Use the links provided to answer the questions below. http://www.youtube.com/watch?v=9tt6BQDVKu0 http://assets.soomopublishing.com/courses/AG/Fragile_Superpower.pdf NIE Report Why does the report suggest that China and India may or may not become dominant powers in the near future? A. Both countries have high economic and social hurdles to overcome. B. Both countries are only somewhat democratic. C. Both countries lack the military strength and nuclear weaponry to challenge even smaller states. D. Neither country is a member of the UN Security Council. E. Neither country is concerned about global warming and is therefore unfit to become a great power player. According to the U.S. intelligence report discussed in the video, why will the use of nuclear weapons grow more likely? A. Irresponsible powerful countries will want to strike the United States to take over its dominant role in the world. B. There will be a tendency to forget just how dangerous they are as we over-emphasize the importance of international trade. C. Rogue states and terrorist groups may be able to gain greater access to these weapons. D. Since the United States and the Soviet Union are rapidly increasing their weapons building programs, the chances of a nuclear incident becomes higher. E. China is likely to produce nuclear weapons to use against the United States and the Soviet Union. According to the video, is the United States likely to lose its position in the world soon? A. Yes, given the rapid rise of China, we will be seeing a challenge from China in the next 5-10 years. B. Yes, China, in conjunction with India, will rise up against the United States. C. Yes, the Russians are working to undermine the U.S. position actively. D. No, although there appears to be decline, the replacement of the United States as the world leader is not likely to come in the next 10 years. E. No, the United States will actually lose its position after its departure from Iraq in 2012. The Rise of a Fierce Yet Fragile Superpower Why does Susan Shirk say that China is fragile? A. China is fragile because it isn’t a democratic country and will have a difficult time managing relations with other states because of this. B. China is fragile because it has a shrinking economy, so despite its size, China is actually very weak. C. China is fragile because its leaders tend to exacerbate the tensions between states like the Soviet Union and the United States. D. China is fragile because it cannot develop a strong sense of human rights and so its people may try to revolt against it. E. China is fragile because its rate of expansion has created gaps between the wealthy and poor and it has a problem of control with decentralized local governing structures. According to scholars, is a war between the rising power and the current power leader inevitable? A. No, while some scholars believe this is true, others suggest that a “peaceful rise” is possible. B. No, history indicates that all great power transitions have been peaceful. C. Yes, scholars indicate that all of our historical examples of great power transition have been through war. D. Yes, although there are examples of peaceful rise, there is too much cultural difference for that to occur with China. E. Yes, since tension between the United States and China is so strong, scholars agree that a war is coming.

Use the links provided to answer the questions below. http://www.youtube.com/watch?v=9tt6BQDVKu0 http://assets.soomopublishing.com/courses/AG/Fragile_Superpower.pdf NIE Report Why does the report suggest that China and India may or may not become dominant powers in the near future? A. Both countries have high economic and social hurdles to overcome. B. Both countries are only somewhat democratic. C. Both countries lack the military strength and nuclear weaponry to challenge even smaller states. D. Neither country is a member of the UN Security Council. E. Neither country is concerned about global warming and is therefore unfit to become a great power player. According to the U.S. intelligence report discussed in the video, why will the use of nuclear weapons grow more likely? A. Irresponsible powerful countries will want to strike the United States to take over its dominant role in the world. B. There will be a tendency to forget just how dangerous they are as we over-emphasize the importance of international trade. C. Rogue states and terrorist groups may be able to gain greater access to these weapons. D. Since the United States and the Soviet Union are rapidly increasing their weapons building programs, the chances of a nuclear incident becomes higher. E. China is likely to produce nuclear weapons to use against the United States and the Soviet Union. According to the video, is the United States likely to lose its position in the world soon? A. Yes, given the rapid rise of China, we will be seeing a challenge from China in the next 5-10 years. B. Yes, China, in conjunction with India, will rise up against the United States. C. Yes, the Russians are working to undermine the U.S. position actively. D. No, although there appears to be decline, the replacement of the United States as the world leader is not likely to come in the next 10 years. E. No, the United States will actually lose its position after its departure from Iraq in 2012. The Rise of a Fierce Yet Fragile Superpower Why does Susan Shirk say that China is fragile? A. China is fragile because it isn’t a democratic country and will have a difficult time managing relations with other states because of this. B. China is fragile because it has a shrinking economy, so despite its size, China is actually very weak. C. China is fragile because its leaders tend to exacerbate the tensions between states like the Soviet Union and the United States. D. China is fragile because it cannot develop a strong sense of human rights and so its people may try to revolt against it. E. China is fragile because its rate of expansion has created gaps between the wealthy and poor and it has a problem of control with decentralized local governing structures. According to scholars, is a war between the rising power and the current power leader inevitable? A. No, while some scholars believe this is true, others suggest that a “peaceful rise” is possible. B. No, history indicates that all great power transitions have been peaceful. C. Yes, scholars indicate that all of our historical examples of great power transition have been through war. D. Yes, although there are examples of peaceful rise, there is too much cultural difference for that to occur with China. E. Yes, since tension between the United States and China is so strong, scholars agree that a war is coming.

Use the links provided to answer the questions below. http://www.youtube.com/watch?v=9tt6BQDVKu0 … Read More...
Chapter 11 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Understanding Work and Kinetic Energy Learning Goal: To learn about the Work-Energy Theorem and its basic applications. In this problem, you will learn about the relationship between the work done on an object and the kinetic energy of that object. The kinetic energy of an object of mass moving at a speed is defined as . It seems reasonable to say that the speed of an object–and, therefore, its kinetic energy–can be changed by performing work on the object. In this problem, we will explore the mathematical relationship between the work done on an object and the change in the kinetic energy of that object. First, let us consider a sled of mass being pulled by a constant, horizontal force of magnitude along a rough, horizontal surface. The sled is speeding up. Part A How many forces are acting on the sled? ANSWER: Part B This question will be shown after you complete previous question(s). Part C K m v K = (1/2)mv2 m F one two three four This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I Typesetting math: 91% This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Work-Energy Theorem Reviewed Learning Goal: Review the work-energy theorem and apply it to a simple problem. If you push a particle of mass in the direction in which it is already moving, you expect the particle’s speed to increase. If you push with a constant force , then the particle will accelerate with acceleration (from Newton’s 2nd law). Part A Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied for a fixed interval of time , then the _____ of the particle will increase by an amount . You did not open hints for this part. ANSWER: M F a = F/M t at Typesetting math: 91% Part B Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied over a given distance , along the path of the particle, then the _____ of the particle will increase by . ANSWER: Part C If the initial kinetic energy of the particle is , and its final kinetic energy is , express in terms of and the work done on the particle. ANSWER: Part D In general, the work done by a force is written as . Now, consider whether the following statements are true or false: The dot product assures that the integrand is always nonnegative. The dot product indicates that only the component of the force perpendicular to the path contributes to the integral. The dot product indicates that only the component of the force parallel to the path contributes to the integral. Enter t for true or f for false for each statement. Separate your responses with commas (e.g., t,f,t). ANSWER: D FD Ki Kf Kf Ki W Kf = F W =  ( ) d f i F r r Typesetting math: 91% Part E Assume that the particle has initial speed . Find its final kinetic energy in terms of , , , and . You did not open hints for this part. ANSWER: Part F What is the final speed of the particle? Express your answer in terms of and . ANSWER: ± The Work Done in Pulling a Supertanker Two tugboats pull a disabled supertanker. Each tug exerts a constant force of 2.20×106 , one at an angle 10.0 west of north, and the other at an angle 10.0 east of north, as they pull the tanker a distance 0.660 toward the north. Part A What is the total work done by the two tugboats on the supertanker? Express your answer in joules, to three significant figures. vi Kf vi M F D Kf = Kf M vf = N km Typesetting math: 91% You did not open hints for this part. ANSWER: Energy Required to Lift a Heavy Box As you are trying to move a heavy box of mass , you realize that it is too heavy for you to lift by yourself. There is no one around to help, so you attach an ideal pulley to the box and a massless rope to the ceiling, which you wrap around the pulley. You pull up on the rope to lift the box. Use for the magnitude of the acceleration due to gravity and neglect friction forces. Part A Once you have pulled hard enough to start the box moving upward, what is the magnitude of the upward force you must apply to the rope to start raising the box with constant velocity? Express the magnitude of the force in terms of , the mass of the box. J m g F m Typesetting math: 91% You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Pulling a Block on an Incline with Friction A block of weight sits on an inclined plane as shown. A force of magnitude is applied to pull the block up the incline at constant speed. The coefficient of kinetic friction between the plane and the block is . Part A F = mg F μ Typesetting math: 91% What is the total work done on the block by the force of friction as the block moves a distance up the incline? Express the work done by friction in terms of any or all of the variables , , , , , and . You did not open hints for this part. ANSWER: Part B What is the total work done on the block by the applied force as the block moves a distance up the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Now the applied force is changed so that instead of pulling the block up the incline, the force pulls the block down the incline at a constant speed. Wfric L μ m g  L F Wfric = WF F L μ m g  L F WF = Typesetting math: 91% Part C What is the total work done on the block by the force of friction as the block moves a distance down the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Part D What is the total work done on the box by the appled force in this case? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: When Push Comes to Shove Two forces, of magnitudes = 75.0 and = 25.0 , act in opposite directions on a block, which sits atop a frictionless surface, as shown in the figure. Initially, the center of the block is at position = -1.00 . At some later time, the block has moved to the right, and its center is at a new position, = 1.00 . Wfric L μ m g  L F Wfric = WF μ m g  L F WF = F1 N F2 N xi cm xf cm Typesetting math: 91% Part A Find the work done on the block by the force of magnitude = 75.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Part B Find the work done by the force of magnitude = 25.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: W1 F1 N xi cm xf cm W1 = J W2 F2 N xi cm xf cm Typesetting math: 91% Part C What is the net work done on the block by the two forces? Express your answer numerically, in joules. ANSWER: Part D Determine the change in the kinetic energy of the block as it moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Work from a Constant Force Learning Goal: W2 = J Wnet Wnet = J Kf − Ki xi cm xf cm Kf − Ki = J Typesetting math: 91% To understand how to compute the work done by a constant force acting on a particle that moves in a straight line. In this problem, you will calculate the work done by a constant force. A force is considered constant if is independent of . This is the most frequently encountered situation in elementary Newtonian mechanics. Part A Consider a particle moving in a straight line from initial point B to final point A, acted upon by a constant force . The force (think of it as a field, having a magnitude and direction at every position ) is indicated by a series of identical vectors pointing to the left, parallel to the horizontal axis. The vectors are all identical only because the force is constant along the path. The magnitude of the force is , and the displacement vector from point B to point A is (of magnitude , making and angle (radians) with the positive x axis). Find , the work that the force performs on the particle as it moves from point B to point A. Express the work in terms of , , and . Remember to use radians, not degrees, for any angles that appear in your answer. You did not open hints for this part. ANSWER: Part B Now consider the same force acting on a particle that travels from point A to point B. The displacement vector now points in the opposite direction as it did in Part A. Find the work done by in this case. Express your answer in terms of , , and . F( r) r F r F L L  WBA F L F  WBA = F L WAB F Typesetting math: 91% L F  You did not open hints for this part. ANSWER: ± Vector Dot Product Let vectors , , and . Calculate the following: Part A You did not open hints for this part. ANSWER: WAB = A = (2, 1,−4) B = (−3, 0, 1) C = (−1,−1, 2) Typesetting math: 91% Part B What is the angle between and ? Express your answer using one significant figure. You did not open hints for this part. ANSWER: Part C ANSWER: Part D ANSWER: A B = AB A B AB = radians 2B 3C = Typesetting math: 91% Part E Which of the following can be computed? You did not open hints for this part. ANSWER: and are different vectors with lengths and respectively. Find the following: Part F Express your answer in terms of You did not open hints for this part. ANSWER: 2(B 3C) = A B C A (B C) A (B + C) 3 A V 1 V 2 V1 V2 V1 Typesetting math: 91% Part G If and are perpendicular, You did not open hints for this part. ANSWER: Part H If and are parallel, Express your answer in terms of and . You did not open hints for this part. ANSWER: ± Tactics Box 11.1 Calculating the Work Done by a Constant Force V = 1 V 1 V 1 V 2 V = 1 V 2 V 1 V 2 V1 V2 V = 1 V 2 Typesetting math: 91% Learning Goal: To practice Tactics Box 11.1 Calculating the Work Done by a Constant Force. Recall that the work done by a constant force at an angle to the displacement is . The vector magnitudes and are always positive, so the sign of is determined entirely by the angle between the force and the displacement. W F  d W = Fd cos  F d W  Typesetting math: 91% TACTICS BOX 11.1 Calculating the work done by a constant force Force and displacement Work Sign of Energy transfer Energy is transferred into the system. The particle speeds up. increases. No energy is transferred. Speed and are constant. Energy is transferred out of the system. The particle slows down. decreases. A box has weight of magnitude = 2.00 accelerates down a rough plane that is inclined at an angle = 30.0 above the horizontal, as shown at left. The normal force acting on the box has a magnitude = 1.732 , the coefficient of kinetic friction between the box and the plane is = 0.300, and the displacement of the box is 1.80 down the inclined plane.  W W 0 F(“r) + K < 90 F("r) cos  + 90 0 0 K > 90 F(“r) cos  − K 180 −F(“r) − FG N  n N μk d m Typesetting math: 91% Part A What is the work done on the box by gravity? Express your answers in joules to two significant figures. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Wgrav Wgrav = J Typesetting math: 91% Work and Potential Energy on a Sliding Block with Friction A block of weight sits on a plane inclined at an angle as shown. The coefficient of kinetic friction between the plane and the block is . A force is applied to push the block up the incline at constant speed. Part A What is the work done on the block by the force of friction as the block moves a distance up the incline? Express your answer in terms of some or all of the following: , , , . You did not open hints for this part. ANSWER: w  μ F Wf L μ w  L Wf = Typesetting math: 91% Part B What is the work done by the applied force of magnitude ? Express your answer in terms of some or all of the following: , , , . ANSWER: Part C What is the change in the potential energy of the block, , after it has been pushed a distance up the incline? Express your answer in terms of some or all of the following: , , , . ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). W F μ w  L W = “U L μ w  L “U = Typesetting math: 91% Part F This question will be shown after you complete previous question(s). Where’s the Energy? Learning Goal: To understand how to apply the law of conservation of energy to situations with and without nonconservative forces acting. The law of conservation of energy states the following: In an isolated system the total energy remains constant. If the objects within the system interact through gravitational and elastic forces only, then the total mechanical energy is conserved. The mechanical energy of a system is defined as the sum of kinetic energy and potential energy . For such systems where no forces other than the gravitational and elastic forces do work, the law of conservation of energy can be written as , where the quantities with subscript “i” refer to the “initial” moment and those with subscript “f” refer to the final moment. A wise choice of initial and final moments, which is not always obvious, may significantly simplify the solution. The kinetic energy of an object that has mass \texttip{m}{m} and velocity \texttip{v}{v} is given by \large{K=\frac{1}{2}mv^2}. Potential energy, instead, has many forms. The two forms that you will be dealing with most often in this chapter are the gravitational and elastic potential energy. Gravitational potential energy is the energy possessed by elevated objects. For small heights, it can be found as U_{\rm g}=mgh, where \texttip{m}{m} is the mass of the object, \texttip{g}{g} is the acceleration due to gravity, and \texttip{h}{h} is the elevation of the object above the zero level. The zero level is the elevation at which the gravitational potential energy is assumed to be (you guessed it) zero. The choice of the zero level is dictated by convenience; typically (but not necessarily), it is selected to coincide with the lowest position of the object during the motion explored in the problem. Elastic potential energy is associated with stretched or compressed elastic objects such as springs. For a spring with a force constant \texttip{k}{k}, stretched or compressed a distance \texttip{x}{x}, the associated elastic potential energy is \large{U_{\rm e}=\frac{1}{2}kx^2}. When all three types of energy change, the law of conservation of energy for an object of mass \texttip{m}{m} can be written as K U Ki + Ui = Kf + Uf Typesetting math: 91% \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}. The gravitational force and the elastic force are two examples of conservative forces. What if nonconservative forces, such as friction, also act within the system? In that case, the total mechanical energy would change. The law of conservation of energy is then written as \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2+W_{\rm nc}=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}, where \texttip{W_{\rm nc}}{W_nc} represents the work done by the nonconservative forces acting on the object between the initial and the final moments. The work \texttip{W_{\rm nc}}{W_nc} is usually negative; that is, the nonconservative forces tend to decrease, or dissipate, the mechanical energy of the system. In this problem, we will consider the following situation as depicted in the diagram : A block of mass \texttip{m}{m} slides at a speed \texttip{v}{v} along a horizontal, smooth table. It next slides down a smooth ramp, descending a height \texttip{h}{h}, and then slides along a horizontal rough floor, stopping eventually. Assume that the block slides slowly enough so that it does not lose contact with the supporting surfaces (table, ramp, or floor). You will analyze the motion of the block at different moments using the law of conservation of energy. Part A Which word in the statement of this problem allows you to assume that the table is frictionless? ANSWER: Part B straight smooth horizontal Typesetting math: 91% This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H Typesetting math: 91% This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Sliding In Socks Suppose that the coefficient of kinetic friction between Zak’s feet and the floor, while wearing socks, is 0.250. Knowing this, Zak decides to get a running start and then slide across the floor. Part A If Zak’s speed is 3.00 \rm m/s when he starts to slide, what distance \texttip{d}{d} will he slide before stopping? Express your answer in meters. ANSWER: Typesetting math: 91% Part B This question will be shown after you complete previous question(s). Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. \rm m Typesetting math: 91%

Chapter 11 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Understanding Work and Kinetic Energy Learning Goal: To learn about the Work-Energy Theorem and its basic applications. In this problem, you will learn about the relationship between the work done on an object and the kinetic energy of that object. The kinetic energy of an object of mass moving at a speed is defined as . It seems reasonable to say that the speed of an object–and, therefore, its kinetic energy–can be changed by performing work on the object. In this problem, we will explore the mathematical relationship between the work done on an object and the change in the kinetic energy of that object. First, let us consider a sled of mass being pulled by a constant, horizontal force of magnitude along a rough, horizontal surface. The sled is speeding up. Part A How many forces are acting on the sled? ANSWER: Part B This question will be shown after you complete previous question(s). Part C K m v K = (1/2)mv2 m F one two three four This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I Typesetting math: 91% This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Work-Energy Theorem Reviewed Learning Goal: Review the work-energy theorem and apply it to a simple problem. If you push a particle of mass in the direction in which it is already moving, you expect the particle’s speed to increase. If you push with a constant force , then the particle will accelerate with acceleration (from Newton’s 2nd law). Part A Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied for a fixed interval of time , then the _____ of the particle will increase by an amount . You did not open hints for this part. ANSWER: M F a = F/M t at Typesetting math: 91% Part B Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied over a given distance , along the path of the particle, then the _____ of the particle will increase by . ANSWER: Part C If the initial kinetic energy of the particle is , and its final kinetic energy is , express in terms of and the work done on the particle. ANSWER: Part D In general, the work done by a force is written as . Now, consider whether the following statements are true or false: The dot product assures that the integrand is always nonnegative. The dot product indicates that only the component of the force perpendicular to the path contributes to the integral. The dot product indicates that only the component of the force parallel to the path contributes to the integral. Enter t for true or f for false for each statement. Separate your responses with commas (e.g., t,f,t). ANSWER: D FD Ki Kf Kf Ki W Kf = F W =  ( ) d f i F r r Typesetting math: 91% Part E Assume that the particle has initial speed . Find its final kinetic energy in terms of , , , and . You did not open hints for this part. ANSWER: Part F What is the final speed of the particle? Express your answer in terms of and . ANSWER: ± The Work Done in Pulling a Supertanker Two tugboats pull a disabled supertanker. Each tug exerts a constant force of 2.20×106 , one at an angle 10.0 west of north, and the other at an angle 10.0 east of north, as they pull the tanker a distance 0.660 toward the north. Part A What is the total work done by the two tugboats on the supertanker? Express your answer in joules, to three significant figures. vi Kf vi M F D Kf = Kf M vf = N km Typesetting math: 91% You did not open hints for this part. ANSWER: Energy Required to Lift a Heavy Box As you are trying to move a heavy box of mass , you realize that it is too heavy for you to lift by yourself. There is no one around to help, so you attach an ideal pulley to the box and a massless rope to the ceiling, which you wrap around the pulley. You pull up on the rope to lift the box. Use for the magnitude of the acceleration due to gravity and neglect friction forces. Part A Once you have pulled hard enough to start the box moving upward, what is the magnitude of the upward force you must apply to the rope to start raising the box with constant velocity? Express the magnitude of the force in terms of , the mass of the box. J m g F m Typesetting math: 91% You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Pulling a Block on an Incline with Friction A block of weight sits on an inclined plane as shown. A force of magnitude is applied to pull the block up the incline at constant speed. The coefficient of kinetic friction between the plane and the block is . Part A F = mg F μ Typesetting math: 91% What is the total work done on the block by the force of friction as the block moves a distance up the incline? Express the work done by friction in terms of any or all of the variables , , , , , and . You did not open hints for this part. ANSWER: Part B What is the total work done on the block by the applied force as the block moves a distance up the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Now the applied force is changed so that instead of pulling the block up the incline, the force pulls the block down the incline at a constant speed. Wfric L μ m g  L F Wfric = WF F L μ m g  L F WF = Typesetting math: 91% Part C What is the total work done on the block by the force of friction as the block moves a distance down the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Part D What is the total work done on the box by the appled force in this case? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: When Push Comes to Shove Two forces, of magnitudes = 75.0 and = 25.0 , act in opposite directions on a block, which sits atop a frictionless surface, as shown in the figure. Initially, the center of the block is at position = -1.00 . At some later time, the block has moved to the right, and its center is at a new position, = 1.00 . Wfric L μ m g  L F Wfric = WF μ m g  L F WF = F1 N F2 N xi cm xf cm Typesetting math: 91% Part A Find the work done on the block by the force of magnitude = 75.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Part B Find the work done by the force of magnitude = 25.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: W1 F1 N xi cm xf cm W1 = J W2 F2 N xi cm xf cm Typesetting math: 91% Part C What is the net work done on the block by the two forces? Express your answer numerically, in joules. ANSWER: Part D Determine the change in the kinetic energy of the block as it moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Work from a Constant Force Learning Goal: W2 = J Wnet Wnet = J Kf − Ki xi cm xf cm Kf − Ki = J Typesetting math: 91% To understand how to compute the work done by a constant force acting on a particle that moves in a straight line. In this problem, you will calculate the work done by a constant force. A force is considered constant if is independent of . This is the most frequently encountered situation in elementary Newtonian mechanics. Part A Consider a particle moving in a straight line from initial point B to final point A, acted upon by a constant force . The force (think of it as a field, having a magnitude and direction at every position ) is indicated by a series of identical vectors pointing to the left, parallel to the horizontal axis. The vectors are all identical only because the force is constant along the path. The magnitude of the force is , and the displacement vector from point B to point A is (of magnitude , making and angle (radians) with the positive x axis). Find , the work that the force performs on the particle as it moves from point B to point A. Express the work in terms of , , and . Remember to use radians, not degrees, for any angles that appear in your answer. You did not open hints for this part. ANSWER: Part B Now consider the same force acting on a particle that travels from point A to point B. The displacement vector now points in the opposite direction as it did in Part A. Find the work done by in this case. Express your answer in terms of , , and . F( r) r F r F L L  WBA F L F  WBA = F L WAB F Typesetting math: 91% L F  You did not open hints for this part. ANSWER: ± Vector Dot Product Let vectors , , and . Calculate the following: Part A You did not open hints for this part. ANSWER: WAB = A = (2, 1,−4) B = (−3, 0, 1) C = (−1,−1, 2) Typesetting math: 91% Part B What is the angle between and ? Express your answer using one significant figure. You did not open hints for this part. ANSWER: Part C ANSWER: Part D ANSWER: A B = AB A B AB = radians 2B 3C = Typesetting math: 91% Part E Which of the following can be computed? You did not open hints for this part. ANSWER: and are different vectors with lengths and respectively. Find the following: Part F Express your answer in terms of You did not open hints for this part. ANSWER: 2(B 3C) = A B C A (B C) A (B + C) 3 A V 1 V 2 V1 V2 V1 Typesetting math: 91% Part G If and are perpendicular, You did not open hints for this part. ANSWER: Part H If and are parallel, Express your answer in terms of and . You did not open hints for this part. ANSWER: ± Tactics Box 11.1 Calculating the Work Done by a Constant Force V = 1 V 1 V 1 V 2 V = 1 V 2 V 1 V 2 V1 V2 V = 1 V 2 Typesetting math: 91% Learning Goal: To practice Tactics Box 11.1 Calculating the Work Done by a Constant Force. Recall that the work done by a constant force at an angle to the displacement is . The vector magnitudes and are always positive, so the sign of is determined entirely by the angle between the force and the displacement. W F  d W = Fd cos  F d W  Typesetting math: 91% TACTICS BOX 11.1 Calculating the work done by a constant force Force and displacement Work Sign of Energy transfer Energy is transferred into the system. The particle speeds up. increases. No energy is transferred. Speed and are constant. Energy is transferred out of the system. The particle slows down. decreases. A box has weight of magnitude = 2.00 accelerates down a rough plane that is inclined at an angle = 30.0 above the horizontal, as shown at left. The normal force acting on the box has a magnitude = 1.732 , the coefficient of kinetic friction between the box and the plane is = 0.300, and the displacement of the box is 1.80 down the inclined plane.  W W 0 F(“r) + K < 90 F("r) cos  + 90 0 0 K > 90 F(“r) cos  − K 180 −F(“r) − FG N  n N μk d m Typesetting math: 91% Part A What is the work done on the box by gravity? Express your answers in joules to two significant figures. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Wgrav Wgrav = J Typesetting math: 91% Work and Potential Energy on a Sliding Block with Friction A block of weight sits on a plane inclined at an angle as shown. The coefficient of kinetic friction between the plane and the block is . A force is applied to push the block up the incline at constant speed. Part A What is the work done on the block by the force of friction as the block moves a distance up the incline? Express your answer in terms of some or all of the following: , , , . You did not open hints for this part. ANSWER: w  μ F Wf L μ w  L Wf = Typesetting math: 91% Part B What is the work done by the applied force of magnitude ? Express your answer in terms of some or all of the following: , , , . ANSWER: Part C What is the change in the potential energy of the block, , after it has been pushed a distance up the incline? Express your answer in terms of some or all of the following: , , , . ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). W F μ w  L W = “U L μ w  L “U = Typesetting math: 91% Part F This question will be shown after you complete previous question(s). Where’s the Energy? Learning Goal: To understand how to apply the law of conservation of energy to situations with and without nonconservative forces acting. The law of conservation of energy states the following: In an isolated system the total energy remains constant. If the objects within the system interact through gravitational and elastic forces only, then the total mechanical energy is conserved. The mechanical energy of a system is defined as the sum of kinetic energy and potential energy . For such systems where no forces other than the gravitational and elastic forces do work, the law of conservation of energy can be written as , where the quantities with subscript “i” refer to the “initial” moment and those with subscript “f” refer to the final moment. A wise choice of initial and final moments, which is not always obvious, may significantly simplify the solution. The kinetic energy of an object that has mass \texttip{m}{m} and velocity \texttip{v}{v} is given by \large{K=\frac{1}{2}mv^2}. Potential energy, instead, has many forms. The two forms that you will be dealing with most often in this chapter are the gravitational and elastic potential energy. Gravitational potential energy is the energy possessed by elevated objects. For small heights, it can be found as U_{\rm g}=mgh, where \texttip{m}{m} is the mass of the object, \texttip{g}{g} is the acceleration due to gravity, and \texttip{h}{h} is the elevation of the object above the zero level. The zero level is the elevation at which the gravitational potential energy is assumed to be (you guessed it) zero. The choice of the zero level is dictated by convenience; typically (but not necessarily), it is selected to coincide with the lowest position of the object during the motion explored in the problem. Elastic potential energy is associated with stretched or compressed elastic objects such as springs. For a spring with a force constant \texttip{k}{k}, stretched or compressed a distance \texttip{x}{x}, the associated elastic potential energy is \large{U_{\rm e}=\frac{1}{2}kx^2}. When all three types of energy change, the law of conservation of energy for an object of mass \texttip{m}{m} can be written as K U Ki + Ui = Kf + Uf Typesetting math: 91% \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}. The gravitational force and the elastic force are two examples of conservative forces. What if nonconservative forces, such as friction, also act within the system? In that case, the total mechanical energy would change. The law of conservation of energy is then written as \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2+W_{\rm nc}=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}, where \texttip{W_{\rm nc}}{W_nc} represents the work done by the nonconservative forces acting on the object between the initial and the final moments. The work \texttip{W_{\rm nc}}{W_nc} is usually negative; that is, the nonconservative forces tend to decrease, or dissipate, the mechanical energy of the system. In this problem, we will consider the following situation as depicted in the diagram : A block of mass \texttip{m}{m} slides at a speed \texttip{v}{v} along a horizontal, smooth table. It next slides down a smooth ramp, descending a height \texttip{h}{h}, and then slides along a horizontal rough floor, stopping eventually. Assume that the block slides slowly enough so that it does not lose contact with the supporting surfaces (table, ramp, or floor). You will analyze the motion of the block at different moments using the law of conservation of energy. Part A Which word in the statement of this problem allows you to assume that the table is frictionless? ANSWER: Part B straight smooth horizontal Typesetting math: 91% This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H Typesetting math: 91% This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Sliding In Socks Suppose that the coefficient of kinetic friction between Zak’s feet and the floor, while wearing socks, is 0.250. Knowing this, Zak decides to get a running start and then slide across the floor. Part A If Zak’s speed is 3.00 \rm m/s when he starts to slide, what distance \texttip{d}{d} will he slide before stopping? Express your answer in meters. ANSWER: Typesetting math: 91% Part B This question will be shown after you complete previous question(s). Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. \rm m Typesetting math: 91%

please email info@checkyourstudy.com
Chapter 13 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Matter of Some Gravity Learning Goal: To understand Newton’s law of gravitation and the distinction between inertial and gravitational masses. In this problem, you will practice using Newton’s law of gravitation. According to that law, the magnitude of the gravitational force between two small particles of masses and , separated by a distance , is given by , where is the universal gravitational constant, whose numerical value (in SI units) is . This formula applies not only to small particles, but also to spherical objects. In fact, the gravitational force between two uniform spheres is the same as if we concentrated all the mass of each sphere at its center. Thus, by modeling the Earth and the Moon as uniform spheres, you can use the particle approximation when calculating the force of gravity between them. Be careful in using Newton’s law to choose the correct value for . To calculate the force of gravitational attraction between two uniform spheres, the distance in the equation for Newton’s law of gravitation is the distance between the centers of the spheres. For instance, if a small object such as an elephant is located on the surface of the Earth, the radius of the Earth would be used in the equation. Note that the force of gravity acting on an object located near the surface of a planet is often called weight. Also note that in situations involving satellites, you are often given the altitude of the satellite, that is, the distance from the satellite to the surface of the planet; this is not the distance to be used in the formula for the law of gravitation. There is a potentially confusing issue involving mass. Mass is defined as a measure of an object’s inertia, that is, its ability to resist acceleration. Newton’s second law demonstrates the relationship between mass, acceleration, and the net force acting on an object: . We can now refer to this measure of inertia more precisely as the inertial mass. On the other hand, the masses of the particles that appear in the expression for the law of gravity seem to have nothing to do with inertia: Rather, they serve as a measure of the strength of gravitational interactions. It would be reasonable to call such a property gravitational mass. Does this mean that every object has two different masses? Generally speaking, yes. However, the good news is that according to the latest, highly precise, measurements, the inertial and the gravitational mass of an object are, in fact, equal to each other; it is an established consensus among physicists that there is only one mass after all, which is a measure of both the object’s inertia and its ability to engage in gravitational interactions. Note that this consensus, like everything else in science, is open to possible amendments in the future. In this problem, you will answer several questions that require the use of Newton’s law of gravitation. Part A Two particles are separated by a certain distance. The force of gravitational interaction between them is . Now the separation between the particles is tripled. Find the new force of gravitational Fg m1 m2 r Fg = G m1m2 r2 G 6.67 × 10−11 N m2 kg2 r r rEarth F  = m net a F0 interaction . Express your answer in terms of . ANSWER: Part B A satellite revolves around a planet at an altitude equal to the radius of the planet. The force of gravitational interaction between the satellite and the planet is . Then the satellite moves to a different orbit, so that its altitude is tripled. Find the new force of gravitational interaction . Express your answer in terms of . You did not open hints for this part. ANSWER: Part C A satellite revolves around a planet at an altitude equal to the radius of the planet. The force of gravitational interaction between the satellite and the planet is . Then the satellite is brought back to the surface of the planet. Find the new force of gravitational interaction . Express your answer in terms of . ANSWER: F1 F0 F1 = F0 F2 F0 F2 = F0 F4 F0 Typesetting math: 81% Part D Two satellites revolve around the Earth. Satellite A has mass and has an orbit of radius . Satellite B has mass and an orbit of unknown radius . The forces of gravitational attraction between each satellite and the Earth is the same. Find . Express your answer in terms of . ANSWER: Part E An adult elephant has a mass of about 5.0 tons. An adult elephant shrew has a mass of about 50 grams. How far from the center of the Earth should an elephant be placed so that its weight equals that of the elephant shrew on the surface of the Earth? The radius of the Earth is 6400 . ( .) Express your answer in kilometers. ANSWER: The table below gives the masses of the Earth, the Moon, and the Sun. Name Mass (kg) Earth Moon Sun F4 = m r 6m rb rb r rb = r km 1 ton = 103 kg r = km 5.97 × 1024 7.35 × 1022 1.99 × 1030 Typesetting math: 81% The average distance between the Earth and the Moon is . The average distance between the Earth and the Sun is . Use this information to answer the following questions. Part F Find the net gravitational force acting on the Earth in the Sun-Earth-Moon system during the new moon (when the moon is located directly between the Earth and the Sun). Express your answer in newtons to three significant figures. You did not open hints for this part. ANSWER: Part G Find the net gravitational force acting on the Earth in the Sun-Earth-Moon system during the full moon (when the Earth is located directly between the moon and the sun). Express your answer in newtons to three significant figures. ANSWER: ± Understanding Newton’s Law of Universal Gravitation Learning Goal: To understand Newton’s law of universal gravitation and be able to apply it in two-object situations and (collinear) three-object situations; to distinguish between the use of and . 3.84 × 108 m 1.50 × 1011 m Fnet Fnet = N Fnet Fnet = N Typesetting math: 81% G g In the late 1600s, Isaac Newton proposed a rule to quantify the attractive force known as gravity between objects that have mass, such as those shown in the figure. Newton’s law of universal gravitation describes the magnitude of the attractive gravitational force between two objects with masses and as , where is the distance between the centers of the two objects and is the gravitational constant. The gravitational force is attractive, so in the figure it pulls to the right on (toward ) and toward the left on (toward ). The gravitational force acting on is equal in size to, but exactly opposite in direction from, the gravitational force acting on , as required by Newton’s third law. The magnitude of both forces is calculated with the equation given above. The gravitational constant has the value and should not be confused with the magnitude of the gravitational free-fall acceleration constant, denoted by , which equals 9.80 near the surface of the earth. The size of in SI units is tiny. This means that gravitational forces are sizeable only in the vicinity of very massive objects, such as the earth. You are in fact gravitationally attracted toward all the objects around you, such as the computer you are using, but the size of that force is too small to be noticed without extremely sensitive equipment. Consider the earth following its nearly circular orbit (dashed curve) about the sun. The earth has mass and the sun has mass . They are separated, center to center, by . Part A What is the size of the gravitational force acting on the earth due to the sun? Express your answer in newtons. F  g m1 m2 Fg = G( ) m1m2 r2 r G m1 m2 m2 m1 m1 m2 G G = 6.67 × 10−11 N m2/kg2 g m/s2 G mearth = 5.98 × 1024 kg msun = 1.99 × 1030 kg r = 93 million miles = 150 million km Typesetting math: 81% You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F N Typesetting math: 81% This question will be shown after you complete previous question(s). Understanding Mass and Weight Learning Goal: To understand the distinction between mass and weight and to be able to calculate the weight of an object from its mass and Newton’s law of gravitation. The concepts of mass and weight are often confused. In fact, in everyday conversations, the word “weight” often replaces “mass,” as in “My weight is seventy-five kilograms” or “I need to lose some weight.” Of course, mass and weight are related; however, they are also very different. Mass, as you recall, is a measure of an object’s inertia (ability to resist acceleration). Newton’s 2nd law demonstrates the relationship among an object’s mass, its acceleration, and the net force acting on it: . Mass is an intrinsic property of an object and is independent of the object’s location. Weight, in contrast, is defined as the force due to gravity acting on the object. That force depends on the strength of the gravitational field of the planet: , where is the weight of an object, is the mass of that object, and is the local acceleration due to gravity (in other words, the strength of the gravitational field at the location of the object). Weight, unlike mass, is not an intrinsic property of the object; it is determined by both the object and its location. Part A Which of the following quantities represent mass? Check all that apply. ANSWER: Fnet = ma w = mg w m g 12.0 lbs 0.34 g 120 kg 1600 kN 0.34 m 411 cm 899 MN Typesetting math: 81% Part B This question will be shown after you complete previous question(s). Using the universal law of gravity, we can find the weight of an object feeling the gravitational pull of a nearby planet. We can write an expression , where is the weight of the object, is the gravitational constant, is the mass of that object, is mass of the planet, and is the distance from the center of the planet to the object. If the object is on the surface of the planet, is simply the radius of the planet. Part C The gravitational field on the surface of the earth is stronger than that on the surface of the moon. If a rock is transported from the moon to the earth, which properties of the rock change? ANSWER: Part D This question will be shown after you complete previous question(s). Part E If acceleration due to gravity on the earth is , which formula gives the acceleration due to gravity on Loput? You did not open hints for this part. ANSWER: w = GmM/r2 w G m M r r mass only weight only both mass and weight neither mass nor weight g Typesetting math: 81% Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). ± Weight on a Neutron Star Neutron stars, such as the one at the center of the Crab Nebula, have about the same mass as our sun but a much smaller diameter. g 1.7 5.6 g 1.72 5.6 g 1.72 5.62 g 5.6 1.7 g 5.62 1.72 g 5.6 1.72 Typesetting math: 81% Part A If you weigh 655 on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun and a diameter of 19.0 ? Take the mass of the sun to be = 1.99×1030 , the gravitational constant to be = 6.67×10−11 , and the acceleration due to gravity at the earth’s surface to be = 9.810 . Express your weight in newtons. You did not open hints for this part. ANSWER: ± Escape Velocity Learning Goal: To introduce you to the concept of escape velocity for a rocket. The escape velocity is defined to be the minimum speed with which an object of mass must move to escape from the gravitational attraction of a much larger body, such as a planet of total mass . The escape velocity is a function of the distance of the object from the center of the planet , but unless otherwise specified this distance is taken to be the radius of the planet because it addresses the question “How fast does my rocket have to go to escape from the surface of the planet?” Part A The key to making a concise mathematical definition of escape velocity is to consider the energy. If an object is launched at its escape velocity, what is the total mechanical energy of the object at a very large (i.e., infinite) distance from the planet? Follow the usual convention and take the gravitational potential energy to be zero at very large distances. You did not open hints for this part. ANSWER: N km ms kg G N m2/kg2 g m/s2 wstar wstar = N m M R Etotal Typesetting math: 81% Consider the motion of an object between a point close to the planet and a point very very far from the planet. Indicate whether the following statements are true or false. Part B Angular momentum about the center of the planet is conserved. ANSWER: Part C Total mechanical energy is conserved. ANSWER: Part D Kinetic energy is conserved. ANSWER: Etotal = true false true false Typesetting math: 81% Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Satellite in a Circular Orbit Consider a satellite of mass that orbits a planet of mass in a circle a distance from the center of the planet. The satellite’s mass is negligible compared with that of the planet. Indicate whether each of the statements in this problem is true or false. Part A The information given is sufficient to uniquely specify the speed, potential energy, and angular momentum of the satellite. You did not open hints for this part. ANSWER: true false m1 m2 r true false Typesetting math: 81% Part B The total mechanical energy of the satellite is conserved. You did not open hints for this part. ANSWER: Part C The linear momentum vector of the satellite is conserved. You did not open hints for this part. ANSWER: Part D The angular momentum of the satellite about the center of the planet is conserved. You did not open hints for this part. ANSWER: true false true false Typesetting math: 81% Part E The equations that express the conservation laws of total mechanical energy and linear momentum are sufficient to solve for the speed necessary to maintain a circular orbit at without using . You did not open hints for this part. ANSWER: At the Galaxy’s Core Astronomers have observed a small, massive object at the center of our Milky Way galaxy. A ring of material orbits this massive object; the ring has a diameter of about 15 light years and an orbital speed of about 200 . Part A Determine the mass of the massive object at the center of the Milky Way galaxy. Take the distance of one light year to be . Express your answer in kilograms. You did not open hints for this part. true false R F = ma true false km/s M 9.461 × 1015 m Typesetting math: 81% ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Properties of Circular Orbits Learning Goal: To teach you how to find the parameters characterizing an object in a circular orbit around a much heavier body like the earth. M = kg Typesetting math: 81% The motivation for Isaac Newton to discover his laws of motion was to explain the properties of planetary orbits that were observed by Tycho Brahe and analyzed by Johannes Kepler. A good starting point for understanding this (as well as the speed of the space shuttle and the height of geostationary satellites) is the simplest orbit–a circular one. This problem concerns the properties of circular orbits for a satellite orbiting a planet of mass . For all parts of this problem, where appropriate, use for the universal gravitational constant. Part A Find the orbital speed for a satellite in a circular orbit of radius . Express the orbital speed in terms of , , and . You did not open hints for this part. ANSWER: Part B Find the kinetic energy of a satellite with mass in a circular orbit with radius . Express your answer in terms of \texttip{m}{m}, \texttip{M}{M}, \texttip{G}{G}, and \texttip{R}{R}. ANSWER: Part C M G v R G M R v = K m R \texttip{K}{K} = Typesetting math: 81% This question will be shown after you complete previous question(s). Part D Find the orbital period \texttip{T}{T}. Express your answer in terms of \texttip{G}{G}, \texttip{M}{M}, \texttip{R}{R}, and \texttip{\pi }{pi}. You did not open hints for this part. ANSWER: Part E This question will be shown after you complete previous question(s). Part F Find \texttip{L}{L}, the magnitude of the angular momentum of the satellite with respect to the center of the planet. Express your answer in terms of \texttip{m}{m}, \texttip{M}{M}, \texttip{G}{G}, and \texttip{R}{R}. You did not open hints for this part. ANSWER: \texttip{T}{T} = Typesetting math: 81% Part G The quantities \texttip{v}{v}, \texttip{K}{K}, \texttip{U}{U}, and \texttip{L}{L} all represent physical quantities characterizing the orbit that depend on radius \texttip{R}{R}. Indicate the exponent (power) of the radial dependence of the absolute value of each. Express your answer as a comma-separated list of exponents corresponding to \texttip{v}{v}, \texttip{K}{K}, \texttip{U}{U}, and \texttip{L}{L}, in that order. For example, -1,-1/2,-0.5,-3/2 would mean v \propto R^{-1}, K \propto R^{-1/2}, and so forth. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. \texttip{L}{L} = Typesetting math: 81%

Chapter 13 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Matter of Some Gravity Learning Goal: To understand Newton’s law of gravitation and the distinction between inertial and gravitational masses. In this problem, you will practice using Newton’s law of gravitation. According to that law, the magnitude of the gravitational force between two small particles of masses and , separated by a distance , is given by , where is the universal gravitational constant, whose numerical value (in SI units) is . This formula applies not only to small particles, but also to spherical objects. In fact, the gravitational force between two uniform spheres is the same as if we concentrated all the mass of each sphere at its center. Thus, by modeling the Earth and the Moon as uniform spheres, you can use the particle approximation when calculating the force of gravity between them. Be careful in using Newton’s law to choose the correct value for . To calculate the force of gravitational attraction between two uniform spheres, the distance in the equation for Newton’s law of gravitation is the distance between the centers of the spheres. For instance, if a small object such as an elephant is located on the surface of the Earth, the radius of the Earth would be used in the equation. Note that the force of gravity acting on an object located near the surface of a planet is often called weight. Also note that in situations involving satellites, you are often given the altitude of the satellite, that is, the distance from the satellite to the surface of the planet; this is not the distance to be used in the formula for the law of gravitation. There is a potentially confusing issue involving mass. Mass is defined as a measure of an object’s inertia, that is, its ability to resist acceleration. Newton’s second law demonstrates the relationship between mass, acceleration, and the net force acting on an object: . We can now refer to this measure of inertia more precisely as the inertial mass. On the other hand, the masses of the particles that appear in the expression for the law of gravity seem to have nothing to do with inertia: Rather, they serve as a measure of the strength of gravitational interactions. It would be reasonable to call such a property gravitational mass. Does this mean that every object has two different masses? Generally speaking, yes. However, the good news is that according to the latest, highly precise, measurements, the inertial and the gravitational mass of an object are, in fact, equal to each other; it is an established consensus among physicists that there is only one mass after all, which is a measure of both the object’s inertia and its ability to engage in gravitational interactions. Note that this consensus, like everything else in science, is open to possible amendments in the future. In this problem, you will answer several questions that require the use of Newton’s law of gravitation. Part A Two particles are separated by a certain distance. The force of gravitational interaction between them is . Now the separation between the particles is tripled. Find the new force of gravitational Fg m1 m2 r Fg = G m1m2 r2 G 6.67 × 10−11 N m2 kg2 r r rEarth F  = m net a F0 interaction . Express your answer in terms of . ANSWER: Part B A satellite revolves around a planet at an altitude equal to the radius of the planet. The force of gravitational interaction between the satellite and the planet is . Then the satellite moves to a different orbit, so that its altitude is tripled. Find the new force of gravitational interaction . Express your answer in terms of . You did not open hints for this part. ANSWER: Part C A satellite revolves around a planet at an altitude equal to the radius of the planet. The force of gravitational interaction between the satellite and the planet is . Then the satellite is brought back to the surface of the planet. Find the new force of gravitational interaction . Express your answer in terms of . ANSWER: F1 F0 F1 = F0 F2 F0 F2 = F0 F4 F0 Typesetting math: 81% Part D Two satellites revolve around the Earth. Satellite A has mass and has an orbit of radius . Satellite B has mass and an orbit of unknown radius . The forces of gravitational attraction between each satellite and the Earth is the same. Find . Express your answer in terms of . ANSWER: Part E An adult elephant has a mass of about 5.0 tons. An adult elephant shrew has a mass of about 50 grams. How far from the center of the Earth should an elephant be placed so that its weight equals that of the elephant shrew on the surface of the Earth? The radius of the Earth is 6400 . ( .) Express your answer in kilometers. ANSWER: The table below gives the masses of the Earth, the Moon, and the Sun. Name Mass (kg) Earth Moon Sun F4 = m r 6m rb rb r rb = r km 1 ton = 103 kg r = km 5.97 × 1024 7.35 × 1022 1.99 × 1030 Typesetting math: 81% The average distance between the Earth and the Moon is . The average distance between the Earth and the Sun is . Use this information to answer the following questions. Part F Find the net gravitational force acting on the Earth in the Sun-Earth-Moon system during the new moon (when the moon is located directly between the Earth and the Sun). Express your answer in newtons to three significant figures. You did not open hints for this part. ANSWER: Part G Find the net gravitational force acting on the Earth in the Sun-Earth-Moon system during the full moon (when the Earth is located directly between the moon and the sun). Express your answer in newtons to three significant figures. ANSWER: ± Understanding Newton’s Law of Universal Gravitation Learning Goal: To understand Newton’s law of universal gravitation and be able to apply it in two-object situations and (collinear) three-object situations; to distinguish between the use of and . 3.84 × 108 m 1.50 × 1011 m Fnet Fnet = N Fnet Fnet = N Typesetting math: 81% G g In the late 1600s, Isaac Newton proposed a rule to quantify the attractive force known as gravity between objects that have mass, such as those shown in the figure. Newton’s law of universal gravitation describes the magnitude of the attractive gravitational force between two objects with masses and as , where is the distance between the centers of the two objects and is the gravitational constant. The gravitational force is attractive, so in the figure it pulls to the right on (toward ) and toward the left on (toward ). The gravitational force acting on is equal in size to, but exactly opposite in direction from, the gravitational force acting on , as required by Newton’s third law. The magnitude of both forces is calculated with the equation given above. The gravitational constant has the value and should not be confused with the magnitude of the gravitational free-fall acceleration constant, denoted by , which equals 9.80 near the surface of the earth. The size of in SI units is tiny. This means that gravitational forces are sizeable only in the vicinity of very massive objects, such as the earth. You are in fact gravitationally attracted toward all the objects around you, such as the computer you are using, but the size of that force is too small to be noticed without extremely sensitive equipment. Consider the earth following its nearly circular orbit (dashed curve) about the sun. The earth has mass and the sun has mass . They are separated, center to center, by . Part A What is the size of the gravitational force acting on the earth due to the sun? Express your answer in newtons. F  g m1 m2 Fg = G( ) m1m2 r2 r G m1 m2 m2 m1 m1 m2 G G = 6.67 × 10−11 N m2/kg2 g m/s2 G mearth = 5.98 × 1024 kg msun = 1.99 × 1030 kg r = 93 million miles = 150 million km Typesetting math: 81% You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F N Typesetting math: 81% This question will be shown after you complete previous question(s). Understanding Mass and Weight Learning Goal: To understand the distinction between mass and weight and to be able to calculate the weight of an object from its mass and Newton’s law of gravitation. The concepts of mass and weight are often confused. In fact, in everyday conversations, the word “weight” often replaces “mass,” as in “My weight is seventy-five kilograms” or “I need to lose some weight.” Of course, mass and weight are related; however, they are also very different. Mass, as you recall, is a measure of an object’s inertia (ability to resist acceleration). Newton’s 2nd law demonstrates the relationship among an object’s mass, its acceleration, and the net force acting on it: . Mass is an intrinsic property of an object and is independent of the object’s location. Weight, in contrast, is defined as the force due to gravity acting on the object. That force depends on the strength of the gravitational field of the planet: , where is the weight of an object, is the mass of that object, and is the local acceleration due to gravity (in other words, the strength of the gravitational field at the location of the object). Weight, unlike mass, is not an intrinsic property of the object; it is determined by both the object and its location. Part A Which of the following quantities represent mass? Check all that apply. ANSWER: Fnet = ma w = mg w m g 12.0 lbs 0.34 g 120 kg 1600 kN 0.34 m 411 cm 899 MN Typesetting math: 81% Part B This question will be shown after you complete previous question(s). Using the universal law of gravity, we can find the weight of an object feeling the gravitational pull of a nearby planet. We can write an expression , where is the weight of the object, is the gravitational constant, is the mass of that object, is mass of the planet, and is the distance from the center of the planet to the object. If the object is on the surface of the planet, is simply the radius of the planet. Part C The gravitational field on the surface of the earth is stronger than that on the surface of the moon. If a rock is transported from the moon to the earth, which properties of the rock change? ANSWER: Part D This question will be shown after you complete previous question(s). Part E If acceleration due to gravity on the earth is , which formula gives the acceleration due to gravity on Loput? You did not open hints for this part. ANSWER: w = GmM/r2 w G m M r r mass only weight only both mass and weight neither mass nor weight g Typesetting math: 81% Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). ± Weight on a Neutron Star Neutron stars, such as the one at the center of the Crab Nebula, have about the same mass as our sun but a much smaller diameter. g 1.7 5.6 g 1.72 5.6 g 1.72 5.62 g 5.6 1.7 g 5.62 1.72 g 5.6 1.72 Typesetting math: 81% Part A If you weigh 655 on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun and a diameter of 19.0 ? Take the mass of the sun to be = 1.99×1030 , the gravitational constant to be = 6.67×10−11 , and the acceleration due to gravity at the earth’s surface to be = 9.810 . Express your weight in newtons. You did not open hints for this part. ANSWER: ± Escape Velocity Learning Goal: To introduce you to the concept of escape velocity for a rocket. The escape velocity is defined to be the minimum speed with which an object of mass must move to escape from the gravitational attraction of a much larger body, such as a planet of total mass . The escape velocity is a function of the distance of the object from the center of the planet , but unless otherwise specified this distance is taken to be the radius of the planet because it addresses the question “How fast does my rocket have to go to escape from the surface of the planet?” Part A The key to making a concise mathematical definition of escape velocity is to consider the energy. If an object is launched at its escape velocity, what is the total mechanical energy of the object at a very large (i.e., infinite) distance from the planet? Follow the usual convention and take the gravitational potential energy to be zero at very large distances. You did not open hints for this part. ANSWER: N km ms kg G N m2/kg2 g m/s2 wstar wstar = N m M R Etotal Typesetting math: 81% Consider the motion of an object between a point close to the planet and a point very very far from the planet. Indicate whether the following statements are true or false. Part B Angular momentum about the center of the planet is conserved. ANSWER: Part C Total mechanical energy is conserved. ANSWER: Part D Kinetic energy is conserved. ANSWER: Etotal = true false true false Typesetting math: 81% Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Satellite in a Circular Orbit Consider a satellite of mass that orbits a planet of mass in a circle a distance from the center of the planet. The satellite’s mass is negligible compared with that of the planet. Indicate whether each of the statements in this problem is true or false. Part A The information given is sufficient to uniquely specify the speed, potential energy, and angular momentum of the satellite. You did not open hints for this part. ANSWER: true false m1 m2 r true false Typesetting math: 81% Part B The total mechanical energy of the satellite is conserved. You did not open hints for this part. ANSWER: Part C The linear momentum vector of the satellite is conserved. You did not open hints for this part. ANSWER: Part D The angular momentum of the satellite about the center of the planet is conserved. You did not open hints for this part. ANSWER: true false true false Typesetting math: 81% Part E The equations that express the conservation laws of total mechanical energy and linear momentum are sufficient to solve for the speed necessary to maintain a circular orbit at without using . You did not open hints for this part. ANSWER: At the Galaxy’s Core Astronomers have observed a small, massive object at the center of our Milky Way galaxy. A ring of material orbits this massive object; the ring has a diameter of about 15 light years and an orbital speed of about 200 . Part A Determine the mass of the massive object at the center of the Milky Way galaxy. Take the distance of one light year to be . Express your answer in kilograms. You did not open hints for this part. true false R F = ma true false km/s M 9.461 × 1015 m Typesetting math: 81% ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Properties of Circular Orbits Learning Goal: To teach you how to find the parameters characterizing an object in a circular orbit around a much heavier body like the earth. M = kg Typesetting math: 81% The motivation for Isaac Newton to discover his laws of motion was to explain the properties of planetary orbits that were observed by Tycho Brahe and analyzed by Johannes Kepler. A good starting point for understanding this (as well as the speed of the space shuttle and the height of geostationary satellites) is the simplest orbit–a circular one. This problem concerns the properties of circular orbits for a satellite orbiting a planet of mass . For all parts of this problem, where appropriate, use for the universal gravitational constant. Part A Find the orbital speed for a satellite in a circular orbit of radius . Express the orbital speed in terms of , , and . You did not open hints for this part. ANSWER: Part B Find the kinetic energy of a satellite with mass in a circular orbit with radius . Express your answer in terms of \texttip{m}{m}, \texttip{M}{M}, \texttip{G}{G}, and \texttip{R}{R}. ANSWER: Part C M G v R G M R v = K m R \texttip{K}{K} = Typesetting math: 81% This question will be shown after you complete previous question(s). Part D Find the orbital period \texttip{T}{T}. Express your answer in terms of \texttip{G}{G}, \texttip{M}{M}, \texttip{R}{R}, and \texttip{\pi }{pi}. You did not open hints for this part. ANSWER: Part E This question will be shown after you complete previous question(s). Part F Find \texttip{L}{L}, the magnitude of the angular momentum of the satellite with respect to the center of the planet. Express your answer in terms of \texttip{m}{m}, \texttip{M}{M}, \texttip{G}{G}, and \texttip{R}{R}. You did not open hints for this part. ANSWER: \texttip{T}{T} = Typesetting math: 81% Part G The quantities \texttip{v}{v}, \texttip{K}{K}, \texttip{U}{U}, and \texttip{L}{L} all represent physical quantities characterizing the orbit that depend on radius \texttip{R}{R}. Indicate the exponent (power) of the radial dependence of the absolute value of each. Express your answer as a comma-separated list of exponents corresponding to \texttip{v}{v}, \texttip{K}{K}, \texttip{U}{U}, and \texttip{L}{L}, in that order. For example, -1,-1/2,-0.5,-3/2 would mean v \propto R^{-1}, K \propto R^{-1/2}, and so forth. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. \texttip{L}{L} = Typesetting math: 81%

please email info@checkyourstudy.com
5) Missie May and Joe are initially seduced by Slemmons’s appearance, so much so that they almost lose their way. Do you agree with this idea? How do they find their way back?

5) Missie May and Joe are initially seduced by Slemmons’s appearance, so much so that they almost lose their way. Do you agree with this idea? How do they find their way back?

One night Joe shouted that he has considered for the … Read More...
Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

The objectification of women has been a very controversial topic … Read More...
Prepare a five page (minimum) paper along with a cover page, a summary (as noted below) and reference page, on a Landmark Supreme Court Case that dealt with Aboriginal rights in Canada within the past 25 years (e.g. choose from those covered in Oct. 22rd class or another one if you find one that was not addressed but fits the criteria of a Supreme Court case that dealt with Aboriginal rights in Canada within the past 25 years). You can complete the assignment as a written paper (1.5 space/12 point font Times New Roman x 4 pages) or you can use points. In either method, provide a detailed response to each of the questions listed below. In addition to the paper that you will submit for grading, prepare a one page summary/cover page that you will present in class on November 12th and share with the other ANIS3006 students (handout, there are 18 students registered in the course). Frame your paper within the context of the following quotes: “Even when we win we lose.” (Chief Dean Sayers, Batchewana First Nation, commenting on Anishinabe experience in Canadian courts). “For the master’s tools will never dismantle the master’s house. They may allow us to temporarily beat him at his own game, but they will never enable us to bring about genuine change. Racism and homophobia are real conditions of all our lives in this place and time. I urge each one of us here to reach down into that deep place of knowledge inside herself [himself] and touch that terror and loathing of any difference that lives here. See whose face it wears. Then the personal as the political can begin to illuminate all our choices.” (Audre Lorde, feminist) In your paper, answer this broader question: How has the case you’ve selected served to advance Anishinabe rights in Canada? Describe what was gained and consider at what cost (“Even when we win, we lose.”) Address the following, and add anything that you find significant about the case, its process, its outcome and subsequent impact: • What was the basis of the court case? • What happened (e.g. Anishinabe people charged, by who, what charge)? • Who took the issue to court (who was the claimant, against who)? • What was the basis of the claim (be specific)? How was the issue framed/presented? • Who supported the court case (locally, regionally, nationally)? How did they support it? What was the impact of their support (e.g. political, financial, public awareness, protests, etc.)? • How long did it take from initiating the claim to decision (specific dates, chronology)? • What happened? What was the lower court’s decision? How did the case move through to the Supreme Court? What was the final Supreme Court decisions? • What did the Supreme Court’s decision mean in terms of Aboriginal rights in Canada? (What was gained, what was lost)? • Anything else of note relating to the case, its process or outcome. • Answer if and how the Supreme Court decision formed the basis for changes in Canadian government policies or practice concerning Aboriginal Peoples in Canada. In other words, what has the outcome of the Supreme Court decision been to date?

Prepare a five page (minimum) paper along with a cover page, a summary (as noted below) and reference page, on a Landmark Supreme Court Case that dealt with Aboriginal rights in Canada within the past 25 years (e.g. choose from those covered in Oct. 22rd class or another one if you find one that was not addressed but fits the criteria of a Supreme Court case that dealt with Aboriginal rights in Canada within the past 25 years). You can complete the assignment as a written paper (1.5 space/12 point font Times New Roman x 4 pages) or you can use points. In either method, provide a detailed response to each of the questions listed below. In addition to the paper that you will submit for grading, prepare a one page summary/cover page that you will present in class on November 12th and share with the other ANIS3006 students (handout, there are 18 students registered in the course). Frame your paper within the context of the following quotes: “Even when we win we lose.” (Chief Dean Sayers, Batchewana First Nation, commenting on Anishinabe experience in Canadian courts). “For the master’s tools will never dismantle the master’s house. They may allow us to temporarily beat him at his own game, but they will never enable us to bring about genuine change. Racism and homophobia are real conditions of all our lives in this place and time. I urge each one of us here to reach down into that deep place of knowledge inside herself [himself] and touch that terror and loathing of any difference that lives here. See whose face it wears. Then the personal as the political can begin to illuminate all our choices.” (Audre Lorde, feminist) In your paper, answer this broader question: How has the case you’ve selected served to advance Anishinabe rights in Canada? Describe what was gained and consider at what cost (“Even when we win, we lose.”) Address the following, and add anything that you find significant about the case, its process, its outcome and subsequent impact: • What was the basis of the court case? • What happened (e.g. Anishinabe people charged, by who, what charge)? • Who took the issue to court (who was the claimant, against who)? • What was the basis of the claim (be specific)? How was the issue framed/presented? • Who supported the court case (locally, regionally, nationally)? How did they support it? What was the impact of their support (e.g. political, financial, public awareness, protests, etc.)? • How long did it take from initiating the claim to decision (specific dates, chronology)? • What happened? What was the lower court’s decision? How did the case move through to the Supreme Court? What was the final Supreme Court decisions? • What did the Supreme Court’s decision mean in terms of Aboriginal rights in Canada? (What was gained, what was lost)? • Anything else of note relating to the case, its process or outcome. • Answer if and how the Supreme Court decision formed the basis for changes in Canadian government policies or practice concerning Aboriginal Peoples in Canada. In other words, what has the outcome of the Supreme Court decision been to date?

No expert has answered this question yet. You can browse … Read More...
. What behaviors indicate psychological distress? Name 5 and explain.

. What behaviors indicate psychological distress? Name 5 and explain.

The term ‘distress’ is commonly used in nursing literature to … Read More...
Statistical Methods (STAT 4303) Review for Final Comprehensive Exam Measures of Central Tendency, Dispersion Q.1. The data below represents the test scores obtained by students in college algebra class. 10,12,15,20,13,16,14 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) Q.2. The data below represents the test scores obtained by students in English class. 12,15,16,18,13,10,17,20 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) (f) Compare the results of Q.1 and Q.2, Which scores College Algebra or English do you think is more precise (less spread)? Q.3 Following data represents the score obtained by students in one of the exams 9, 13, 14, 15, 16, 16, 17, 19, 20, 21, 21, 22, 25, 25, 26 Create a frequency table to calculate the following descriptive statistics (a) mean (b) median (c) mode (d) first and third quartiles (e) Construct Box and Whisker plot. (f) Comment on the shape of the distribution. (g) Find inter quartile range (IQR). (h) Are there any outliers (based on IQR technique)? In the above problem, if the score 26 is replaced by 37 (i) What will happen to the mean? Will it increase, decrease or remains the same? (j) What will be the new median? (k) What can you say about the effect of outliers on mean and median? Q.4 Following data represents the score obtained by students in one of the exams 19, 14, 14, 15, 17, 16, 17, 20, 20, 21, 21, 22, 25, 25, 26, 27, 28 Create a frequency table to calculate the following descriptive statistics a) mean b) median c) mode d) first and third quartiles e) Construct Box and Whisker plot. f) Comment on the shape of the distribution. g) Find inter quartile range (IQR). h) Are there any outliers (based on IQR technique)? In the above problem, if the score 28 is replaced by 48 i) What will happen to the mean? Will it increase, decrease or remains the same? j) What will be the new median? k) What can you say about the effect of outliers on mean and median? Q.5 Consider the following data of height (in inch) and weight(in lbs). Height(x) Frequency 50 2 52 3 55 2 60 4 62 3  Find the mean height.  What is the variance of height? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.6. The following table shows the number of miles run during one week for a sample of 20 runners: Miles Mid-value (x) Frequency (f) 5.5-10.5 1 10.5-15.5 2 15.5-20.5 3 20.5-25.5 5 25.5-30.5 4 (a) Find the average (mean) miles run. (Hint: Find mid-value of mile range first) (b) What is the variance of miles run? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.7. (a) If the mean of 20 observations is 20.5, find the sum of all observations? (b) If the mean of 30 observations is 40, find the sum of all observations? Probability Q.8 Out of forty students, 14 are taking English Composition and 29 are taking Chemistry. a) How many students are in both classes? b) What is the probability that a randomly-chosen student from this group is taking only the Chemistry class? Q.9 A drawer contains 4 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and then replaced. Another ball is taken from the drawer. What is the probability that (Draw tree diagram to facilitate your calculation). (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q.10 A drawer contains 3 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and not replaced. Another ball is then taken from the drawer. Draw tree diagram to facilitate your calculation. What is the probability that (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q. 11 Missile A has 45% chance of hitting target. Missile B has 55% chance of hitting a target. What is the probability that (i) both miss the target. (ii) at least one will hit the target. (iii) exactly one will hit the target. Q. 12 A politician from D party speaks truth 65% of times; another politician from rival party speaks truth 75% of times. Both politicians were asked about their personal love affair with their own office secretary, what is the probability that (i) both lie the actual fact . (ii) at least one will speak truth. (iii) exactly one speaks the truth. (iv) both speak the truth. Q.13 The question, “Do you drink alcohol?” was asked to 220 people. Results are shown in the table. . Yes No Total Male 48 82 Female 24 66 Total (a) What is the probability of a randomly selected individual being a male also drinks? (b) What is the probability of a randomly selected individual being a female? (c) What is the probability that a randomly selected individual drinks? (d) A person is selected at random and if the person is female, what is the probability that she drinks? (e) What is the probability that a randomly selected alcoholic person is a male? Q.14 A professor, Dr. Drakula, taught courses that included statements from across the five colleges abbreviated as AH, AS, BA, ED and EN. He taught at Texas A&M University – Kingsville (TAMUK) during the span of five academic years AY09 to AY13. The following table shows the total number of graduates during AY09 to AY13. One day, he was running late to his class. He was so focused on the class that he did not stop for a red light. As soon as he crossed through the intersection, a police officer Asked him to stop. ( a ) It is turned out that the police officer was TAMUK graduate during the past five years. What is the probability that the Police Officer was from ED College? ( b ) What is the probability that the Police Officer graduated in the academic year of 2011? ( c ) If the traffic officer graduated from TAMUK in the academic year of 2011(AY11). What is the conditional probability that he graduated from the ED college? ( d ) Are the events the academic year “AY 11” and the college of Education “ED” independent? Yes or no , why? Discrete Distribution Q.15 Find k and probability for X=2 and X=4. X 1 2 3 4 5 P(X=x) 0.1 3k 0.2 2k 0.2 (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers.What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Q.16 Find k. X 3 4 5 6 7 P(X=x) k 2k 2k k 2k (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers. What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Binomial Distribution: Q.17 (a) Hospital records show that of patients suffering from a certain disease, 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover? (b) A (blindfolded) marksman finds that on the average he hits the target 4 times out of 5. If he fires 4 shots, what is the probability of (i) more than 2 hits? (ii) at least 3 misses? (c) which of the following are binomial experiments? Explain the reason. i. Telephone surveying a group of 200 people to ask if they voted for George Bush. ii. Counting the average number of dogs seen at a veterinarian’s office daily. iii. You take a survey of 50 traffic lights in a certain city, at 3 p.m., recording whether the light was red, green, or yellow at that time. iv. You are at a fair, playing “pop the balloon” with 6 darts. There are 20 balloons. 10 of the balloons have a ticket inside that say “win,” and 10 have a ticket that says “lose.” Normal Distribution Q.18 Use standard normal distribution table to find the following probabilities: (a) P(Z<2.5) (b) P(Z< -1.3) (c) P(Z>0.12) (d) P(Z> -2.15) (e) P(0.11<Z<0.22) (f) P(-0.11<Z<0.5) Q.19. Use normal distribution table to find the missing values (?). (a) P(Z< ?)=0.40 (b) P(Z< ?)=0.76 (c) P(Z> ?)=0.87 (d) P(Z> ?)=0.34 Q.20. The length of life of certain type of light bulb is normally distributed with mean=220hrs and standard deviation=20hrs. (a) Define a random variable, X A light bulb is randomly selected, what is the probability that (b) it will last will last more than 207 hrs. ? (c) it will last less than 214 hrs. (d) it will last in between 199 to 207 hrs. Q.21. The length of life of an instrument produced by a machine has a normal distribution with a mean of 22 months and standard deviation of 4 months. Find the probability that an instrument produced by this machine will last (a) less than 10 months. (b) more than 28 months (c) between 10 and 28 months. Distribution of sample mean and Central Limit Theorem (CLT) Q.22 It is assumed that weight of teenage student is normally distributed with mean=140 lbs. and standard deviation =15 lbs. A simple random sample of 40 teenage students is taken and sample mean is calculated. If several such samples of same size are taken (i) what could be the mean of all sample means. (ii) what could be the standard deviation of all sample means. (iii) will the distribution of sample means be normal ? (iv) What is CLT? Write down the distribution of sample mean in the form of ~ ( , ) 2 n X N   . Q.23 The time it takes students in a cooking school to learn to prepare seafood gumbo is a random variable with a normal distribution where the average is 3.2 hours and a standard deviation of 1.8 hours. A sample of 40 students was investigated. What is the distribution of sample mean (express in numbers)? Hypothesis Testing Q.24 The NCHS reported that the mean total cholesterol level in 2002 for all adults was 203 with standard deviation of 37. Total cholesterol levels in participants who attended the seventh examination of the Offspring in the Framingham Heart Study are summarized as follows: n=3,00, =200.3. Is there statistical evidence of a difference in mean cholesterol levels in the Framingham Offspring (means does the result form current examination differs from 2002 report)?? (Follow the steps below to reach the conclusion) (i) Define null and alternate hypothesis (Also write what is  , and x in words at the beginning) (ii) Identify the significance level ,  and check whether it is one sided or two sided test. (iii) Calculate test statistics, Z. (iv) Use standard normal table to find the p-value and state whether you reject or accept (fail to reject) the null hypothesis. (v) what is the critical value, do you reject or accept the H0. (vi) Write down the conclusion based on part (iv). Q.25 A sample of 145 boxes of Kellogg’s Raisin Bran contain in average 1.95 scoops of raisins. It is known from past experiments that the standard deviation for the number of scoops of raisins is 0.25. The manufacturer of Kellogg’s Raisin Bran claimed that in average their product contains more than 2 scoops of raisins, do you reject or accept the manufacturers claim (follow all five steps)? Q.26 It is assumed that the mean systolic blood pressure is μ = 120 mm Hg. In the Honolulu Heart Study, a sample of n = 100 people had an average systolic blood pressure of 130.1 mm Hg. The standard deviation from the population is 21.21 mm Hg. Is the group significantly different (with respect to systolic blood pressure!) from the regular population? Use 10% level of significance. Q.27 A CEO claims that at least 80 percent of the company’s 1,000,000 customers are very satisfied. Again, 100 customers are surveyed using simple random sampling. The result: 73 percent are very satisfied. Based on these results, should we accept or reject the CEO’s hypothesis? Assume a significance level of 0.05. Q.28 True/False questions (These questions are collected from previous HW, review and exam problems, see the previous solutions for answers) (a) Total sum of probability can exceed 1. (b) If you throw a die, getting 2 or any even number are independent events. (c) If you roll a die for 20 times, the probability of getting 5 in 15th roll is 20 15 . (d) A student is taking a 5 question True-False quiz but he has not been doing any work in the course and does not know the material so he randomly guesses at all the answers. Probability that he gets the first question right is 2 1 . (e) Typing in laptop and writing emails using the same laptop are independent events. (f) Normal distribution is right skewed. (g) Mean is more robust to outliers. So mean is used for data with extreme values. (h) It is possible to have no mode in the data. (i) Standard normal variable, Z has some unit. (j) Only two parameters are required to describe the entire normal distribution. (k) Mean of standard normal variable, Z is 1. (l) If p-value of more than level of significance (alpha), we reject the H0. (m) Very small p-value indicates rejection of H0. (n) H0 always contains equality sign. (o) CLT indicates that distribution of sample mean can be anything, not just normal. (p) Sample mean is always equal to population mean. (q) Variance of sample mean is less than population mean. (r) Variance of sample mean does not depend on sample size. (s) Mr. A has cancer but a medical doctor diagnosed him as “no cancer”. It is a type I error. (t) Level of significance is probability of making type II error. (u) Type II error can be controlled. (v) Type I error is more serious than type II error. (w) Type I and Type II errors are based on null hypothesis. Q.29 Type I and Type II Errors : Make statements about Type I (False Positive) and Type II errors (False Negative). (a) The Alpha-Fetoprotein (AFP) Test has both Type I and Type II error possibilities. This test screens the mother’s blood during pregnancy for AFP and determines risk. Abnormally high or low levels may indicate Down syndrome. (Hint: Take actual status as down syndrome or not) Ho: patient is healthy Ha: patient is unhealthy (b) The mechanic inspects the brake pads for the minimum allowable thickness. Ho: Vehicles breaks meet the standard for the minimum allowable thickness. Ha: Vehicles brakes do not meet the standard for the minimum allowable thickness. (c) Celiac disease is one of the diseases which can be misdiagnosed or have less diagnosis. Following table shows the actual celiac patients and their diagnosis status by medical doctors: Actual Status Yes No Diagnosed as celiac Yes 85 5 No 25 105 I. Calculate the probability of making type I and type II error rates. II. Calculate the power of the test. (Power of the test= 1- P(type II error) Answers: USEFUL FORMULAE: Descriptive Statistics Possible Outliers, any value beyond the range of Q 1.5( ) and Q 1.5( ) Range = Maximum value -Minimum value 100 where 1 ( ) (Preferred) 1 and , n fx x For data with repeats, 1 ( ) (Preferred ) OR 1 and n x x For data without repeats, 1 3 1 3 3 1 2 2 2 2 2 2 2 2 2 2 Q Q Q Q x s CV n f n f x x OR s n fx nx s n x x s n x nx s                             Discrete Distribution         ( ) ( ) ( ) ( ) { ( )} ( ) ( ) 2 2 2 2 E X x P X x V X E X E X E X xP X x Binomial Distribution Probability mass function, P(X=x)= x n x n x C p q  for x=0,1,2,…,n. E(X)=np, Var(X)=npq Hypothesis Testing based on Normal Distribution      X std X mean Z Standard Normal Variable, Probability Bayes Rule, ( ) ( and ) ( ) ( ) ( | ) P B P A B P B P A B P A B    Central Limit Theorem For large n (n>30), ~ ( , ) 2 n X N   and ˆ ~ ( , ) n pq p N p For hypothesis testing of μ, σ known           n x Z   For hypothesis testing of p n pq p p Z   ˆ ANSWERS: Q.1 (a) 14.286 (b) 14 (c) none (d) 10.24 (e) 22.40 Q.2 (a) 15.125 (b) 15.5 (c) No (d) 10.98 (e) 21.9 (f) English Q.3 (a) 18.6 (b)19 (c) 16, 21, and 25 (d) 15, 22 (f) slightly left (g) 7 (h) no outliers (i) increase (j) same Q.4 (a) 0.41 (b) 20 (c)14, 17, 20, 21,25 (d) 16.5, 25 (f) slightly right (g) 8.5 (h) no (i) increase (j) same Q.5 (a)56.57 (b) 22.26 (c) 8.34 Q.6 (a) 21 (b) 38.57 (c) 29.57 Q.7 (a) 410 (b) 1200 Q.8 (a)3 (b) 0.65 Q.9 (a) 0.082 (b) 0.29 (c)0.34 (d) 0.66 (e)0.10 (f) 0.64 Q.10 (a) 0.038 (b)0.23 (c) 0.71 (d) 0.29 (e)0.096 (f) 0.62 Q.11 (i)0.248 (ii)0.752 (iii)0.505 Q.12 (i)0.0875 (ii)0.913 (iii)0.425 (iii)0.488 Q.13 (a)0.22 (b)0.41 (c)0.33 (d)0.27 (e) 0.67 Q.14 (a) 0.13 (b) 0.18 (c)0.12 Q.15 E(X)=3.1 , V(X)=1.69, $0.2 per game, $ 4 win. Q.16 E(X)=5.125, V(X)=1.86, $0.25 loss per game, $5 loss. Q.17 (a)0.201 (b) 0.819, 0.027 Q.18 (a)0.9938 (b)0.0968 (c)0.452 (d)0.984 (e) 0.0433 (f)0.2353 Q.19 (a) -0.25 (b)0.71 (c) -1.13 (d)0.41 Q.20 (b) 0.7422 (c) 0.3821 (d) 0.1109 Q.21 (a)0.0014 (b) 0.0668 (c) 0.9318 Q.22 (a) 140 (b)2.37 Q.24 Z=-1.26, Accept null. Q.25 Z=-2.41, accept null Q.26 Z=4.76, reject H0 Q.27 Z=-1.75, reject H0 Q.28 F, F, F, T , F, F, F, T, F, T, F, F, T, T, F, F, T, F, T, F, F, T, T Q.29 (c)0.113 , 0.022 , 0.977 (or 98%)

Statistical Methods (STAT 4303) Review for Final Comprehensive Exam Measures of Central Tendency, Dispersion Q.1. The data below represents the test scores obtained by students in college algebra class. 10,12,15,20,13,16,14 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) Q.2. The data below represents the test scores obtained by students in English class. 12,15,16,18,13,10,17,20 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) (f) Compare the results of Q.1 and Q.2, Which scores College Algebra or English do you think is more precise (less spread)? Q.3 Following data represents the score obtained by students in one of the exams 9, 13, 14, 15, 16, 16, 17, 19, 20, 21, 21, 22, 25, 25, 26 Create a frequency table to calculate the following descriptive statistics (a) mean (b) median (c) mode (d) first and third quartiles (e) Construct Box and Whisker plot. (f) Comment on the shape of the distribution. (g) Find inter quartile range (IQR). (h) Are there any outliers (based on IQR technique)? In the above problem, if the score 26 is replaced by 37 (i) What will happen to the mean? Will it increase, decrease or remains the same? (j) What will be the new median? (k) What can you say about the effect of outliers on mean and median? Q.4 Following data represents the score obtained by students in one of the exams 19, 14, 14, 15, 17, 16, 17, 20, 20, 21, 21, 22, 25, 25, 26, 27, 28 Create a frequency table to calculate the following descriptive statistics a) mean b) median c) mode d) first and third quartiles e) Construct Box and Whisker plot. f) Comment on the shape of the distribution. g) Find inter quartile range (IQR). h) Are there any outliers (based on IQR technique)? In the above problem, if the score 28 is replaced by 48 i) What will happen to the mean? Will it increase, decrease or remains the same? j) What will be the new median? k) What can you say about the effect of outliers on mean and median? Q.5 Consider the following data of height (in inch) and weight(in lbs). Height(x) Frequency 50 2 52 3 55 2 60 4 62 3  Find the mean height.  What is the variance of height? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.6. The following table shows the number of miles run during one week for a sample of 20 runners: Miles Mid-value (x) Frequency (f) 5.5-10.5 1 10.5-15.5 2 15.5-20.5 3 20.5-25.5 5 25.5-30.5 4 (a) Find the average (mean) miles run. (Hint: Find mid-value of mile range first) (b) What is the variance of miles run? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.7. (a) If the mean of 20 observations is 20.5, find the sum of all observations? (b) If the mean of 30 observations is 40, find the sum of all observations? Probability Q.8 Out of forty students, 14 are taking English Composition and 29 are taking Chemistry. a) How many students are in both classes? b) What is the probability that a randomly-chosen student from this group is taking only the Chemistry class? Q.9 A drawer contains 4 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and then replaced. Another ball is taken from the drawer. What is the probability that (Draw tree diagram to facilitate your calculation). (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q.10 A drawer contains 3 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and not replaced. Another ball is then taken from the drawer. Draw tree diagram to facilitate your calculation. What is the probability that (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q. 11 Missile A has 45% chance of hitting target. Missile B has 55% chance of hitting a target. What is the probability that (i) both miss the target. (ii) at least one will hit the target. (iii) exactly one will hit the target. Q. 12 A politician from D party speaks truth 65% of times; another politician from rival party speaks truth 75% of times. Both politicians were asked about their personal love affair with their own office secretary, what is the probability that (i) both lie the actual fact . (ii) at least one will speak truth. (iii) exactly one speaks the truth. (iv) both speak the truth. Q.13 The question, “Do you drink alcohol?” was asked to 220 people. Results are shown in the table. . Yes No Total Male 48 82 Female 24 66 Total (a) What is the probability of a randomly selected individual being a male also drinks? (b) What is the probability of a randomly selected individual being a female? (c) What is the probability that a randomly selected individual drinks? (d) A person is selected at random and if the person is female, what is the probability that she drinks? (e) What is the probability that a randomly selected alcoholic person is a male? Q.14 A professor, Dr. Drakula, taught courses that included statements from across the five colleges abbreviated as AH, AS, BA, ED and EN. He taught at Texas A&M University – Kingsville (TAMUK) during the span of five academic years AY09 to AY13. The following table shows the total number of graduates during AY09 to AY13. One day, he was running late to his class. He was so focused on the class that he did not stop for a red light. As soon as he crossed through the intersection, a police officer Asked him to stop. ( a ) It is turned out that the police officer was TAMUK graduate during the past five years. What is the probability that the Police Officer was from ED College? ( b ) What is the probability that the Police Officer graduated in the academic year of 2011? ( c ) If the traffic officer graduated from TAMUK in the academic year of 2011(AY11). What is the conditional probability that he graduated from the ED college? ( d ) Are the events the academic year “AY 11” and the college of Education “ED” independent? Yes or no , why? Discrete Distribution Q.15 Find k and probability for X=2 and X=4. X 1 2 3 4 5 P(X=x) 0.1 3k 0.2 2k 0.2 (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers.What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Q.16 Find k. X 3 4 5 6 7 P(X=x) k 2k 2k k 2k (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers. What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Binomial Distribution: Q.17 (a) Hospital records show that of patients suffering from a certain disease, 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover? (b) A (blindfolded) marksman finds that on the average he hits the target 4 times out of 5. If he fires 4 shots, what is the probability of (i) more than 2 hits? (ii) at least 3 misses? (c) which of the following are binomial experiments? Explain the reason. i. Telephone surveying a group of 200 people to ask if they voted for George Bush. ii. Counting the average number of dogs seen at a veterinarian’s office daily. iii. You take a survey of 50 traffic lights in a certain city, at 3 p.m., recording whether the light was red, green, or yellow at that time. iv. You are at a fair, playing “pop the balloon” with 6 darts. There are 20 balloons. 10 of the balloons have a ticket inside that say “win,” and 10 have a ticket that says “lose.” Normal Distribution Q.18 Use standard normal distribution table to find the following probabilities: (a) P(Z<2.5) (b) P(Z< -1.3) (c) P(Z>0.12) (d) P(Z> -2.15) (e) P(0.11 ?)=0.87 (d) P(Z> ?)=0.34 Q.20. The length of life of certain type of light bulb is normally distributed with mean=220hrs and standard deviation=20hrs. (a) Define a random variable, X A light bulb is randomly selected, what is the probability that (b) it will last will last more than 207 hrs. ? (c) it will last less than 214 hrs. (d) it will last in between 199 to 207 hrs. Q.21. The length of life of an instrument produced by a machine has a normal distribution with a mean of 22 months and standard deviation of 4 months. Find the probability that an instrument produced by this machine will last (a) less than 10 months. (b) more than 28 months (c) between 10 and 28 months. Distribution of sample mean and Central Limit Theorem (CLT) Q.22 It is assumed that weight of teenage student is normally distributed with mean=140 lbs. and standard deviation =15 lbs. A simple random sample of 40 teenage students is taken and sample mean is calculated. If several such samples of same size are taken (i) what could be the mean of all sample means. (ii) what could be the standard deviation of all sample means. (iii) will the distribution of sample means be normal ? (iv) What is CLT? Write down the distribution of sample mean in the form of ~ ( , ) 2 n X N   . Q.23 The time it takes students in a cooking school to learn to prepare seafood gumbo is a random variable with a normal distribution where the average is 3.2 hours and a standard deviation of 1.8 hours. A sample of 40 students was investigated. What is the distribution of sample mean (express in numbers)? Hypothesis Testing Q.24 The NCHS reported that the mean total cholesterol level in 2002 for all adults was 203 with standard deviation of 37. Total cholesterol levels in participants who attended the seventh examination of the Offspring in the Framingham Heart Study are summarized as follows: n=3,00, =200.3. Is there statistical evidence of a difference in mean cholesterol levels in the Framingham Offspring (means does the result form current examination differs from 2002 report)?? (Follow the steps below to reach the conclusion) (i) Define null and alternate hypothesis (Also write what is  , and x in words at the beginning) (ii) Identify the significance level ,  and check whether it is one sided or two sided test. (iii) Calculate test statistics, Z. (iv) Use standard normal table to find the p-value and state whether you reject or accept (fail to reject) the null hypothesis. (v) what is the critical value, do you reject or accept the H0. (vi) Write down the conclusion based on part (iv). Q.25 A sample of 145 boxes of Kellogg’s Raisin Bran contain in average 1.95 scoops of raisins. It is known from past experiments that the standard deviation for the number of scoops of raisins is 0.25. The manufacturer of Kellogg’s Raisin Bran claimed that in average their product contains more than 2 scoops of raisins, do you reject or accept the manufacturers claim (follow all five steps)? Q.26 It is assumed that the mean systolic blood pressure is μ = 120 mm Hg. In the Honolulu Heart Study, a sample of n = 100 people had an average systolic blood pressure of 130.1 mm Hg. The standard deviation from the population is 21.21 mm Hg. Is the group significantly different (with respect to systolic blood pressure!) from the regular population? Use 10% level of significance. Q.27 A CEO claims that at least 80 percent of the company’s 1,000,000 customers are very satisfied. Again, 100 customers are surveyed using simple random sampling. The result: 73 percent are very satisfied. Based on these results, should we accept or reject the CEO’s hypothesis? Assume a significance level of 0.05. Q.28 True/False questions (These questions are collected from previous HW, review and exam problems, see the previous solutions for answers) (a) Total sum of probability can exceed 1. (b) If you throw a die, getting 2 or any even number are independent events. (c) If you roll a die for 20 times, the probability of getting 5 in 15th roll is 20 15 . (d) A student is taking a 5 question True-False quiz but he has not been doing any work in the course and does not know the material so he randomly guesses at all the answers. Probability that he gets the first question right is 2 1 . (e) Typing in laptop and writing emails using the same laptop are independent events. (f) Normal distribution is right skewed. (g) Mean is more robust to outliers. So mean is used for data with extreme values. (h) It is possible to have no mode in the data. (i) Standard normal variable, Z has some unit. (j) Only two parameters are required to describe the entire normal distribution. (k) Mean of standard normal variable, Z is 1. (l) If p-value of more than level of significance (alpha), we reject the H0. (m) Very small p-value indicates rejection of H0. (n) H0 always contains equality sign. (o) CLT indicates that distribution of sample mean can be anything, not just normal. (p) Sample mean is always equal to population mean. (q) Variance of sample mean is less than population mean. (r) Variance of sample mean does not depend on sample size. (s) Mr. A has cancer but a medical doctor diagnosed him as “no cancer”. It is a type I error. (t) Level of significance is probability of making type II error. (u) Type II error can be controlled. (v) Type I error is more serious than type II error. (w) Type I and Type II errors are based on null hypothesis. Q.29 Type I and Type II Errors : Make statements about Type I (False Positive) and Type II errors (False Negative). (a) The Alpha-Fetoprotein (AFP) Test has both Type I and Type II error possibilities. This test screens the mother’s blood during pregnancy for AFP and determines risk. Abnormally high or low levels may indicate Down syndrome. (Hint: Take actual status as down syndrome or not) Ho: patient is healthy Ha: patient is unhealthy (b) The mechanic inspects the brake pads for the minimum allowable thickness. Ho: Vehicles breaks meet the standard for the minimum allowable thickness. Ha: Vehicles brakes do not meet the standard for the minimum allowable thickness. (c) Celiac disease is one of the diseases which can be misdiagnosed or have less diagnosis. Following table shows the actual celiac patients and their diagnosis status by medical doctors: Actual Status Yes No Diagnosed as celiac Yes 85 5 No 25 105 I. Calculate the probability of making type I and type II error rates. II. Calculate the power of the test. (Power of the test= 1- P(type II error) Answers: USEFUL FORMULAE: Descriptive Statistics Possible Outliers, any value beyond the range of Q 1.5( ) and Q 1.5( ) Range = Maximum value -Minimum value 100 where 1 ( ) (Preferred) 1 and , n fx x For data with repeats, 1 ( ) (Preferred ) OR 1 and n x x For data without repeats, 1 3 1 3 3 1 2 2 2 2 2 2 2 2 2 2 Q Q Q Q x s CV n f n f x x OR s n fx nx s n x x s n x nx s                             Discrete Distribution         ( ) ( ) ( ) ( ) { ( )} ( ) ( ) 2 2 2 2 E X x P X x V X E X E X E X xP X x Binomial Distribution Probability mass function, P(X=x)= x n x n x C p q  for x=0,1,2,…,n. E(X)=np, Var(X)=npq Hypothesis Testing based on Normal Distribution      X std X mean Z Standard Normal Variable, Probability Bayes Rule, ( ) ( and ) ( ) ( ) ( | ) P B P A B P B P A B P A B    Central Limit Theorem For large n (n>30), ~ ( , ) 2 n X N   and ˆ ~ ( , ) n pq p N p For hypothesis testing of μ, σ known           n x Z   For hypothesis testing of p n pq p p Z   ˆ ANSWERS: Q.1 (a) 14.286 (b) 14 (c) none (d) 10.24 (e) 22.40 Q.2 (a) 15.125 (b) 15.5 (c) No (d) 10.98 (e) 21.9 (f) English Q.3 (a) 18.6 (b)19 (c) 16, 21, and 25 (d) 15, 22 (f) slightly left (g) 7 (h) no outliers (i) increase (j) same Q.4 (a) 0.41 (b) 20 (c)14, 17, 20, 21,25 (d) 16.5, 25 (f) slightly right (g) 8.5 (h) no (i) increase (j) same Q.5 (a)56.57 (b) 22.26 (c) 8.34 Q.6 (a) 21 (b) 38.57 (c) 29.57 Q.7 (a) 410 (b) 1200 Q.8 (a)3 (b) 0.65 Q.9 (a) 0.082 (b) 0.29 (c)0.34 (d) 0.66 (e)0.10 (f) 0.64 Q.10 (a) 0.038 (b)0.23 (c) 0.71 (d) 0.29 (e)0.096 (f) 0.62 Q.11 (i)0.248 (ii)0.752 (iii)0.505 Q.12 (i)0.0875 (ii)0.913 (iii)0.425 (iii)0.488 Q.13 (a)0.22 (b)0.41 (c)0.33 (d)0.27 (e) 0.67 Q.14 (a) 0.13 (b) 0.18 (c)0.12 Q.15 E(X)=3.1 , V(X)=1.69, $0.2 per game, $ 4 win. Q.16 E(X)=5.125, V(X)=1.86, $0.25 loss per game, $5 loss. Q.17 (a)0.201 (b) 0.819, 0.027 Q.18 (a)0.9938 (b)0.0968 (c)0.452 (d)0.984 (e) 0.0433 (f)0.2353 Q.19 (a) -0.25 (b)0.71 (c) -1.13 (d)0.41 Q.20 (b) 0.7422 (c) 0.3821 (d) 0.1109 Q.21 (a)0.0014 (b) 0.0668 (c) 0.9318 Q.22 (a) 140 (b)2.37 Q.24 Z=-1.26, Accept null. Q.25 Z=-2.41, accept null Q.26 Z=4.76, reject H0 Q.27 Z=-1.75, reject H0 Q.28 F, F, F, T , F, F, F, T, F, T, F, F, T, T, F, F, T, F, T, F, F, T, T Q.29 (c)0.113 , 0.022 , 0.977 (or 98%)

No expert has answered this question yet. You can browse … Read More...
Berkeley College International Economics Quiz 1 Student name: Class & Session (Type all your answers in the parenthesis) Multiple Choice Questions (75 points) 1. The person credited with the first systematic expression of the principle of comparative advantage was ( ) A. Alan Greenspan. B. John Maynard Keynes. C. David Ricardo. D. Adam Smith. 2. A regulation that sets the highest price at which it is legal to trade a good is a ( ) A. Production quota B. Price floor C. Price ceiling D. Tax ceiling 3. In Country J, it takes one hour to knit a pair of socks, and five hours to brew a gallon of cider. In Country K, it takes three hours to knit a pair of socks, and six hours to brew a gallon of cider. If trade were to open between the two countries, Ricardo would predict that ( ) A. Country J will export cider and Country K will export socks. B. Country J will export socks and Country K will export cider. C. Country J will export both socks and cider. D. Country K will export both socks and cider. 4. If Nation A can produce either 3x or 3y with one hour of labor, while nation B can produce either 1x or 1y with one hour of labor, and if labor is the only input, then ( ) A. Nation A has an absolute advantage in both goods. B. Nation B has an absolute advantage in both goods. C. Nation A has a comparative disadvantage in both goods. D. Nation A has a comparative advantage in both goods. 5. Mutually beneficial trade A. Allows both countries to consume a larger bundle of goods than before trade occurred.( ) B. Allows only the more productive country to consume a larger bundle of goods than before trade occurred. C. Allows only the less productive country to consume a larger bundle of goods than before trade occurred. D. Causes changes only in production, not consumption. 6. In the absence of trade, the consumption points available to a nation ( ) A. Are above the production possibility curve. B. Are on or inside the production possibility curve. C. Lie on the production possibility curve. D. Cannot be identified. 7. For Heckscher-Ohlin, the most important cause of the differences in relative commodity prices is the difference between countries in ( ) A. Factor endowments. B. National income. C. Technology. D. Tastes. 8. Country J has 1 million machines and 1 million workers, while country K has 2 million machines and 3 million workers. If computers are produced mostly by capital and beer is produced mostly by labor, the H-O model predicts that ( ) A. Country K will export computers in exchange for beer. B. Country J will export computers in exchange for beer. C. Country J is too small to be of economic interest to Country K. D. Computers and beer don’t mix, so trade cannot increase either country’s well-being. 9. Mexico is an unskilled labor abundant country, while the United States is a skilled labor abundant country. With the opening of trade, you would expect that, in the long run, wages for unskilled workers ( ) A. Decline in both countries. B. Decline in the United States and rise in Mexico. C. Rise in the United States and decline in Mexico. D. Rise in both countries 10. According to trade theory, if a nation has a comparative advantage in a capital-intensively produced good, and the rate of growth of capital is greater than the rate of growth of other inputs (e.g., labor), the pattern of growth which results will be ( ) A. Import replacing. B. Neutral as between capital intensive and other products. C. Export expanding. D. None of the above. 11. Arguments in favor of having developing countries focus on exporting manufactured goods include ( ) A. Strong support in industrialized countries for free trade in manufactured goods. B. Very low tariffs on manufactured textiles, apparel, and footwear in industrialized countries. C. Political preference for VERs among importing countries. D. A downward trend in the prices of primary products. 12. Which group definitely loses from international migration of labor? ( ) A. The migrants. B. The migrants’ new employers in the receiving country. C. The migrants’ old employers in the sending country. D. The migrants’ fellow workers who did not emigrate. 13. As technology advances, ( ) A. All opportunity cost decreases B. The PPF shift outward C. A country moves toward the midpoint along its PPF D. The PPF shift inward because unemployment occurs 14. If a country is operating at a point of production efficiency ( ) A. It enjoys growth when increasing production B. It produces on its production possibility frontier curve C. It must specialize in the production of a good D. It operates on its trade line 15. A cartel is ( ) A. Another name for a firm in an oligopoly B. A collusive agreement among a number of firms C. A government body that regulates an industry D. An antitrust law (Type and show your work) Practicum Question (25 points) Two countries, Haiti and the Dominican Republic, produce fruits and timber. Each island has a labor force of 1200 and the monthly productivity of each worker is as follow Basket of fruit Board feet of timber Haiti 10 5 Dominican Republic 30 10 a. Which county has an absolute advantage in the production of fruit? Timber? b. Which country has a comparative advantage in the production of fruit? Timber? c. Sketch the production possibility frontier (PPF) of both countries d. Both countries want to produce an equal amount of baskets of fruit and feet of timber. How should they allocate their workers to the two sectors? e. How can free trade move both countries beyond their respective PPF Extra credits (10 points) The demand and supply curves of the market for DVD at the local (US) market are as follow: P = 30 – Qd/2 and P= -1.5 + Qs/4 a. Find the equilibrium price and the equilibrium quantity when there is no international trade ( hint: solve for Qd and Qs And then make Qd=Qs to solve for Price and quantities) b. What are the equilibrium quantities when the nations trade freely at price of $15? Explain your rationale. c. How many units are exported? d. What is the resulting national gain? e. Do consumers and producers gain or lose from the free trade?

Berkeley College International Economics Quiz 1 Student name: Class & Session (Type all your answers in the parenthesis) Multiple Choice Questions (75 points) 1. The person credited with the first systematic expression of the principle of comparative advantage was ( ) A. Alan Greenspan. B. John Maynard Keynes. C. David Ricardo. D. Adam Smith. 2. A regulation that sets the highest price at which it is legal to trade a good is a ( ) A. Production quota B. Price floor C. Price ceiling D. Tax ceiling 3. In Country J, it takes one hour to knit a pair of socks, and five hours to brew a gallon of cider. In Country K, it takes three hours to knit a pair of socks, and six hours to brew a gallon of cider. If trade were to open between the two countries, Ricardo would predict that ( ) A. Country J will export cider and Country K will export socks. B. Country J will export socks and Country K will export cider. C. Country J will export both socks and cider. D. Country K will export both socks and cider. 4. If Nation A can produce either 3x or 3y with one hour of labor, while nation B can produce either 1x or 1y with one hour of labor, and if labor is the only input, then ( ) A. Nation A has an absolute advantage in both goods. B. Nation B has an absolute advantage in both goods. C. Nation A has a comparative disadvantage in both goods. D. Nation A has a comparative advantage in both goods. 5. Mutually beneficial trade A. Allows both countries to consume a larger bundle of goods than before trade occurred.( ) B. Allows only the more productive country to consume a larger bundle of goods than before trade occurred. C. Allows only the less productive country to consume a larger bundle of goods than before trade occurred. D. Causes changes only in production, not consumption. 6. In the absence of trade, the consumption points available to a nation ( ) A. Are above the production possibility curve. B. Are on or inside the production possibility curve. C. Lie on the production possibility curve. D. Cannot be identified. 7. For Heckscher-Ohlin, the most important cause of the differences in relative commodity prices is the difference between countries in ( ) A. Factor endowments. B. National income. C. Technology. D. Tastes. 8. Country J has 1 million machines and 1 million workers, while country K has 2 million machines and 3 million workers. If computers are produced mostly by capital and beer is produced mostly by labor, the H-O model predicts that ( ) A. Country K will export computers in exchange for beer. B. Country J will export computers in exchange for beer. C. Country J is too small to be of economic interest to Country K. D. Computers and beer don’t mix, so trade cannot increase either country’s well-being. 9. Mexico is an unskilled labor abundant country, while the United States is a skilled labor abundant country. With the opening of trade, you would expect that, in the long run, wages for unskilled workers ( ) A. Decline in both countries. B. Decline in the United States and rise in Mexico. C. Rise in the United States and decline in Mexico. D. Rise in both countries 10. According to trade theory, if a nation has a comparative advantage in a capital-intensively produced good, and the rate of growth of capital is greater than the rate of growth of other inputs (e.g., labor), the pattern of growth which results will be ( ) A. Import replacing. B. Neutral as between capital intensive and other products. C. Export expanding. D. None of the above. 11. Arguments in favor of having developing countries focus on exporting manufactured goods include ( ) A. Strong support in industrialized countries for free trade in manufactured goods. B. Very low tariffs on manufactured textiles, apparel, and footwear in industrialized countries. C. Political preference for VERs among importing countries. D. A downward trend in the prices of primary products. 12. Which group definitely loses from international migration of labor? ( ) A. The migrants. B. The migrants’ new employers in the receiving country. C. The migrants’ old employers in the sending country. D. The migrants’ fellow workers who did not emigrate. 13. As technology advances, ( ) A. All opportunity cost decreases B. The PPF shift outward C. A country moves toward the midpoint along its PPF D. The PPF shift inward because unemployment occurs 14. If a country is operating at a point of production efficiency ( ) A. It enjoys growth when increasing production B. It produces on its production possibility frontier curve C. It must specialize in the production of a good D. It operates on its trade line 15. A cartel is ( ) A. Another name for a firm in an oligopoly B. A collusive agreement among a number of firms C. A government body that regulates an industry D. An antitrust law (Type and show your work) Practicum Question (25 points) Two countries, Haiti and the Dominican Republic, produce fruits and timber. Each island has a labor force of 1200 and the monthly productivity of each worker is as follow Basket of fruit Board feet of timber Haiti 10 5 Dominican Republic 30 10 a. Which county has an absolute advantage in the production of fruit? Timber? b. Which country has a comparative advantage in the production of fruit? Timber? c. Sketch the production possibility frontier (PPF) of both countries d. Both countries want to produce an equal amount of baskets of fruit and feet of timber. How should they allocate their workers to the two sectors? e. How can free trade move both countries beyond their respective PPF Extra credits (10 points) The demand and supply curves of the market for DVD at the local (US) market are as follow: P = 30 – Qd/2 and P= -1.5 + Qs/4 a. Find the equilibrium price and the equilibrium quantity when there is no international trade ( hint: solve for Qd and Qs And then make Qd=Qs to solve for Price and quantities) b. What are the equilibrium quantities when the nations trade freely at price of $15? Explain your rationale. c. How many units are exported? d. What is the resulting national gain? e. Do consumers and producers gain or lose from the free trade?

No expert has answered this question yet. You can browse … Read More...