and the net force acting on an object: . We can now refer to this measure of inertia more precisely as the inertial mass. On the other hand, the masses of the particles that appear in the expression for the law of gravity seem to have nothing to do with inertia: Rather, they serve as a measure of the strength of gravitational interactions. It would be reasonable to call such a property gravitational mass. Does this mean that every object has two different masses? Generally speaking, yes. However, the good news is that according to the latest, highly precise, measurements, the inertial and the gravitational mass of an object are, in fact, equal to each other; it is an established consensus among physicists that there is only one mass after all, which is a measure of both the object’s inertia and its ability to engage in gravitational interactions. Note that this consensus, like everything else in science, is open to possible amendments in the future. In this problem, you will answer several questions that require the use of Newton’s law of gravitation. Part A Two particles are separated by a certain distance. The force of gravitational interaction between them is . Now the separation between the particles is tripled. Find the new force of gravitational Fg m1 m2 r Fg = G m1m2 r2 G 6.67 × 10−11 N m2 kg2 r r rEarth F  = m net a F0 interaction . Express your answer in terms of . ANSWER: Part B A satellite revolves around a planet at an altitude equal to the radius of the planet. The force of gravitational interaction between the satellite and the planet is . Then the satellite moves to a different orbit, so that its altitude is tripled. Find the new force of gravitational interaction . Express your answer in terms of . You did not open hints for this part. ANSWER: Part C A satellite revolves around a planet at an altitude equal to the radius of the planet. The force of gravitational interaction between the satellite and the planet is . Then the satellite is brought back to the surface of the planet. Find the new force of gravitational interaction . Express your answer in terms of . ANSWER: F1 F0 F1 = F0 F2 F0 F2 = F0 F4 F0 Typesetting math: 81% Part D Two satellites revolve around the Earth. Satellite A has mass and has an orbit of radius . Satellite B has mass and an orbit of unknown radius . The forces of gravitational attraction between each satellite and the Earth is the same. Find . Express your answer in terms of . ANSWER: Part E An adult elephant has a mass of about 5.0 tons. An adult elephant shrew has a mass of about 50 grams. How far from the center of the Earth should an elephant be placed so that its weight equals that of the elephant shrew on the surface of the Earth? The radius of the Earth is 6400 . ( .) Express your answer in kilometers. ANSWER: The table below gives the masses of the Earth, the Moon, and the Sun. Name Mass (kg) Earth Moon Sun F4 = m r 6m rb rb r rb = r km 1 ton = 103 kg r = km 5.97 × 1024 7.35 × 1022 1.99 × 1030 Typesetting math: 81% The average distance between the Earth and the Moon is . The average distance between the Earth and the Sun is . Use this information to answer the following questions. Part F Find the net gravitational force acting on the Earth in the Sun-Earth-Moon system during the new moon (when the moon is located directly between the Earth and the Sun). Express your answer in newtons to three significant figures. You did not open hints for this part. ANSWER: Part G Find the net gravitational force acting on the Earth in the Sun-Earth-Moon system during the full moon (when the Earth is located directly between the moon and the sun). Express your answer in newtons to three significant figures. ANSWER: ± Understanding Newton’s Law of Universal Gravitation Learning Goal: To understand Newton’s law of universal gravitation and be able to apply it in two-object situations and (collinear) three-object situations; to distinguish between the use of and . 3.84 × 108 m 1.50 × 1011 m Fnet Fnet = N Fnet Fnet = N Typesetting math: 81% G g In the late 1600s, Isaac Newton proposed a rule to quantify the attractive force known as gravity between objects that have mass, such as those shown in the figure. Newton’s law of universal gravitation describes the magnitude of the attractive gravitational force between two objects with masses and as , where is the distance between the centers of the two objects and is the gravitational constant. The gravitational force is attractive, so in the figure it pulls to the right on (toward ) and toward the left on (toward ). The gravitational force acting on is equal in size to, but exactly opposite in direction from, the gravitational force acting on , as required by Newton’s third law. The magnitude of both forces is calculated with the equation given above. The gravitational constant has the value and should not be confused with the magnitude of the gravitational free-fall acceleration constant, denoted by , which equals 9.80 near the surface of the earth. The size of in SI units is tiny. This means that gravitational forces are sizeable only in the vicinity of very massive objects, such as the earth. You are in fact gravitationally attracted toward all the objects around you, such as the computer you are using, but the size of that force is too small to be noticed without extremely sensitive equipment. Consider the earth following its nearly circular orbit (dashed curve) about the sun. The earth has mass and the sun has mass . They are separated, center to center, by . Part A What is the size of the gravitational force acting on the earth due to the sun? Express your answer in newtons. F  g m1 m2 Fg = G( ) m1m2 r2 r G m1 m2 m2 m1 m1 m2 G G = 6.67 × 10−11 N m2/kg2 g m/s2 G mearth = 5.98 × 1024 kg msun = 1.99 × 1030 kg r = 93 million miles = 150 million km Typesetting math: 81% You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F N Typesetting math: 81% This question will be shown after you complete previous question(s). Understanding Mass and Weight Learning Goal: To understand the distinction between mass and weight and to be able to calculate the weight of an object from its mass and Newton’s law of gravitation. The concepts of mass and weight are often confused. In fact, in everyday conversations, the word “weight” often replaces “mass,” as in “My weight is seventy-five kilograms” or “I need to lose some weight.” Of course, mass and weight are related; however, they are also very different. Mass, as you recall, is a measure of an object’s inertia (ability to resist acceleration). Newton’s 2nd law demonstrates the relationship among an object’s mass, its acceleration, and the net force acting on it: . Mass is an intrinsic property of an object and is independent of the object’s location. Weight, in contrast, is defined as the force due to gravity acting on the object. That force depends on the strength of the gravitational field of the planet: , where is the weight of an object, is the mass of that object, and is the local acceleration due to gravity (in other words, the strength of the gravitational field at the location of the object). Weight, unlike mass, is not an intrinsic property of the object; it is determined by both the object and its location. Part A Which of the following quantities represent mass? Check all that apply. ANSWER: Fnet = ma w = mg w m g 12.0 lbs 0.34 g 120 kg 1600 kN 0.34 m 411 cm 899 MN Typesetting math: 81% Part B This question will be shown after you complete previous question(s). Using the universal law of gravity, we can find the weight of an object feeling the gravitational pull of a nearby planet. We can write an expression , where is the weight of the object, is the gravitational constant, is the mass of that object, is mass of the planet, and is the distance from the center of the planet to the object. If the object is on the surface of the planet, is simply the radius of the planet. Part C The gravitational field on the surface of the earth is stronger than that on the surface of the moon. If a rock is transported from the moon to the earth, which properties of the rock change? ANSWER: Part D This question will be shown after you complete previous question(s). Part E If acceleration due to gravity on the earth is , which formula gives the acceleration due to gravity on Loput? You did not open hints for this part. ANSWER: w = GmM/r2 w G m M r r mass only weight only both mass and weight neither mass nor weight g Typesetting math: 81% Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). ± Weight on a Neutron Star Neutron stars, such as the one at the center of the Crab Nebula, have about the same mass as our sun but a much smaller diameter. g 1.7 5.6 g 1.72 5.6 g 1.72 5.62 g 5.6 1.7 g 5.62 1.72 g 5.6 1.72 Typesetting math: 81% Part A If you weigh 655 on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun and a diameter of 19.0 ? Take the mass of the sun to be = 1.99×1030 , the gravitational constant to be = 6.67×10−11 , and the acceleration due to gravity at the earth’s surface to be = 9.810 . Express your weight in newtons. You did not open hints for this part. ANSWER: ± Escape Velocity Learning Goal: To introduce you to the concept of escape velocity for a rocket. The escape velocity is defined to be the minimum speed with which an object of mass must move to escape from the gravitational attraction of a much larger body, such as a planet of total mass . The escape velocity is a function of the distance of the object from the center of the planet , but unless otherwise specified this distance is taken to be the radius of the planet because it addresses the question “How fast does my rocket have to go to escape from the surface of the planet?” Part A The key to making a concise mathematical definition of escape velocity is to consider the energy. If an object is launched at its escape velocity, what is the total mechanical energy of the object at a very large (i.e., infinite) distance from the planet? Follow the usual convention and take the gravitational potential energy to be zero at very large distances. You did not open hints for this part. ANSWER: N km ms kg G N m2/kg2 g m/s2 wstar wstar = N m M R Etotal Typesetting math: 81% Consider the motion of an object between a point close to the planet and a point very very far from the planet. Indicate whether the following statements are true or false. Part B Angular momentum about the center of the planet is conserved. ANSWER: Part C Total mechanical energy is conserved. ANSWER: Part D Kinetic energy is conserved. ANSWER: Etotal = true false true false Typesetting math: 81% Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Satellite in a Circular Orbit Consider a satellite of mass that orbits a planet of mass in a circle a distance from the center of the planet. The satellite’s mass is negligible compared with that of the planet. Indicate whether each of the statements in this problem is true or false. Part A The information given is sufficient to uniquely specify the speed, potential energy, and angular momentum of the satellite. You did not open hints for this part. ANSWER: true false m1 m2 r true false Typesetting math: 81% Part B The total mechanical energy of the satellite is conserved. You did not open hints for this part. ANSWER: Part C The linear momentum vector of the satellite is conserved. You did not open hints for this part. ANSWER: Part D The angular momentum of the satellite about the center of the planet is conserved. You did not open hints for this part. ANSWER: true false true false Typesetting math: 81% Part E The equations that express the conservation laws of total mechanical energy and linear momentum are sufficient to solve for the speed necessary to maintain a circular orbit at without using . You did not open hints for this part. ANSWER: At the Galaxy’s Core Astronomers have observed a small, massive object at the center of our Milky Way galaxy. A ring of material orbits this massive object; the ring has a diameter of about 15 light years and an orbital speed of about 200 . Part A Determine the mass of the massive object at the center of the Milky Way galaxy. Take the distance of one light year to be . Express your answer in kilograms. You did not open hints for this part. true false R F = ma true false km/s M 9.461 × 1015 m Typesetting math: 81% ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Properties of Circular Orbits Learning Goal: To teach you how to find the parameters characterizing an object in a circular orbit around a much heavier body like the earth. M = kg Typesetting math: 81% The motivation for Isaac Newton to discover his laws of motion was to explain the properties of planetary orbits that were observed by Tycho Brahe and analyzed by Johannes Kepler. A good starting point for understanding this (as well as the speed of the space shuttle and the height of geostationary satellites) is the simplest orbit–a circular one. This problem concerns the properties of circular orbits for a satellite orbiting a planet of mass . For all parts of this problem, where appropriate, use for the universal gravitational constant. Part A Find the orbital speed for a satellite in a circular orbit of radius . Express the orbital speed in terms of , , and . You did not open hints for this part. ANSWER: Part B Find the kinetic energy of a satellite with mass in a circular orbit with radius . Express your answer in terms of \texttip{m}{m}, \texttip{M}{M}, \texttip{G}{G}, and \texttip{R}{R}. ANSWER: Part C M G v R G M R v = K m R \texttip{K}{K} = Typesetting math: 81% This question will be shown after you complete previous question(s). Part D Find the orbital period \texttip{T}{T}. Express your answer in terms of \texttip{G}{G}, \texttip{M}{M}, \texttip{R}{R}, and \texttip{\pi }{pi}. You did not open hints for this part. ANSWER: Part E This question will be shown after you complete previous question(s). Part F Find \texttip{L}{L}, the magnitude of the angular momentum of the satellite with respect to the center of the planet. Express your answer in terms of \texttip{m}{m}, \texttip{M}{M}, \texttip{G}{G}, and \texttip{R}{R}. You did not open hints for this part. ANSWER: \texttip{T}{T} = Typesetting math: 81% Part G The quantities \texttip{v}{v}, \texttip{K}{K}, \texttip{U}{U}, and \texttip{L}{L} all represent physical quantities characterizing the orbit that depend on radius \texttip{R}{R}. Indicate the exponent (power) of the radial dependence of the absolute value of each. Express your answer as a comma-separated list of exponents corresponding to \texttip{v}{v}, \texttip{K}{K}, \texttip{U}{U}, and \texttip{L}{L}, in that order. For example, -1,-1/2,-0.5,-3/2 would mean v \propto R^{-1}, K \propto R^{-1/2}, and so forth. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. \texttip{L}{L} = Typesetting math: 81%

Chapter 13 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Matter of Some Gravity Learning Goal: To understand Newton’s law of gravitation and the distinction between inertial and gravitational masses. In this problem, you will practice using Newton’s law of gravitation. According to that law, the magnitude of the gravitational force between two small particles of masses and , separated by a distance , is given by , where is the universal gravitational constant, whose numerical value (in SI units) is . This formula applies not only to small particles, but also to spherical objects. In fact, the gravitational force between two uniform spheres is the same as if we concentrated all the mass of each sphere at its center. Thus, by modeling the Earth and the Moon as uniform spheres, you can use the particle approximation when calculating the force of gravity between them. Be careful in using Newton’s law to choose the correct value for . To calculate the force of gravitational attraction between two uniform spheres, the distance in the equation for Newton’s law of gravitation is the distance between the centers of the spheres. For instance, if a small object such as an elephant is located on the surface of the Earth, the radius of the Earth would be used in the equation. Note that the force of gravity acting on an object located near the surface of a planet is often called weight. Also note that in situations involving satellites, you are often given the altitude of the satellite, that is, the distance from the satellite to the surface of the planet; this is not the distance to be used in the formula for the law of gravitation. There is a potentially confusing issue involving mass. Mass is defined as a measure of an object’s inertia, that is, its ability to resist acceleration. Newton’s second law demonstrates the relationship between mass, acceleration, and the net force acting on an object: . We can now refer to this measure of inertia more precisely as the inertial mass. On the other hand, the masses of the particles that appear in the expression for the law of gravity seem to have nothing to do with inertia: Rather, they serve as a measure of the strength of gravitational interactions. It would be reasonable to call such a property gravitational mass. Does this mean that every object has two different masses? Generally speaking, yes. However, the good news is that according to the latest, highly precise, measurements, the inertial and the gravitational mass of an object are, in fact, equal to each other; it is an established consensus among physicists that there is only one mass after all, which is a measure of both the object’s inertia and its ability to engage in gravitational interactions. Note that this consensus, like everything else in science, is open to possible amendments in the future. In this problem, you will answer several questions that require the use of Newton’s law of gravitation. Part A Two particles are separated by a certain distance. The force of gravitational interaction between them is . Now the separation between the particles is tripled. Find the new force of gravitational Fg m1 m2 r Fg = G m1m2 r2 G 6.67 × 10−11 N m2 kg2 r r rEarth F  = m net a F0 interaction . Express your answer in terms of . ANSWER: Part B A satellite revolves around a planet at an altitude equal to the radius of the planet. The force of gravitational interaction between the satellite and the planet is . Then the satellite moves to a different orbit, so that its altitude is tripled. Find the new force of gravitational interaction . Express your answer in terms of . You did not open hints for this part. ANSWER: Part C A satellite revolves around a planet at an altitude equal to the radius of the planet. The force of gravitational interaction between the satellite and the planet is . Then the satellite is brought back to the surface of the planet. Find the new force of gravitational interaction . Express your answer in terms of . ANSWER: F1 F0 F1 = F0 F2 F0 F2 = F0 F4 F0 Typesetting math: 81% Part D Two satellites revolve around the Earth. Satellite A has mass and has an orbit of radius . Satellite B has mass and an orbit of unknown radius . The forces of gravitational attraction between each satellite and the Earth is the same. Find . Express your answer in terms of . ANSWER: Part E An adult elephant has a mass of about 5.0 tons. An adult elephant shrew has a mass of about 50 grams. How far from the center of the Earth should an elephant be placed so that its weight equals that of the elephant shrew on the surface of the Earth? The radius of the Earth is 6400 . ( .) Express your answer in kilometers. ANSWER: The table below gives the masses of the Earth, the Moon, and the Sun. Name Mass (kg) Earth Moon Sun F4 = m r 6m rb rb r rb = r km 1 ton = 103 kg r = km 5.97 × 1024 7.35 × 1022 1.99 × 1030 Typesetting math: 81% The average distance between the Earth and the Moon is . The average distance between the Earth and the Sun is . Use this information to answer the following questions. Part F Find the net gravitational force acting on the Earth in the Sun-Earth-Moon system during the new moon (when the moon is located directly between the Earth and the Sun). Express your answer in newtons to three significant figures. You did not open hints for this part. ANSWER: Part G Find the net gravitational force acting on the Earth in the Sun-Earth-Moon system during the full moon (when the Earth is located directly between the moon and the sun). Express your answer in newtons to three significant figures. ANSWER: ± Understanding Newton’s Law of Universal Gravitation Learning Goal: To understand Newton’s law of universal gravitation and be able to apply it in two-object situations and (collinear) three-object situations; to distinguish between the use of and . 3.84 × 108 m 1.50 × 1011 m Fnet Fnet = N Fnet Fnet = N Typesetting math: 81% G g In the late 1600s, Isaac Newton proposed a rule to quantify the attractive force known as gravity between objects that have mass, such as those shown in the figure. Newton’s law of universal gravitation describes the magnitude of the attractive gravitational force between two objects with masses and as , where is the distance between the centers of the two objects and is the gravitational constant. The gravitational force is attractive, so in the figure it pulls to the right on (toward ) and toward the left on (toward ). The gravitational force acting on is equal in size to, but exactly opposite in direction from, the gravitational force acting on , as required by Newton’s third law. The magnitude of both forces is calculated with the equation given above. The gravitational constant has the value and should not be confused with the magnitude of the gravitational free-fall acceleration constant, denoted by , which equals 9.80 near the surface of the earth. The size of in SI units is tiny. This means that gravitational forces are sizeable only in the vicinity of very massive objects, such as the earth. You are in fact gravitationally attracted toward all the objects around you, such as the computer you are using, but the size of that force is too small to be noticed without extremely sensitive equipment. Consider the earth following its nearly circular orbit (dashed curve) about the sun. The earth has mass and the sun has mass . They are separated, center to center, by . Part A What is the size of the gravitational force acting on the earth due to the sun? Express your answer in newtons. F  g m1 m2 Fg = G( ) m1m2 r2 r G m1 m2 m2 m1 m1 m2 G G = 6.67 × 10−11 N m2/kg2 g m/s2 G mearth = 5.98 × 1024 kg msun = 1.99 × 1030 kg r = 93 million miles = 150 million km Typesetting math: 81% You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F N Typesetting math: 81% This question will be shown after you complete previous question(s). Understanding Mass and Weight Learning Goal: To understand the distinction between mass and weight and to be able to calculate the weight of an object from its mass and Newton’s law of gravitation. The concepts of mass and weight are often confused. In fact, in everyday conversations, the word “weight” often replaces “mass,” as in “My weight is seventy-five kilograms” or “I need to lose some weight.” Of course, mass and weight are related; however, they are also very different. Mass, as you recall, is a measure of an object’s inertia (ability to resist acceleration). Newton’s 2nd law demonstrates the relationship among an object’s mass, its acceleration, and the net force acting on it: . Mass is an intrinsic property of an object and is independent of the object’s location. Weight, in contrast, is defined as the force due to gravity acting on the object. That force depends on the strength of the gravitational field of the planet: , where is the weight of an object, is the mass of that object, and is the local acceleration due to gravity (in other words, the strength of the gravitational field at the location of the object). Weight, unlike mass, is not an intrinsic property of the object; it is determined by both the object and its location. Part A Which of the following quantities represent mass? Check all that apply. ANSWER: Fnet = ma w = mg w m g 12.0 lbs 0.34 g 120 kg 1600 kN 0.34 m 411 cm 899 MN Typesetting math: 81% Part B This question will be shown after you complete previous question(s). Using the universal law of gravity, we can find the weight of an object feeling the gravitational pull of a nearby planet. We can write an expression , where is the weight of the object, is the gravitational constant, is the mass of that object, is mass of the planet, and is the distance from the center of the planet to the object. If the object is on the surface of the planet, is simply the radius of the planet. Part C The gravitational field on the surface of the earth is stronger than that on the surface of the moon. If a rock is transported from the moon to the earth, which properties of the rock change? ANSWER: Part D This question will be shown after you complete previous question(s). Part E If acceleration due to gravity on the earth is , which formula gives the acceleration due to gravity on Loput? You did not open hints for this part. ANSWER: w = GmM/r2 w G m M r r mass only weight only both mass and weight neither mass nor weight g Typesetting math: 81% Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). ± Weight on a Neutron Star Neutron stars, such as the one at the center of the Crab Nebula, have about the same mass as our sun but a much smaller diameter. g 1.7 5.6 g 1.72 5.6 g 1.72 5.62 g 5.6 1.7 g 5.62 1.72 g 5.6 1.72 Typesetting math: 81% Part A If you weigh 655 on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun and a diameter of 19.0 ? Take the mass of the sun to be = 1.99×1030 , the gravitational constant to be = 6.67×10−11 , and the acceleration due to gravity at the earth’s surface to be = 9.810 . Express your weight in newtons. You did not open hints for this part. ANSWER: ± Escape Velocity Learning Goal: To introduce you to the concept of escape velocity for a rocket. The escape velocity is defined to be the minimum speed with which an object of mass must move to escape from the gravitational attraction of a much larger body, such as a planet of total mass . The escape velocity is a function of the distance of the object from the center of the planet , but unless otherwise specified this distance is taken to be the radius of the planet because it addresses the question “How fast does my rocket have to go to escape from the surface of the planet?” Part A The key to making a concise mathematical definition of escape velocity is to consider the energy. If an object is launched at its escape velocity, what is the total mechanical energy of the object at a very large (i.e., infinite) distance from the planet? Follow the usual convention and take the gravitational potential energy to be zero at very large distances. You did not open hints for this part. ANSWER: N km ms kg G N m2/kg2 g m/s2 wstar wstar = N m M R Etotal Typesetting math: 81% Consider the motion of an object between a point close to the planet and a point very very far from the planet. Indicate whether the following statements are true or false. Part B Angular momentum about the center of the planet is conserved. ANSWER: Part C Total mechanical energy is conserved. ANSWER: Part D Kinetic energy is conserved. ANSWER: Etotal = true false true false Typesetting math: 81% Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Satellite in a Circular Orbit Consider a satellite of mass that orbits a planet of mass in a circle a distance from the center of the planet. The satellite’s mass is negligible compared with that of the planet. Indicate whether each of the statements in this problem is true or false. Part A The information given is sufficient to uniquely specify the speed, potential energy, and angular momentum of the satellite. You did not open hints for this part. ANSWER: true false m1 m2 r true false Typesetting math: 81% Part B The total mechanical energy of the satellite is conserved. You did not open hints for this part. ANSWER: Part C The linear momentum vector of the satellite is conserved. You did not open hints for this part. ANSWER: Part D The angular momentum of the satellite about the center of the planet is conserved. You did not open hints for this part. ANSWER: true false true false Typesetting math: 81% Part E The equations that express the conservation laws of total mechanical energy and linear momentum are sufficient to solve for the speed necessary to maintain a circular orbit at without using . You did not open hints for this part. ANSWER: At the Galaxy’s Core Astronomers have observed a small, massive object at the center of our Milky Way galaxy. A ring of material orbits this massive object; the ring has a diameter of about 15 light years and an orbital speed of about 200 . Part A Determine the mass of the massive object at the center of the Milky Way galaxy. Take the distance of one light year to be . Express your answer in kilograms. You did not open hints for this part. true false R F = ma true false km/s M 9.461 × 1015 m Typesetting math: 81% ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Properties of Circular Orbits Learning Goal: To teach you how to find the parameters characterizing an object in a circular orbit around a much heavier body like the earth. M = kg Typesetting math: 81% The motivation for Isaac Newton to discover his laws of motion was to explain the properties of planetary orbits that were observed by Tycho Brahe and analyzed by Johannes Kepler. A good starting point for understanding this (as well as the speed of the space shuttle and the height of geostationary satellites) is the simplest orbit–a circular one. This problem concerns the properties of circular orbits for a satellite orbiting a planet of mass . For all parts of this problem, where appropriate, use for the universal gravitational constant. Part A Find the orbital speed for a satellite in a circular orbit of radius . Express the orbital speed in terms of , , and . You did not open hints for this part. ANSWER: Part B Find the kinetic energy of a satellite with mass in a circular orbit with radius . Express your answer in terms of \texttip{m}{m}, \texttip{M}{M}, \texttip{G}{G}, and \texttip{R}{R}. ANSWER: Part C M G v R G M R v = K m R \texttip{K}{K} = Typesetting math: 81% This question will be shown after you complete previous question(s). Part D Find the orbital period \texttip{T}{T}. Express your answer in terms of \texttip{G}{G}, \texttip{M}{M}, \texttip{R}{R}, and \texttip{\pi }{pi}. You did not open hints for this part. ANSWER: Part E This question will be shown after you complete previous question(s). Part F Find \texttip{L}{L}, the magnitude of the angular momentum of the satellite with respect to the center of the planet. Express your answer in terms of \texttip{m}{m}, \texttip{M}{M}, \texttip{G}{G}, and \texttip{R}{R}. You did not open hints for this part. ANSWER: \texttip{T}{T} = Typesetting math: 81% Part G The quantities \texttip{v}{v}, \texttip{K}{K}, \texttip{U}{U}, and \texttip{L}{L} all represent physical quantities characterizing the orbit that depend on radius \texttip{R}{R}. Indicate the exponent (power) of the radial dependence of the absolute value of each. Express your answer as a comma-separated list of exponents corresponding to \texttip{v}{v}, \texttip{K}{K}, \texttip{U}{U}, and \texttip{L}{L}, in that order. For example, -1,-1/2,-0.5,-3/2 would mean v \propto R^{-1}, K \propto R^{-1/2}, and so forth. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. \texttip{L}{L} = Typesetting math: 81%

please email info@checkyourstudy.com
Chapter 07 Homework Due: 11:59pm on Friday, May 23, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy BioFlix Quiz: The Carbon Cycle Watch the animation at left before answering the questions below. Part A An organism gets carbon by using carbon dioxide in the atmosphere to make sugar molecules. This organism is a Hint 1. Review the animation or your Study Sheet for The Carbon Cycle. ANSWER: Correct During photosynthesis, producers use carbon dioxide to make sugar molecules. Part B Which organisms play a role in returning carbon to the atmosphere? Hint 1. Review the animation or your Study Sheet for The Carbon Cycle. ANSWER: higher-level consumer. producer. primary consumer. decomposer. None of the above Consumers and decomposers, but not producers. Producers only. Decomposers only. Consumers only. Producers, consumers, and decomposers. Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 1 of 7 5/21/2014 8:02 PM Correct Producers, consumers, and decomposers all return carbon dioxide to the atmosphere during cellular respiration. Part C Every carbon atom in the organic molecules that make up your body MUST recently have been part of Hint 1. Review the animation or your Study Sheet for The Carbon Cycle. ANSWER: Correct You are a consumer, and all your carbon comes ultimately from plants and other producers. Part D Imagine following a single carbon atom through the carbon cycle. Which of the following is a possible path for the carbon atom to take? Hint 1. Review the animation or your Study Sheet for The Carbon Cycle. ANSWER: Correct Carbon moves from the atmosphere into a producer (such as a plant), up the food chain, and then back to the atmosphere during cellular respiration. Part E Which process or processes return carbon to the atmosphere? Hint 1. Review the animation. ANSWER: Correct Cellular respiration results in the release of carbon dioxide to the atmosphere. a higher-level consumer. a primary consumer. a decomposer. a producer. a sugar molecule made in one of your chloroplasts. The atmosphere; a plant; a higher-level consumer; then back to the atmosphere. The atmosphere; a plant; an herbivore; another plant; then back to the atmosphere. The atmosphere, a plant, a herbivore, a decomposer, then back to the atmosphere The atmosphere; a decomposer; a higher-level consumer; then back to the atmosphere. The atmosphere; a decomposer; then back to the atmosphere. Cellular respiration only Photosynthesis only Cellular respiration and photosynthesis Breakdown of large organic molecules into smaller organic molecules Cellular respiration and the breakdown of large organic molecules into smaller organic molecules Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 2 of 7 5/21/2014 8:02 PM Activity: The Nitrogen Cycle Click here to complete this activity. Then answer the questions. Part A Nitrifying bacteria convert _____ to _____. ANSWER: Correct Nitrifying bacteria convert ammonium to nitrites. Part B _____ removes nitrogen from the atmosphere. ANSWER: Correct Nitrogen fixation is the conversion of nitrogen gas to a form that can be used by plants (and other organisms). Part C Assimilation is indicated by the letter(s) _____. nitrogen gas … ammonium nitrogen gas … nitrates ammonium … nitrites nitrates … nitrogen gas ammonium … nitrogen gas Denitrification Nitrification Mineralization Nitrogen fixation Assimilation Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 3 of 7 5/21/2014 8:02 PM ANSWER: Correct Assimilation is the uptake of nutrients into an organism. Part D Nitrogen-fixing bacteria is(are) indicated by the letter(s) _____. ANSWER: Correct Both of these pointers are indicating nitrogen-fixing bacteria. Nitrogen fixation is the conversion of nitrogen to a form that plants can use. Part E Nitrification is indicated by the letter(s) _____. ANSWER: C B A D and E C and D B and C A and B D and E C and D A Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 4 of 7 5/21/2014 8:02 PM Correct Nitrification is the conversion of organic nitrogen-containing compounds to nitrites and nitrates. Part F Denitrifying bacteria convert _____ to _____. ANSWER: Correct Denitrifying bacteria convert nitrates to nitrogen gas. Part G Which one of these is a nitrate? ANSWER: Correct NO3 – is a nitrate. Part H Which one of these is a nitrite? ANSWER: Correct This is a nitrite. GeoScience: Earth’s Water and the Hydrologic Cycle A B B and C D and E B and E nitrogen gas … nitrites nitrogen gas … ammonium nitrates … nitrogen gas ammonium … nitrogen gas nitrogen gas … nitrates NO2 – NH4 – NH2 SH NO3 – PO4 – NH2 NH4 – NO2 – NO3 – Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 5 of 7 5/21/2014 8:02 PM When you have finished, answer the questions. Part A The largest percentage of fresh water today is located in: ANSWER: Correct Ice sheets and glaciers are the greatest single repository of fresh water: they contain 77.3% of all Earth’s fresh water and 99.357% of all Earth’s surface fresh water. Part B Earth’s oceans hold: ANSWER: Correct The oceans contain 97.22% of all water, comprising about 1.321 billion cubic kilometers of salt water. This leaves only 2.78% of all of Earth’s water as fresh water (non-oceanic). Part C Which of the following is true of the hydrologic cycle? ANSWER: Correct About 20% of the moisture evaporated from the ocean combines with 2% of land-derived moisture to produce 22% of all precipitation that falls over land. Clearly, the bulk of continental precipitation comes from the oceanic portion of the cycle. Concept Review: Eutrophication Can you sequence the steps in the eutrophication process that occurs in a body of water? Part A Drag each statement to the appropriate location in the flowchart of the eutrophication process. ANSWER: soil. ice sheets and glaciers. the rivers and lakes of the world. groundwater resources. about the same amount of water as all groundwater sources combined. most of the fresh water on Earth. the bulk of all of the water found on Earth. about the same amount of water as all Earth’s rivers and lakes combined. Atmospheric water and surface water do not mix. Most evaporation on Earth occurs over the continents. The bulk of the precipitation occurs over land. Most of the water that falls on the continents is derived from the oceans. Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 6 of 7 5/21/2014 8:02 PM Concept Review: Biogeochemical Cycles Can you sort the items by which biogeochemical cycle they apply to? Part A Drag each description to the appropriate bin. ANSWER: Score Summary: Your score on this assignment is 62.3%. You received 12.45 out of a possible total of 20 points. Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 7 of 7 5/21/2014 8:02 PM

Chapter 07 Homework Due: 11:59pm on Friday, May 23, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy BioFlix Quiz: The Carbon Cycle Watch the animation at left before answering the questions below. Part A An organism gets carbon by using carbon dioxide in the atmosphere to make sugar molecules. This organism is a Hint 1. Review the animation or your Study Sheet for The Carbon Cycle. ANSWER: Correct During photosynthesis, producers use carbon dioxide to make sugar molecules. Part B Which organisms play a role in returning carbon to the atmosphere? Hint 1. Review the animation or your Study Sheet for The Carbon Cycle. ANSWER: higher-level consumer. producer. primary consumer. decomposer. None of the above Consumers and decomposers, but not producers. Producers only. Decomposers only. Consumers only. Producers, consumers, and decomposers. Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 1 of 7 5/21/2014 8:02 PM Correct Producers, consumers, and decomposers all return carbon dioxide to the atmosphere during cellular respiration. Part C Every carbon atom in the organic molecules that make up your body MUST recently have been part of Hint 1. Review the animation or your Study Sheet for The Carbon Cycle. ANSWER: Correct You are a consumer, and all your carbon comes ultimately from plants and other producers. Part D Imagine following a single carbon atom through the carbon cycle. Which of the following is a possible path for the carbon atom to take? Hint 1. Review the animation or your Study Sheet for The Carbon Cycle. ANSWER: Correct Carbon moves from the atmosphere into a producer (such as a plant), up the food chain, and then back to the atmosphere during cellular respiration. Part E Which process or processes return carbon to the atmosphere? Hint 1. Review the animation. ANSWER: Correct Cellular respiration results in the release of carbon dioxide to the atmosphere. a higher-level consumer. a primary consumer. a decomposer. a producer. a sugar molecule made in one of your chloroplasts. The atmosphere; a plant; a higher-level consumer; then back to the atmosphere. The atmosphere; a plant; an herbivore; another plant; then back to the atmosphere. The atmosphere, a plant, a herbivore, a decomposer, then back to the atmosphere The atmosphere; a decomposer; a higher-level consumer; then back to the atmosphere. The atmosphere; a decomposer; then back to the atmosphere. Cellular respiration only Photosynthesis only Cellular respiration and photosynthesis Breakdown of large organic molecules into smaller organic molecules Cellular respiration and the breakdown of large organic molecules into smaller organic molecules Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 2 of 7 5/21/2014 8:02 PM Activity: The Nitrogen Cycle Click here to complete this activity. Then answer the questions. Part A Nitrifying bacteria convert _____ to _____. ANSWER: Correct Nitrifying bacteria convert ammonium to nitrites. Part B _____ removes nitrogen from the atmosphere. ANSWER: Correct Nitrogen fixation is the conversion of nitrogen gas to a form that can be used by plants (and other organisms). Part C Assimilation is indicated by the letter(s) _____. nitrogen gas … ammonium nitrogen gas … nitrates ammonium … nitrites nitrates … nitrogen gas ammonium … nitrogen gas Denitrification Nitrification Mineralization Nitrogen fixation Assimilation Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 3 of 7 5/21/2014 8:02 PM ANSWER: Correct Assimilation is the uptake of nutrients into an organism. Part D Nitrogen-fixing bacteria is(are) indicated by the letter(s) _____. ANSWER: Correct Both of these pointers are indicating nitrogen-fixing bacteria. Nitrogen fixation is the conversion of nitrogen to a form that plants can use. Part E Nitrification is indicated by the letter(s) _____. ANSWER: C B A D and E C and D B and C A and B D and E C and D A Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 4 of 7 5/21/2014 8:02 PM Correct Nitrification is the conversion of organic nitrogen-containing compounds to nitrites and nitrates. Part F Denitrifying bacteria convert _____ to _____. ANSWER: Correct Denitrifying bacteria convert nitrates to nitrogen gas. Part G Which one of these is a nitrate? ANSWER: Correct NO3 – is a nitrate. Part H Which one of these is a nitrite? ANSWER: Correct This is a nitrite. GeoScience: Earth’s Water and the Hydrologic Cycle A B B and C D and E B and E nitrogen gas … nitrites nitrogen gas … ammonium nitrates … nitrogen gas ammonium … nitrogen gas nitrogen gas … nitrates NO2 – NH4 – NH2 SH NO3 – PO4 – NH2 NH4 – NO2 – NO3 – Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 5 of 7 5/21/2014 8:02 PM When you have finished, answer the questions. Part A The largest percentage of fresh water today is located in: ANSWER: Correct Ice sheets and glaciers are the greatest single repository of fresh water: they contain 77.3% of all Earth’s fresh water and 99.357% of all Earth’s surface fresh water. Part B Earth’s oceans hold: ANSWER: Correct The oceans contain 97.22% of all water, comprising about 1.321 billion cubic kilometers of salt water. This leaves only 2.78% of all of Earth’s water as fresh water (non-oceanic). Part C Which of the following is true of the hydrologic cycle? ANSWER: Correct About 20% of the moisture evaporated from the ocean combines with 2% of land-derived moisture to produce 22% of all precipitation that falls over land. Clearly, the bulk of continental precipitation comes from the oceanic portion of the cycle. Concept Review: Eutrophication Can you sequence the steps in the eutrophication process that occurs in a body of water? Part A Drag each statement to the appropriate location in the flowchart of the eutrophication process. ANSWER: soil. ice sheets and glaciers. the rivers and lakes of the world. groundwater resources. about the same amount of water as all groundwater sources combined. most of the fresh water on Earth. the bulk of all of the water found on Earth. about the same amount of water as all Earth’s rivers and lakes combined. Atmospheric water and surface water do not mix. Most evaporation on Earth occurs over the continents. The bulk of the precipitation occurs over land. Most of the water that falls on the continents is derived from the oceans. Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 6 of 7 5/21/2014 8:02 PM Concept Review: Biogeochemical Cycles Can you sort the items by which biogeochemical cycle they apply to? Part A Drag each description to the appropriate bin. ANSWER: Score Summary: Your score on this assignment is 62.3%. You received 12.45 out of a possible total of 20 points. Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 7 of 7 5/21/2014 8:02 PM

info@checkyourstudy.com
Answers the following questions and reference in the Zoning Ordinance Page #, Chapter #, Title, paragraph and/or table location with your answer. (eg.157.XXX Parking, (C)(2)(a) page 217). 1. What are the requirement for the set back of the parking areas and driveways from the side property lines? ________________?____________________Reference? 2. What are the requirement for the set back of the parking areas and driveways from the front property lines in UC districts? ________________?____________________Reference? 3. How many parking spaces are required for golf courses? ________________?____________________Reference?

Answers the following questions and reference in the Zoning Ordinance Page #, Chapter #, Title, paragraph and/or table location with your answer. (eg.157.XXX Parking, (C)(2)(a) page 217). 1. What are the requirement for the set back of the parking areas and driveways from the side property lines? ________________?____________________Reference? 2. What are the requirement for the set back of the parking areas and driveways from the front property lines in UC districts? ________________?____________________Reference? 3. How many parking spaces are required for golf courses? ________________?____________________Reference?

  Reference: Page 187:Title 3 – Zoning Ordinance, 4/3/2014, Chapter … Read More...
Stage1.2 Telescope Activity (due at Stage 1) Brief Overview of Activity: Research a major astronomical observatory. Required Items: the internet, your textbook, pencil & paper. ________________________________________ Procedure: Research one of the observatories mentioned in our textbook and answer the questions below. What is the name and location of the Observatory?What type of telescope is used?What is the size of its mirror or radio dish?What specific wavelengths of light can be studied by this device?Why would these wavelengths of light be useful to astronomers?

Stage1.2 Telescope Activity (due at Stage 1) Brief Overview of Activity: Research a major astronomical observatory. Required Items: the internet, your textbook, pencil & paper. ________________________________________ Procedure: Research one of the observatories mentioned in our textbook and answer the questions below. What is the name and location of the Observatory?What type of telescope is used?What is the size of its mirror or radio dish?What specific wavelengths of light can be studied by this device?Why would these wavelengths of light be useful to astronomers?

Stage1.2 Telescope Activity (due at Stage 1) Brief Overview of … Read More...
ENGR 1120 – PROGRAMMING FOR ENGINEERS (MATLAB) Homework Program #2 Objectives: Demonstrate knowledge of data files, vector variables, intrinsic functions, subscript manipulation, for loops, and plotting in MATLAB. You have been given a set of ASCII data files that contain directions for laying out patterns in a field. The data files contain in the first column a distance to travel and in the second column a direction heading. Unfortunately, the person who created the data did not have a good understanding of orienteering and the direction headings are given as referenced to a clock face. The pattern begins at the origin of a Cartesian coordinate system with the person facing 12 o’clock, see the figure below. The figure shows an example of the first step in the pattern being a distance of 1.5 feet in the direction of 7 o’clock. All direction headings are given in terms of this clock orientation. The distance values given are in feet. There are 5 data files provided online for testing of the program. Write a script file that will allow the user to input from the keyboard the filename of the file that they wish to analyze. Load only that ONE data file and plot the resulting pattern. Once each point forming the pattern has been located, find and designate on the plot which of the resulting nodes was the farthest away from the origin. Also find and designate the center of the pattern as defined to occur at the coordinate location corresponding to (average x, average y). When plotting the resulting pattern on the Cartesian coordinate system, set the axes limits to appropriate values. HINT: Correlate the direction headings provided in the data files to a Cartesian coordinate system by using the following vector in your script file. This requires subscript manipulation. angle = [60; 30; 0; 330; 300; 270; 240; 210; 180; 150; 120; 90] -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 1 2 3 4 5 6 7 8 9 10 11 12 you are here

ENGR 1120 – PROGRAMMING FOR ENGINEERS (MATLAB) Homework Program #2 Objectives: Demonstrate knowledge of data files, vector variables, intrinsic functions, subscript manipulation, for loops, and plotting in MATLAB. You have been given a set of ASCII data files that contain directions for laying out patterns in a field. The data files contain in the first column a distance to travel and in the second column a direction heading. Unfortunately, the person who created the data did not have a good understanding of orienteering and the direction headings are given as referenced to a clock face. The pattern begins at the origin of a Cartesian coordinate system with the person facing 12 o’clock, see the figure below. The figure shows an example of the first step in the pattern being a distance of 1.5 feet in the direction of 7 o’clock. All direction headings are given in terms of this clock orientation. The distance values given are in feet. There are 5 data files provided online for testing of the program. Write a script file that will allow the user to input from the keyboard the filename of the file that they wish to analyze. Load only that ONE data file and plot the resulting pattern. Once each point forming the pattern has been located, find and designate on the plot which of the resulting nodes was the farthest away from the origin. Also find and designate the center of the pattern as defined to occur at the coordinate location corresponding to (average x, average y). When plotting the resulting pattern on the Cartesian coordinate system, set the axes limits to appropriate values. HINT: Correlate the direction headings provided in the data files to a Cartesian coordinate system by using the following vector in your script file. This requires subscript manipulation. angle = [60; 30; 0; 330; 300; 270; 240; 210; 180; 150; 120; 90] -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 1 2 3 4 5 6 7 8 9 10 11 12 you are here

info@checkyourstudy.com