Hinduism introduces the concepts of reincarnation and karma. Share your understanding of the concepts along with your personal point of view making at least one reference to a story told in Wisdom Walk.

Hinduism introduces the concepts of reincarnation and karma. Share your understanding of the concepts along with your personal point of view making at least one reference to a story told in Wisdom Walk.

As per to the Hindu spiritual and theoretical perceptions, man … Read More...
CAUSAL ANALYSIS GUIDELINES: According to John J. Ruskiewicz and Jay T. Dolmage, “We all analyze and explain things daily. Someone asks, ‘Why?’ We reply, ‘Because . . .’ and then offer reasons and rationales” (138). This type of thinking is at the core of the causal analysis. You will write a causal analysis which explores, through carefully examined research and logical analysis, certain causes or factors which contribute to an issue or problematic situation, based on the topic you choose to write on. Your causal analysis should explore more than one type of cause, such as necessary causes, sufficient causes, precipitating causes, proximate causes, remote causes, reciprocal causes, contributing factors, and chains of causes, as outlined in our course text in the chapter devoted to Causal Analyses. Your project should also reflect significant critical thinking skills. In addition to the actual causal analysis essay, you will be also create an annotated bibliography. These process elements will help you organize and focus your ideas and research in a beneficial way. The following is an organizational structure that outlines the chronology and content of your Causal Analysis: I. Introduction: In one (or at the most two) paragraph(s) introduce your topic. Give a brief overview of your topic and thesis in a few sentences. your evaluative claim and your causal claim. It should be specific, logical, and clear. II. History/Background to Current Situation: This section should take as much space as needed—a few to several paragraphs. Discuss the significant and relevant history of your topic up to the current situation and how it came to be. Use research as needed to give precise and accurate background for context in making your later causal argument. Comment on your research as well, so that you don’t lose your voice. As you explore other points of view, your own point of view will evolve in significant ways. III. Evaluative Claim: Once you have given a brief history/background of the current situation, evaluate the situation, the topic, as it is at present. Again, use research as appropriate to support your judgments. While this section of your essay could run anywhere from one to three paragraphs, typically one paragraph is the norm, as you are basically passing judgment on the situation, arguing evaluatively. This is an argument of pathos and logos, predominantly. IV. Causal Argument: This is the longest portion of your essay, the “meat,” the heart of your work. Once you have detailed the history/background to current situation and evaluated the current situation, you are ready to present your causal analysis. Demonstrate a link between the current situation and the causes for its negative condition. Of course, you will use current significant and relevant research to support your causal claim, and you will want to find the most dominant and pervasive logical causes, utilizing research, for the current situation as possible. These will connect forward as well to your proposal. Remember to use specific supporting detail/examples, and to analyze all of your research causally, thoroughly, and with clarity. NOTE: SECTIONS THREE AND FOUR ABOVE ARE INTERCHANGEABLE. IN OTHER WORDS, IF YOU FEEL YOU CAN PRESENT A BETTER ARGUMENT BY SHOWING CAUSES FIRST AND THEN EVALUATING THE CURRENT SITUATION, THAT CAN WORK JUST AS WELL AS THE ORDER OUTLINED ABOVE. I WILL LEAVE IT UP TO YOU AS THE WRITER TO ESTABLISH WHICH ORDER WORKS MOST EFFECTIVELY. V. Counterargument/Conditions of Rebuttal and Rebuttal: There will be those who disagree with you so you will want to acknowledge their points of view. What are their assumptions about this topic? What questions do they raise for consideration? Acknowledging other points of view gives your essay credibility and shows that you have been fair and broad in your inquiry and presentation. (You will need at least one credible source to represent at least one counterargument.) Then explain how you have considered this counterargument, but still find your own analysis to be more logical and accurate; this is your rebuttal. VI. Conclusion: Summarize the meaningful conclusions you have drawn clearly and precisely, remembering to resummarize your thesis. Give your specific proposal here as well. This will become your transition paragraph between the causal analysis and the proposal, so you must state your proposal precisely to pave the way for the proposal argument in full to come. Keep in mind these critical thinking outcomes: • Pursue the best information via reliable research (no Internet web sites should be used—Use the library electronic databases, such as ____, for academic research. • Engage in broad and deep inquiry • Analyze different points of view • Examine and challenge your own underlying assumptions as you undergo this exciting journey in scholarship. Please also reflect on these questions as you progress through your research and project work: About yourself: • What assumptions (beliefs) did you have about this topic coming into the project? • Have some of those assumptions been challenged? Have some been validated? • What questions do you still have about your issue? • What questions have you been able to answer through your research? About your audience: • What questions might your audience have about your topic? What points of view do they represent? • What information do you want to provide to help answer those questions? • How can you address a diverse audience so that its members will be moved to see your own point of view as significant and worth consideration? • How has pursuing the best information in a fair and honest, ethical, and logical manner allowed you to show respect for your audience as well as yourself as a thinker? Documentation Style: MLA format for paper format, in-text citations, works cited page, and annotated bibliography format. Paper Length: 6-8 double-spaced pages. Annotated Bibliography: At least 4 sources, formatted in MLA style. List of Sources Page: At least 5-8 sources used; formatted in MLA style. Warning: Plagiarism is punishable with an “F,” so be sure to document your research carefully. Causal Analysis Topics Choose one: • Causes of bullying • Causes of gun violence in schools • Causes of obesity in children • Causes of lying / Reasons why people lie • Causes of the fear of darkness Write in the 3rd-person point of view (using pronouns such as he, she, they, etc.). Do not write in the 1st- person (I, me, etc.) or 2nd-person (you, your) point of view.

CAUSAL ANALYSIS GUIDELINES: According to John J. Ruskiewicz and Jay T. Dolmage, “We all analyze and explain things daily. Someone asks, ‘Why?’ We reply, ‘Because . . .’ and then offer reasons and rationales” (138). This type of thinking is at the core of the causal analysis. You will write a causal analysis which explores, through carefully examined research and logical analysis, certain causes or factors which contribute to an issue or problematic situation, based on the topic you choose to write on. Your causal analysis should explore more than one type of cause, such as necessary causes, sufficient causes, precipitating causes, proximate causes, remote causes, reciprocal causes, contributing factors, and chains of causes, as outlined in our course text in the chapter devoted to Causal Analyses. Your project should also reflect significant critical thinking skills. In addition to the actual causal analysis essay, you will be also create an annotated bibliography. These process elements will help you organize and focus your ideas and research in a beneficial way. The following is an organizational structure that outlines the chronology and content of your Causal Analysis: I. Introduction: In one (or at the most two) paragraph(s) introduce your topic. Give a brief overview of your topic and thesis in a few sentences. your evaluative claim and your causal claim. It should be specific, logical, and clear. II. History/Background to Current Situation: This section should take as much space as needed—a few to several paragraphs. Discuss the significant and relevant history of your topic up to the current situation and how it came to be. Use research as needed to give precise and accurate background for context in making your later causal argument. Comment on your research as well, so that you don’t lose your voice. As you explore other points of view, your own point of view will evolve in significant ways. III. Evaluative Claim: Once you have given a brief history/background of the current situation, evaluate the situation, the topic, as it is at present. Again, use research as appropriate to support your judgments. While this section of your essay could run anywhere from one to three paragraphs, typically one paragraph is the norm, as you are basically passing judgment on the situation, arguing evaluatively. This is an argument of pathos and logos, predominantly. IV. Causal Argument: This is the longest portion of your essay, the “meat,” the heart of your work. Once you have detailed the history/background to current situation and evaluated the current situation, you are ready to present your causal analysis. Demonstrate a link between the current situation and the causes for its negative condition. Of course, you will use current significant and relevant research to support your causal claim, and you will want to find the most dominant and pervasive logical causes, utilizing research, for the current situation as possible. These will connect forward as well to your proposal. Remember to use specific supporting detail/examples, and to analyze all of your research causally, thoroughly, and with clarity. NOTE: SECTIONS THREE AND FOUR ABOVE ARE INTERCHANGEABLE. IN OTHER WORDS, IF YOU FEEL YOU CAN PRESENT A BETTER ARGUMENT BY SHOWING CAUSES FIRST AND THEN EVALUATING THE CURRENT SITUATION, THAT CAN WORK JUST AS WELL AS THE ORDER OUTLINED ABOVE. I WILL LEAVE IT UP TO YOU AS THE WRITER TO ESTABLISH WHICH ORDER WORKS MOST EFFECTIVELY. V. Counterargument/Conditions of Rebuttal and Rebuttal: There will be those who disagree with you so you will want to acknowledge their points of view. What are their assumptions about this topic? What questions do they raise for consideration? Acknowledging other points of view gives your essay credibility and shows that you have been fair and broad in your inquiry and presentation. (You will need at least one credible source to represent at least one counterargument.) Then explain how you have considered this counterargument, but still find your own analysis to be more logical and accurate; this is your rebuttal. VI. Conclusion: Summarize the meaningful conclusions you have drawn clearly and precisely, remembering to resummarize your thesis. Give your specific proposal here as well. This will become your transition paragraph between the causal analysis and the proposal, so you must state your proposal precisely to pave the way for the proposal argument in full to come. Keep in mind these critical thinking outcomes: • Pursue the best information via reliable research (no Internet web sites should be used—Use the library electronic databases, such as ____, for academic research. • Engage in broad and deep inquiry • Analyze different points of view • Examine and challenge your own underlying assumptions as you undergo this exciting journey in scholarship. Please also reflect on these questions as you progress through your research and project work: About yourself: • What assumptions (beliefs) did you have about this topic coming into the project? • Have some of those assumptions been challenged? Have some been validated? • What questions do you still have about your issue? • What questions have you been able to answer through your research? About your audience: • What questions might your audience have about your topic? What points of view do they represent? • What information do you want to provide to help answer those questions? • How can you address a diverse audience so that its members will be moved to see your own point of view as significant and worth consideration? • How has pursuing the best information in a fair and honest, ethical, and logical manner allowed you to show respect for your audience as well as yourself as a thinker? Documentation Style: MLA format for paper format, in-text citations, works cited page, and annotated bibliography format. Paper Length: 6-8 double-spaced pages. Annotated Bibliography: At least 4 sources, formatted in MLA style. List of Sources Page: At least 5-8 sources used; formatted in MLA style. Warning: Plagiarism is punishable with an “F,” so be sure to document your research carefully. Causal Analysis Topics Choose one: • Causes of bullying • Causes of gun violence in schools • Causes of obesity in children • Causes of lying / Reasons why people lie • Causes of the fear of darkness Write in the 3rd-person point of view (using pronouns such as he, she, they, etc.). Do not write in the 1st- person (I, me, etc.) or 2nd-person (you, your) point of view.

No expert has answered this question yet. You can browse … Read More...
Chapter 4 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, February 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Advice for the Quarterback A quarterback is set up to throw the football to a receiver who is running with a constant velocity directly away from the quarterback and is now a distance away from the quarterback. The quarterback figures that the ball must be thrown at an angle to the horizontal and he estimates that the receiver must catch the ball a time interval after it is thrown to avoid having opposition players prevent the receiver from making the catch. In the following you may assume that the ball is thrown and caught at the same height above the level playing field. Assume that the y coordinate of the ball at the instant it is thrown or caught is and that the horizontal position of the quaterback is . Use for the magnitude of the acceleration due to gravity, and use the pictured inertial coordinate system when solving the problem. Part A Find , the vertical component of the velocity of the ball when the quarterback releases it. Express in terms of and . Hint 1. Equation of motion in y direction What is the expression for , the height of the ball as a function of time? Answer in terms of , , and . v r D  tc y = 0 x = 0 g v0y v0y tc g y(t) t g v0y ANSWER: Incorrect; Try Again Hint 2. Height at which the ball is caught, Remember that after time the ball was caught at the same height as it had been released. That is, . ANSWER: Answer Requested Part B Find , the initial horizontal component of velocity of the ball. Express your answer for in terms of , , and . Hint 1. Receiver’s position Find , the receiver’s position before he catches the ball. Answer in terms of , , and . ANSWER: Football’s position y(t) = v0yt− g 1 2 t2 y(tc) tc y(tc) = y0 = 0 v0y = gtc 2 v0x v0x D tc vr xr D vr tc xr = D + vrtc Typesetting math: 100% Find , the horizontal distance that the ball travels before reaching the receiver. Answer in terms of and . ANSWER: ANSWER: Answer Requested Part C Find the speed with which the quarterback must throw the ball. Answer in terms of , , , and . Hint 1. How to approach the problem Remember that velocity is a vector; from solving Parts A and B you have the two components, from which you can find the magnitude of this vector. ANSWER: Answer Requested Part D xc v0x tc xc = v0xtc v0x = + D tc vr v0 D tc vr g v0 = ( + ) + D tc vr 2 ( ) gtc 2 2 −−−−−−−−−−−−−−−−−−−  Typesetting math: 100% Assuming that the quarterback throws the ball with speed , find the angle above the horizontal at which he should throw it. Your solution should contain an inverse trig function (entered as asin, acos, or atan). Give your answer in terms of already known quantities, , , and . Hint 1. Find angle from and Think of velocity as a vector with Cartesian coordinates and . Find the angle that this vector would make with the x axis using the results of Parts A and B. ANSWER: Answer Requested Direction of Velocity at Various Times in Flight for Projectile Motion Conceptual Question For each of the motions described below, determine the algebraic sign (positive, negative, or zero) of the x component and y component of velocity of the object at the time specified. For all of the motions, the positive x axis points to the right and the positive y axis points upward. Alex, a mountaineer, must leap across a wide crevasse. The other side of the crevasse is below the point from which he leaps, as shown in the figure. Alex leaps horizontally and successfully makes the jump. v0  v0x v0y v0  v0x v0y v0xx^ v0yy^   = atan( ) v0y v0x Typesetting math: 100% Part A Determine the algebraic sign of Alex’s x velocity and y velocity at the instant he leaves the ground at the beginning of the jump. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Typesetting math: 100% Hint 1. Algebraic sign of velocity The algebraic sign of the velocity is determined solely by comparing the direction in which the object is moving with the direction that is defined to be positive. In this example, to the right is defined to be the positive x direction and upward the positive y direction. Therefore, any object moving to the right, whether speeding up, slowing down, or even simultaneously moving upward or downward, has a positive x velocity. Similarly, if the object is moving downward, regardless of any other aspect of its motion, its y velocity is negative. Hint 2. Sketch Alex’s initial velocity On the diagram below, sketch the vector representing Alex’s velocity the instant after he leaves the ground at the beginning of the jump. ANSWER: ANSWER: Typesetting math: 100% Answer Requested Part B Determine the algebraic signs of Alex’s x velocity and y velocity the instant before he lands at the end of the jump. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Typesetting math: 100% Hint 1. Sketch Alex’s final velocity On the diagram below, sketch the vector representing Alex’s velocity the instant before he safely lands on the other side of the crevasse. ANSWER: Answer Requested ANSWER: Answer Requested Typesetting math: 100% At the buzzer, a basketball player shoots a desperation shot. The ball goes in! Part C Determine the algebraic signs of the ball’s x velocity and y velocity the instant after it leaves the player’s hands. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Hint 1. Sketch the basketball’s initial velocity On the diagram below, sketch the vector representing the velocity of the basketball the instant after it leaves the player’s hands. ANSWER: Typesetting math: 100% ANSWER: Correct Part D Determine the algebraic signs of the ball’s x velocity and y velocity at the ball’s maximum height. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Hint 1. Sketch the basketball’s velocity at maximum height Typesetting math: 100% On the diagram below, sketch the vector representing the velocity of the basketball the instant it reaches its maximum height. ANSWER: ANSWER: Answer Requested PSS 4.1 Projectile Motion Problems Learning Goal: Typesetting math: 100% To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 9.00 and launch angle 30.0 (above the horizontal) travels a horizontal distance of = 17.0 before hitting the ground. From what height was the rock thrown? Use the value = 9.810 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Make simplifying assumptions, such as treating the object as a particle. Is it reasonable to ignore air resistance? VISUALIZE: Use a pictorial representation. Establish a coordinate system with the x axis horizontal and the y axis vertical. Show important points in the motion on a sketch. Define symbols, and identify what you are trying to find. SOLVE: The acceleration is known: and . Thus, the problem becomes one of two-dimensional kinematics. The kinematic equations are , . is the same for the horizontal and vertical components of the motion. Find from one component, and then use that value for the other component. ASSESS: Check that your result has the correct units, is reasonable, and answers the question. Model Start by making simplifying assumptions: Model the rock as a particle in free fall. You can ignore air resistance because the rock is a relatively heavy object moving relatively slowly. Visualize Part A Which diagram represents an accurate sketch of the rock’s trajectory? Hint 1. The launch angle In a projectile’s motion, the angle of the initial velocity above the horizontal is called the launch angle. ANSWER: m/s  d m g m/s2 ax = 0 ay = −g xf = xi +vixt, yf = yi +viyt− g(t 1 2 )2 vfx = vix = constant, and vfy = viy − gt t t v i Typesetting math: 100% Typesetting math: 100% Correct Part B As stated in the strategy, choose a coordinate system where the x axis is horizontal and the y axis is vertical. Note that in the strategy, the y component of the projectile’s acceleration, , is taken to be negative. This implies that the positive y axis is upward. Use the same convention for your y axis, and take the positive x axis to be to the right. Where you choose your origin doesn’t change the answer to the question, but choosing an origin can make a problem easier to solve (even if only a bit). Usually it is nice if the majority of the quantities you are given and the quantity you are trying to solve for take positive values relative to your chosen origin. Given this goal, what location for the origin of the coordinate system would make this problem easiest? ANSWER: ay At ground level below the point where the rock is launched At the point where the rock strikes the ground At the peak of the trajectory At the point where the rock is released At ground level below the peak of the trajectory Typesetting math: 100% Correct It’s best to place the origin of the coordinate system at ground level below the launching point because in this way all the points of interest (the launching point and the landing point) will have positive coordinates. (Based on your experience, you know that it’s generally easier to work with positive coordinates.) Keep in mind, however, that this is an arbitrary choice. The correct solution of the problem will not depend on the location of the origin of your coordinate system. Now, define symbols representing initial and final position, velocity, and time. Your target variable is , the initial y coordinate of the rock. Your pictorial representation should be complete now, and similar to the picture below: Solve Part C Find the height from which the rock was launched. Express your answer in meters to three significant figures. yi yi Typesetting math: 100% Hint 1. How to approach the problem The time needed to move horizontally to the final position = 17.0 is the same time needed for the rock to rise from the initial position to the peak of its trajectory and then fall to the ground. Use the information you have about motion in the horizontal direction to solve for . Knowing this time will allow you to use the equations of motion for the vertical direction to solve for . Hint 2. Find the time spent in the air How long ( ) is the rock in the air? Express your answer in seconds to three significant figures. Hint 1. Determine which equation to use Which of the equations given in the strategy and shown below is the most appropriate to calculate the time the rock spent in the air? ANSWER: Hint 2. Find the x component of the initial velocity What is the x component of the rock’s initial velocity? Express your answer in meters per second to three significant figures. ANSWER: ANSWER: t xf = d m yi t yi t t xf = xi + vixt yf = yi + viyt− g(t 1 2 )2 vfy = viy − gt vix = 7.79 m/s Typesetting math: 100% Hint 3. Find the y component of the initial velocity What is the y component of the rock’s initial velocity? Express your answer in meters per second to three significant figures. ANSWER: ANSWER: Answer Requested Assess Part D A second rock is thrown straight upward with a speed 4.500 . If this rock takes 2.181 to fall to the ground, from what height was it released? Express your answer in meters to three significant figures. Hint 1. Identify the known variables What are the values of , , , and for the second rock? Take the positive y axis to be upward and the origin to be located on the ground where the rock lands. Express your answers to four significant figures in the units shown to the right, separated by commas. ANSWER: t = 2.18 s viy = 4.50 m/s yi = 13.5 m m/s s H yf viy t a Typesetting math: 100% Answer Requested Hint 2. Determine which equation to use to find the height Which equation should you use to find ? Keep in mind that if the positive y axis is upward and the origin is located on the ground, . ANSWER: ANSWER: Answer Requested Projectile motion is made up of two independent motions: uniform motion at constant velocity in the horizontal direction and free-fall motion in the vertical direction. Because both rocks were thrown with the same initial vertical velocity, 4.500 , and fell the same vertical distance of 13.5 , they were in the air for the same amount of time. This result was expected and helps to confirm that you did the calculation in Part C correctly. ± Arrow Hits Apple An arrow is shot at an angle of above the horizontal. The arrow hits a tree a horizontal distance away, at the same height above the ground as it was shot. Use for the magnitude of the acceleration due to gravity. Part A , , , = 0,4.500,2.181,-yf viy t a 9.810 m, m/s, s, m/s2 H yi = H yf = yi + viyt− g(t 1 2 )2 vfy = viy − gt = − 2g( − ) v2f y v2i y yf yi H = 13.5 m viy = m/s m  = 45 D = 220 m g = 9.8 m/s2 Typesetting math: 100% Find , the time that the arrow spends in the air. Answer numerically in seconds, to two significant figures. Hint 1. Find the initial upward component of velocity in terms of D. Introduce the (unknown) variables and for the initial components of velocity. Then use kinematics to relate them and solve for . What is the vertical component of the initial velocity? Express your answer symbolically in terms of and . Hint 1. Find Find the horizontal component of the initial velocity. Express your answer symbolically in terms of and given symbolic quantities. ANSWER: Hint 2. Find What is the vertical component of the initial velocity? Express your answer symbolically in terms of . ANSWER: ANSWER: ta vy0 vx0 ta vy0 ta D vx0 vx0 ta vx0 = D ta vy0 vy0 vx0 vy0 = vx0 vy0 = D ta Typesetting math: 100% Hint 2. Find the time of flight in terms of the initial vertical component of velocity. From the change in the vertical component of velocity, you should be able to find in terms of and . Give your answer in terms of and . Hint 1. Find When applied to the y-component of velocity, in this problem the formula for with constant acceleration is What is , the vertical component of velocity when the arrow hits the tree? Answer symbolically in terms of only. ANSWER: ANSWER: Hint 3. Put the algebra together to find symbolically. If you have an expression for the initial vertical velocity component in terms in terms of and , and another in terms of and , you should be able to eliminate this initial component to find an expression for Express your answer symbolically in terms of given variables. ANSWER: ta vy0 g vy0 g vy(ta) v(t) −g vy(t) = vy0 − g t vy(ta ) vy0 vy(ta) = −vy0 ta = 2vy0 g ta D ta g ta ta2 t2 = a 2D g Typesetting math: 100% ANSWER: Answer Requested Suppose someone drops an apple from a vertical distance of 6.0 meters, directly above the point where the arrow hits the tree. Part B How long after the arrow was shot should the apple be dropped, in order for the arrow to pierce the apple as the arrow hits the tree? Express your answer numerically in seconds, to two significant figures. Hint 1. When should the apple be dropped The apple should be dropped at the time equal to the total time it takes the arrow to reach the tree minus the time it takes the apple to fall 6.0 meters. Hint 2. Find the time it takes for the apple to fall 6.0 meters How long does it take an apple to fall 6.0 meters? Express your answer numerically in seconds, to two significant figures. ANSWER: Answer Requested ANSWER: ta = 6.7 s tf = 1.1 s td = 5.6 s Typesetting math: 100% Answer Requested Video Tutor: Ball Fired Upward from Accelerating Cart First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the questions at right. You can watch the video again at any point. Part A Consider the video you just watched. Suppose we replace the original launcher with one that fires the ball upward at twice the speed. We make no other changes. How far behind the cart will the ball land, compared to the distance in the original experiment? Hint 1. Determine how long the ball is in the air How will doubling the initial upward speed of the ball change the time the ball spends in the air? A kinematic equation may be helpful here. The time in the air will ANSWER: be cut in half. stay the same. double. quadruple. Typesetting math: 100% Hint 2. Determine the appropriate kinematic expression Which of the following kinematic equations correctly describes the horizontal distance between the ball and the cart at the moment the ball lands? The cart’s initial horizontal velocity is , its horizontal acceleration is , and is the time elapsed between launch and impact. ANSWER: ANSWER: Correct The ball will spend twice as much time in the air ( , where is the ball’s initial upward velocity), so it will land four times farther behind the cart: (where is the cart’s horizontal acceleration). Video Tutor: Ball Fired Upward from Moving Cart First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the questions at right. You can watch the video again at any point. d v0x ax t d = v0x t d = 1 2 axv0x t2 d = v0x t+ 1 2 axt2 d = 1 2 axt2 the same distance twice as far half as far four times as far by a factor not listed above t = 2v0y/g v0y d = 1 2 axt2 ax Typesetting math: 100% Part A The crew of a cargo plane wishes to drop a crate of supplies on a target below. To hit the target, when should the crew drop the crate? Ignore air resistance. Hint 1. How to approach the problem While the crate is on the plane, it shares the plane’s velocity. What is the crate’s velocity immediately after it is released? Hint 2. What affects the motion of the crate? Gravity will accelerate the crate downward. What, if anything, affects the crate’s horizontal motion? (Keep in mind that we are told to ignore air resistance, even though that’s not very realistic in this situation.) ANSWER: Correct At the moment it is released, the crate shares the plane’s horizontal velocity. In the absence of air resistance, the crate would remain directly below the plane as it fell. Score Summary: Your score on this assignment is 0%. Before the plane is directly over the target After the plane has flown over the target When the plane is directly over the target Typesetting math: 100% You received 0 out of a possible total of 0 points. Typesetting math: 100%

Chapter 4 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, February 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Advice for the Quarterback A quarterback is set up to throw the football to a receiver who is running with a constant velocity directly away from the quarterback and is now a distance away from the quarterback. The quarterback figures that the ball must be thrown at an angle to the horizontal and he estimates that the receiver must catch the ball a time interval after it is thrown to avoid having opposition players prevent the receiver from making the catch. In the following you may assume that the ball is thrown and caught at the same height above the level playing field. Assume that the y coordinate of the ball at the instant it is thrown or caught is and that the horizontal position of the quaterback is . Use for the magnitude of the acceleration due to gravity, and use the pictured inertial coordinate system when solving the problem. Part A Find , the vertical component of the velocity of the ball when the quarterback releases it. Express in terms of and . Hint 1. Equation of motion in y direction What is the expression for , the height of the ball as a function of time? Answer in terms of , , and . v r D  tc y = 0 x = 0 g v0y v0y tc g y(t) t g v0y ANSWER: Incorrect; Try Again Hint 2. Height at which the ball is caught, Remember that after time the ball was caught at the same height as it had been released. That is, . ANSWER: Answer Requested Part B Find , the initial horizontal component of velocity of the ball. Express your answer for in terms of , , and . Hint 1. Receiver’s position Find , the receiver’s position before he catches the ball. Answer in terms of , , and . ANSWER: Football’s position y(t) = v0yt− g 1 2 t2 y(tc) tc y(tc) = y0 = 0 v0y = gtc 2 v0x v0x D tc vr xr D vr tc xr = D + vrtc Typesetting math: 100% Find , the horizontal distance that the ball travels before reaching the receiver. Answer in terms of and . ANSWER: ANSWER: Answer Requested Part C Find the speed with which the quarterback must throw the ball. Answer in terms of , , , and . Hint 1. How to approach the problem Remember that velocity is a vector; from solving Parts A and B you have the two components, from which you can find the magnitude of this vector. ANSWER: Answer Requested Part D xc v0x tc xc = v0xtc v0x = + D tc vr v0 D tc vr g v0 = ( + ) + D tc vr 2 ( ) gtc 2 2 −−−−−−−−−−−−−−−−−−−  Typesetting math: 100% Assuming that the quarterback throws the ball with speed , find the angle above the horizontal at which he should throw it. Your solution should contain an inverse trig function (entered as asin, acos, or atan). Give your answer in terms of already known quantities, , , and . Hint 1. Find angle from and Think of velocity as a vector with Cartesian coordinates and . Find the angle that this vector would make with the x axis using the results of Parts A and B. ANSWER: Answer Requested Direction of Velocity at Various Times in Flight for Projectile Motion Conceptual Question For each of the motions described below, determine the algebraic sign (positive, negative, or zero) of the x component and y component of velocity of the object at the time specified. For all of the motions, the positive x axis points to the right and the positive y axis points upward. Alex, a mountaineer, must leap across a wide crevasse. The other side of the crevasse is below the point from which he leaps, as shown in the figure. Alex leaps horizontally and successfully makes the jump. v0  v0x v0y v0  v0x v0y v0xx^ v0yy^   = atan( ) v0y v0x Typesetting math: 100% Part A Determine the algebraic sign of Alex’s x velocity and y velocity at the instant he leaves the ground at the beginning of the jump. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Typesetting math: 100% Hint 1. Algebraic sign of velocity The algebraic sign of the velocity is determined solely by comparing the direction in which the object is moving with the direction that is defined to be positive. In this example, to the right is defined to be the positive x direction and upward the positive y direction. Therefore, any object moving to the right, whether speeding up, slowing down, or even simultaneously moving upward or downward, has a positive x velocity. Similarly, if the object is moving downward, regardless of any other aspect of its motion, its y velocity is negative. Hint 2. Sketch Alex’s initial velocity On the diagram below, sketch the vector representing Alex’s velocity the instant after he leaves the ground at the beginning of the jump. ANSWER: ANSWER: Typesetting math: 100% Answer Requested Part B Determine the algebraic signs of Alex’s x velocity and y velocity the instant before he lands at the end of the jump. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Typesetting math: 100% Hint 1. Sketch Alex’s final velocity On the diagram below, sketch the vector representing Alex’s velocity the instant before he safely lands on the other side of the crevasse. ANSWER: Answer Requested ANSWER: Answer Requested Typesetting math: 100% At the buzzer, a basketball player shoots a desperation shot. The ball goes in! Part C Determine the algebraic signs of the ball’s x velocity and y velocity the instant after it leaves the player’s hands. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Hint 1. Sketch the basketball’s initial velocity On the diagram below, sketch the vector representing the velocity of the basketball the instant after it leaves the player’s hands. ANSWER: Typesetting math: 100% ANSWER: Correct Part D Determine the algebraic signs of the ball’s x velocity and y velocity at the ball’s maximum height. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Hint 1. Sketch the basketball’s velocity at maximum height Typesetting math: 100% On the diagram below, sketch the vector representing the velocity of the basketball the instant it reaches its maximum height. ANSWER: ANSWER: Answer Requested PSS 4.1 Projectile Motion Problems Learning Goal: Typesetting math: 100% To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 9.00 and launch angle 30.0 (above the horizontal) travels a horizontal distance of = 17.0 before hitting the ground. From what height was the rock thrown? Use the value = 9.810 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Make simplifying assumptions, such as treating the object as a particle. Is it reasonable to ignore air resistance? VISUALIZE: Use a pictorial representation. Establish a coordinate system with the x axis horizontal and the y axis vertical. Show important points in the motion on a sketch. Define symbols, and identify what you are trying to find. SOLVE: The acceleration is known: and . Thus, the problem becomes one of two-dimensional kinematics. The kinematic equations are , . is the same for the horizontal and vertical components of the motion. Find from one component, and then use that value for the other component. ASSESS: Check that your result has the correct units, is reasonable, and answers the question. Model Start by making simplifying assumptions: Model the rock as a particle in free fall. You can ignore air resistance because the rock is a relatively heavy object moving relatively slowly. Visualize Part A Which diagram represents an accurate sketch of the rock’s trajectory? Hint 1. The launch angle In a projectile’s motion, the angle of the initial velocity above the horizontal is called the launch angle. ANSWER: m/s  d m g m/s2 ax = 0 ay = −g xf = xi +vixt, yf = yi +viyt− g(t 1 2 )2 vfx = vix = constant, and vfy = viy − gt t t v i Typesetting math: 100% Typesetting math: 100% Correct Part B As stated in the strategy, choose a coordinate system where the x axis is horizontal and the y axis is vertical. Note that in the strategy, the y component of the projectile’s acceleration, , is taken to be negative. This implies that the positive y axis is upward. Use the same convention for your y axis, and take the positive x axis to be to the right. Where you choose your origin doesn’t change the answer to the question, but choosing an origin can make a problem easier to solve (even if only a bit). Usually it is nice if the majority of the quantities you are given and the quantity you are trying to solve for take positive values relative to your chosen origin. Given this goal, what location for the origin of the coordinate system would make this problem easiest? ANSWER: ay At ground level below the point where the rock is launched At the point where the rock strikes the ground At the peak of the trajectory At the point where the rock is released At ground level below the peak of the trajectory Typesetting math: 100% Correct It’s best to place the origin of the coordinate system at ground level below the launching point because in this way all the points of interest (the launching point and the landing point) will have positive coordinates. (Based on your experience, you know that it’s generally easier to work with positive coordinates.) Keep in mind, however, that this is an arbitrary choice. The correct solution of the problem will not depend on the location of the origin of your coordinate system. Now, define symbols representing initial and final position, velocity, and time. Your target variable is , the initial y coordinate of the rock. Your pictorial representation should be complete now, and similar to the picture below: Solve Part C Find the height from which the rock was launched. Express your answer in meters to three significant figures. yi yi Typesetting math: 100% Hint 1. How to approach the problem The time needed to move horizontally to the final position = 17.0 is the same time needed for the rock to rise from the initial position to the peak of its trajectory and then fall to the ground. Use the information you have about motion in the horizontal direction to solve for . Knowing this time will allow you to use the equations of motion for the vertical direction to solve for . Hint 2. Find the time spent in the air How long ( ) is the rock in the air? Express your answer in seconds to three significant figures. Hint 1. Determine which equation to use Which of the equations given in the strategy and shown below is the most appropriate to calculate the time the rock spent in the air? ANSWER: Hint 2. Find the x component of the initial velocity What is the x component of the rock’s initial velocity? Express your answer in meters per second to three significant figures. ANSWER: ANSWER: t xf = d m yi t yi t t xf = xi + vixt yf = yi + viyt− g(t 1 2 )2 vfy = viy − gt vix = 7.79 m/s Typesetting math: 100% Hint 3. Find the y component of the initial velocity What is the y component of the rock’s initial velocity? Express your answer in meters per second to three significant figures. ANSWER: ANSWER: Answer Requested Assess Part D A second rock is thrown straight upward with a speed 4.500 . If this rock takes 2.181 to fall to the ground, from what height was it released? Express your answer in meters to three significant figures. Hint 1. Identify the known variables What are the values of , , , and for the second rock? Take the positive y axis to be upward and the origin to be located on the ground where the rock lands. Express your answers to four significant figures in the units shown to the right, separated by commas. ANSWER: t = 2.18 s viy = 4.50 m/s yi = 13.5 m m/s s H yf viy t a Typesetting math: 100% Answer Requested Hint 2. Determine which equation to use to find the height Which equation should you use to find ? Keep in mind that if the positive y axis is upward and the origin is located on the ground, . ANSWER: ANSWER: Answer Requested Projectile motion is made up of two independent motions: uniform motion at constant velocity in the horizontal direction and free-fall motion in the vertical direction. Because both rocks were thrown with the same initial vertical velocity, 4.500 , and fell the same vertical distance of 13.5 , they were in the air for the same amount of time. This result was expected and helps to confirm that you did the calculation in Part C correctly. ± Arrow Hits Apple An arrow is shot at an angle of above the horizontal. The arrow hits a tree a horizontal distance away, at the same height above the ground as it was shot. Use for the magnitude of the acceleration due to gravity. Part A , , , = 0,4.500,2.181,-yf viy t a 9.810 m, m/s, s, m/s2 H yi = H yf = yi + viyt− g(t 1 2 )2 vfy = viy − gt = − 2g( − ) v2f y v2i y yf yi H = 13.5 m viy = m/s m  = 45 D = 220 m g = 9.8 m/s2 Typesetting math: 100% Find , the time that the arrow spends in the air. Answer numerically in seconds, to two significant figures. Hint 1. Find the initial upward component of velocity in terms of D. Introduce the (unknown) variables and for the initial components of velocity. Then use kinematics to relate them and solve for . What is the vertical component of the initial velocity? Express your answer symbolically in terms of and . Hint 1. Find Find the horizontal component of the initial velocity. Express your answer symbolically in terms of and given symbolic quantities. ANSWER: Hint 2. Find What is the vertical component of the initial velocity? Express your answer symbolically in terms of . ANSWER: ANSWER: ta vy0 vx0 ta vy0 ta D vx0 vx0 ta vx0 = D ta vy0 vy0 vx0 vy0 = vx0 vy0 = D ta Typesetting math: 100% Hint 2. Find the time of flight in terms of the initial vertical component of velocity. From the change in the vertical component of velocity, you should be able to find in terms of and . Give your answer in terms of and . Hint 1. Find When applied to the y-component of velocity, in this problem the formula for with constant acceleration is What is , the vertical component of velocity when the arrow hits the tree? Answer symbolically in terms of only. ANSWER: ANSWER: Hint 3. Put the algebra together to find symbolically. If you have an expression for the initial vertical velocity component in terms in terms of and , and another in terms of and , you should be able to eliminate this initial component to find an expression for Express your answer symbolically in terms of given variables. ANSWER: ta vy0 g vy0 g vy(ta) v(t) −g vy(t) = vy0 − g t vy(ta ) vy0 vy(ta) = −vy0 ta = 2vy0 g ta D ta g ta ta2 t2 = a 2D g Typesetting math: 100% ANSWER: Answer Requested Suppose someone drops an apple from a vertical distance of 6.0 meters, directly above the point where the arrow hits the tree. Part B How long after the arrow was shot should the apple be dropped, in order for the arrow to pierce the apple as the arrow hits the tree? Express your answer numerically in seconds, to two significant figures. Hint 1. When should the apple be dropped The apple should be dropped at the time equal to the total time it takes the arrow to reach the tree minus the time it takes the apple to fall 6.0 meters. Hint 2. Find the time it takes for the apple to fall 6.0 meters How long does it take an apple to fall 6.0 meters? Express your answer numerically in seconds, to two significant figures. ANSWER: Answer Requested ANSWER: ta = 6.7 s tf = 1.1 s td = 5.6 s Typesetting math: 100% Answer Requested Video Tutor: Ball Fired Upward from Accelerating Cart First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the questions at right. You can watch the video again at any point. Part A Consider the video you just watched. Suppose we replace the original launcher with one that fires the ball upward at twice the speed. We make no other changes. How far behind the cart will the ball land, compared to the distance in the original experiment? Hint 1. Determine how long the ball is in the air How will doubling the initial upward speed of the ball change the time the ball spends in the air? A kinematic equation may be helpful here. The time in the air will ANSWER: be cut in half. stay the same. double. quadruple. Typesetting math: 100% Hint 2. Determine the appropriate kinematic expression Which of the following kinematic equations correctly describes the horizontal distance between the ball and the cart at the moment the ball lands? The cart’s initial horizontal velocity is , its horizontal acceleration is , and is the time elapsed between launch and impact. ANSWER: ANSWER: Correct The ball will spend twice as much time in the air ( , where is the ball’s initial upward velocity), so it will land four times farther behind the cart: (where is the cart’s horizontal acceleration). Video Tutor: Ball Fired Upward from Moving Cart First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the questions at right. You can watch the video again at any point. d v0x ax t d = v0x t d = 1 2 axv0x t2 d = v0x t+ 1 2 axt2 d = 1 2 axt2 the same distance twice as far half as far four times as far by a factor not listed above t = 2v0y/g v0y d = 1 2 axt2 ax Typesetting math: 100% Part A The crew of a cargo plane wishes to drop a crate of supplies on a target below. To hit the target, when should the crew drop the crate? Ignore air resistance. Hint 1. How to approach the problem While the crate is on the plane, it shares the plane’s velocity. What is the crate’s velocity immediately after it is released? Hint 2. What affects the motion of the crate? Gravity will accelerate the crate downward. What, if anything, affects the crate’s horizontal motion? (Keep in mind that we are told to ignore air resistance, even though that’s not very realistic in this situation.) ANSWER: Correct At the moment it is released, the crate shares the plane’s horizontal velocity. In the absence of air resistance, the crate would remain directly below the plane as it fell. Score Summary: Your score on this assignment is 0%. Before the plane is directly over the target After the plane has flown over the target When the plane is directly over the target Typesetting math: 100% You received 0 out of a possible total of 0 points. Typesetting math: 100%

please email info@checkyourstudy.com
Initial Data Collection After implementing your intervention/innovation, you may have noted that data collection isn’t exactly a linear process. Sometimes you need to go back and get more information, and sometimes you find yourself asking additional questions (that’s ok). In Chapter 6, Fichtman Dana and Yendol-Hoppey provide four steps to data analysis: 1. providing a description of the data; 2. making sense of what you have (and don’t have); 3. interpreting your data by creating statements about how the data informs an answer to the original question; 4. implications of the data. For this assignment, please develop responses to the first two steps using the following points as your guide: ● Please describe the data you’ve collected. ○ What did you see as you inquired? What was happening? ○ What are your initial insights into the data? ● Next, please explain how you have organized your data (“chronologically, by key events, or some combination of organizing units?”). ○ Have you provided the reader with evidence that you’ve looked at your inquiry from a number of angles and have collected trustworthy data? ○ Have you provided evidence of data triangulation? ○ What further questions do you have after your initial data collection? ○ How will you collect more information to satisfy your next questions? Assignment: Initial Data Collection (Due Week 2 Sunday, 11:59 p.m.) After implementing your intervention/innovation, you may have noted that data collection isn’t exactly a linear process. Sometimes you need to go back and get more information, and sometimes you find yourself asking additional questions (that’s ok). In Chapter 6, Fichtman Dana and Yendol-Hoppey provide four steps to data analysis: 1. providing a description of the data; 2. making sense of what you have (and don’t have); 3. interpreting your data by creating statements about how the data informs an answer to the original question; 4. implications of the data. For this assignment, please develop responses to the first two steps using the following points as your guide: ● Please describe the data you’ve collected. ○ What did you see as you inquired? What was happening? ○ What are your initial insights into the data? ● Next, please explain how you have organized your data (“chronologically, by key events, or some combination of organizing units?”). ○ Have you provided the reader with evidence that you’ve looked at your inquiry from a number of angles and have collected trustworthy data? ○ Have you provided evidence of data triangulation? ○ What further questions do you have after your initial data collection? ○ How will you collect more information to satisfy your next questions? Module 2 – Data Collection, Part 2 Module 2 continues to examine the data you are collecting with respect to issues of validity, reliability, trustworthiness, and sufficiency. Please continue to collect data relevant to your inquiry and begin to think about how you will code this data into meaningful organizing principles. Be sure to continuously write memos about your process as a sort of idea journal that you can continually draw from when writing your assignments. Required Readings: Dana, N. F. & Yendol-Hoppey, D. – Revisit Chapter 6 Assignments: For assignment details refer to the “Assignments for the Course” section in this syllabus or the submission link within Blackboard. Assignment: Initial Data Collection (Due Week 2 Sunday, 11:59 p.m.)

Initial Data Collection After implementing your intervention/innovation, you may have noted that data collection isn’t exactly a linear process. Sometimes you need to go back and get more information, and sometimes you find yourself asking additional questions (that’s ok). In Chapter 6, Fichtman Dana and Yendol-Hoppey provide four steps to data analysis: 1. providing a description of the data; 2. making sense of what you have (and don’t have); 3. interpreting your data by creating statements about how the data informs an answer to the original question; 4. implications of the data. For this assignment, please develop responses to the first two steps using the following points as your guide: ● Please describe the data you’ve collected. ○ What did you see as you inquired? What was happening? ○ What are your initial insights into the data? ● Next, please explain how you have organized your data (“chronologically, by key events, or some combination of organizing units?”). ○ Have you provided the reader with evidence that you’ve looked at your inquiry from a number of angles and have collected trustworthy data? ○ Have you provided evidence of data triangulation? ○ What further questions do you have after your initial data collection? ○ How will you collect more information to satisfy your next questions? Assignment: Initial Data Collection (Due Week 2 Sunday, 11:59 p.m.) After implementing your intervention/innovation, you may have noted that data collection isn’t exactly a linear process. Sometimes you need to go back and get more information, and sometimes you find yourself asking additional questions (that’s ok). In Chapter 6, Fichtman Dana and Yendol-Hoppey provide four steps to data analysis: 1. providing a description of the data; 2. making sense of what you have (and don’t have); 3. interpreting your data by creating statements about how the data informs an answer to the original question; 4. implications of the data. For this assignment, please develop responses to the first two steps using the following points as your guide: ● Please describe the data you’ve collected. ○ What did you see as you inquired? What was happening? ○ What are your initial insights into the data? ● Next, please explain how you have organized your data (“chronologically, by key events, or some combination of organizing units?”). ○ Have you provided the reader with evidence that you’ve looked at your inquiry from a number of angles and have collected trustworthy data? ○ Have you provided evidence of data triangulation? ○ What further questions do you have after your initial data collection? ○ How will you collect more information to satisfy your next questions? Module 2 – Data Collection, Part 2 Module 2 continues to examine the data you are collecting with respect to issues of validity, reliability, trustworthiness, and sufficiency. Please continue to collect data relevant to your inquiry and begin to think about how you will code this data into meaningful organizing principles. Be sure to continuously write memos about your process as a sort of idea journal that you can continually draw from when writing your assignments. Required Readings: Dana, N. F. & Yendol-Hoppey, D. – Revisit Chapter 6 Assignments: For assignment details refer to the “Assignments for the Course” section in this syllabus or the submission link within Blackboard. Assignment: Initial Data Collection (Due Week 2 Sunday, 11:59 p.m.)

info@checkyourstudy.com Whatsapp +919911743277
In making ethical decision, mental health counselors should abide by all but which if these principles ? a) Beneficience and nonmaleficence b) Justice and fidelity c) Common sense and autonomy d) Personal gain

In making ethical decision, mental health counselors should abide by all but which if these principles ? a) Beneficience and nonmaleficence b) Justice and fidelity c) Common sense and autonomy d) Personal gain

answer d
. Pt 1. Making Observations (Introduction) Write a brief, introductory paragraph that includes general observations related to the topic. You may consider information from the news, media (tv, movies), social media, popular views, ideas from the general public, or your personal experiences. Your paragraph should specifically mention three (3) observations related to this topic and be sure to cite your sources. You should also include your thoughts on why this topic is of interest to you or relevant to society (i.e. what is the significance?). Pt 2. Apply The Content Choose five (5) terms or concepts that we have covered in this unit that are related to the chosen topic. Define each term in your own words and then write one (1) sentence that explains how it is related to the topic. The concept are: Define evolution. What was Darwin’s role in establishing the theory of evolution? What does the phrase “descent with modification” mean? How are fossils, anatomical studies, and molecular biology used to provide evidence for the theory of evolution? What is “fitness” in a biological organism? What role do mutations have in natural selection? What are the types of natural selection? How do they effect the genetic variation in a population? What is genetic drift? gene flow? How do they effect the genetic variation in a population? What forces can lead to adaptive evolution? What is the biological definition of a species? What are the three domains of living organisms? What are the six kingdoms? For each kingdom you should be able to describe the cellular structure, means of reproduction, ways of getting nutrients/food, general/adaptive features, and an example organism. How does Helicobacter pylori avoid competition? What extreme environment does a hermoacidophile occupy? What is unique about the Volvox compared to other protists? How do pitcher plants thrive in low nutrient environments? How does the puffball mushroom achieve reproductive success? What adaptations allowed plants to live on the land? What major adaptations occurred in the animal kingdom? In vertebrates? What domain, kingdom, phylum, sub phylum, and class do humans belong to? What do we share with organisms in these groups? What are the ecological levels of the biological hierarchy? What are the elements of a habitat? What are the criteria used by ecologists to measure and observe populations? What common patterns of population distribution are seen in nature? Compare the three kinds of survivorship curves? What do they show? What kind of reproductive behaviors lead to type I, II, and III survivorship curves? How does idealized population growth differ from how actual populations grow? What are factors that affect the growth of a population? How do density-dependent factors affect population growth? What are examples of density-independent factors that can affect population growth? What is a population boom? What is a population bust? Describe the boom and bust cycles often observed in nature. What kinds of competition occur in a habitat? What kinds of symbiotic relationships occur in a habitat? How do organisms avoid predation? What are the levels in a trophic structure? How can plants and animals avoid being eaten? Why is a food web a more accurate representation of the organisms in a community compared to a food chain? Why are most food chains limited to only three or four trophic levels.What are some common threats to biodiversity? What are common types of pollution? Explain why we must be concerned about even small levels of polluting chemicals in the environment. What is sustainability? How can we contribute to the sustainability of life on our planet? Pt 3. Form A Claim Write a claim statement related to the chosen topic. Consider the major question that you are addressing and then develop a statement that will guide your research and writing as you develop your scientific explanation (in Pt 4). Pt 4. Construct a Scientific Explanation Write a scientific explanation that includes evidence and reasoning to support your claim. Your explanation should demonstrate your understanding of the chosen topic using discussion and content from this course as a starting point. Your explanation should include information from a minimum of three (3) sources and one (1) of these sources must be a peer-reviewed scientific article or a review of a scientific study or studies (i.e. a primary or secondary source). You should cite your sources within the body of your explanation and include a list of references at the end (any standard formatting method is acceptable).

. Pt 1. Making Observations (Introduction) Write a brief, introductory paragraph that includes general observations related to the topic. You may consider information from the news, media (tv, movies), social media, popular views, ideas from the general public, or your personal experiences. Your paragraph should specifically mention three (3) observations related to this topic and be sure to cite your sources. You should also include your thoughts on why this topic is of interest to you or relevant to society (i.e. what is the significance?). Pt 2. Apply The Content Choose five (5) terms or concepts that we have covered in this unit that are related to the chosen topic. Define each term in your own words and then write one (1) sentence that explains how it is related to the topic. The concept are: Define evolution. What was Darwin’s role in establishing the theory of evolution? What does the phrase “descent with modification” mean? How are fossils, anatomical studies, and molecular biology used to provide evidence for the theory of evolution? What is “fitness” in a biological organism? What role do mutations have in natural selection? What are the types of natural selection? How do they effect the genetic variation in a population? What is genetic drift? gene flow? How do they effect the genetic variation in a population? What forces can lead to adaptive evolution? What is the biological definition of a species? What are the three domains of living organisms? What are the six kingdoms? For each kingdom you should be able to describe the cellular structure, means of reproduction, ways of getting nutrients/food, general/adaptive features, and an example organism. How does Helicobacter pylori avoid competition? What extreme environment does a hermoacidophile occupy? What is unique about the Volvox compared to other protists? How do pitcher plants thrive in low nutrient environments? How does the puffball mushroom achieve reproductive success? What adaptations allowed plants to live on the land? What major adaptations occurred in the animal kingdom? In vertebrates? What domain, kingdom, phylum, sub phylum, and class do humans belong to? What do we share with organisms in these groups? What are the ecological levels of the biological hierarchy? What are the elements of a habitat? What are the criteria used by ecologists to measure and observe populations? What common patterns of population distribution are seen in nature? Compare the three kinds of survivorship curves? What do they show? What kind of reproductive behaviors lead to type I, II, and III survivorship curves? How does idealized population growth differ from how actual populations grow? What are factors that affect the growth of a population? How do density-dependent factors affect population growth? What are examples of density-independent factors that can affect population growth? What is a population boom? What is a population bust? Describe the boom and bust cycles often observed in nature. What kinds of competition occur in a habitat? What kinds of symbiotic relationships occur in a habitat? How do organisms avoid predation? What are the levels in a trophic structure? How can plants and animals avoid being eaten? Why is a food web a more accurate representation of the organisms in a community compared to a food chain? Why are most food chains limited to only three or four trophic levels.What are some common threats to biodiversity? What are common types of pollution? Explain why we must be concerned about even small levels of polluting chemicals in the environment. What is sustainability? How can we contribute to the sustainability of life on our planet? Pt 3. Form A Claim Write a claim statement related to the chosen topic. Consider the major question that you are addressing and then develop a statement that will guide your research and writing as you develop your scientific explanation (in Pt 4). Pt 4. Construct a Scientific Explanation Write a scientific explanation that includes evidence and reasoning to support your claim. Your explanation should demonstrate your understanding of the chosen topic using discussion and content from this course as a starting point. Your explanation should include information from a minimum of three (3) sources and one (1) of these sources must be a peer-reviewed scientific article or a review of a scientific study or studies (i.e. a primary or secondary source). You should cite your sources within the body of your explanation and include a list of references at the end (any standard formatting method is acceptable).

No expert has answered this question yet. You can browse … Read More...
Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic<br />21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic</br

Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic
21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic

Ignorant- A person is said to be ignorant if he … Read More...
CHM114: Exam #3 CHM 114 Exam #3 Practice Exam (Chapters 9.1-9.4, 9.6, 10, 11.1-11.6, 13.1-13.5) Instructor: O. Graudejus Points: 100 Print Name Sign Name Student I.D. # 1. You are responsible for the information on this page. Please read it carefully. 2. If you enter your ASU ID incorrectly on the scantron, a 3 point penalty will be assessed. 3. Code your name and 10 digit affiliate identification number on the separate scantron answer sheet. Use only a #2 pencil 4. Do all calculations on the exam pages. Do not make any unnecessary marks on the answer sheet. 5. This exam consists of 25 multiple choice questions worth 4 points each and a periodic table. Make sure you have them all. 6. Choose the best answer to each of the questions and answer it on the computer-graded answer sheet. Read all responses before making a selection. 7. Read the directions carefully for each problem. 8. Avoid even casual glances at other students’ exams. 9. Stop writing and hand in your scantron answer sheet and your test promptly when instructed. LATE EXAMS MAY HAVE POINTS DEDUCTED. 10. You will have 50 minutes to complete the exam. 11. If you leave early, please do so quietly. 12. Work the easiest problems first. 13. A periodic table is attached as the last page to this exam. 14. Answers will be posted online this afternoon. Potentially useful information: K = ºC + 273.15 PV=nRT R=8.314 J·K-1·mol-1 DE = q + w 760 torr = 1 atm = 101325 Pa = 1.013 bar Avogadro’s Number = 6.022 × 1023 particles/mole q = (Sp. Heat) × m × DT (Specific Heatwater = 4.184 J/g°C) 1 2 2 3 2 ( is a constant) KE mv KE RT R = = M RT u 3 = \ -2- CHM 114: Exam #3 1) Of the following molecules, only __________ is polar. A) CCl4 B) BCl3 C) NCl3 D) BeCl2 E) Cl2 2) The molecular geometry of the CHF3 molecule is __________, and the molecule is __________. A) trigonal pyramidal, polar B) tetrahedral, nonpolar C) seesaw, nonpolar D) tetrahedral, polar E) seesaw, polar 3) The electron-domain geometry of __________ is tetrahedral. A) 4 CBr B) 3 PH C) 2 2 CCl Br D) 4 XeF E) all of the above except 4 XeF 4) Of the following substances, only __________ has London dispersion forces as its only intermolecular force. A) H2O B) CCl4 C) HF D) CH3COOH E) PH3 5) The principal reason for the extremely low solubility of NaCl in benzene (C6H6) is the __________. A) strong solvent-solvent interactions B) hydrogen bonding in C6H6 C) strength of the covalent bond in NaCl D) weak solvation (interaction) of Na+ and Cl- by C6H6 E) increased disorder due to mixing of solute and solvent -3- CHM 114: Exam #3 6) There are __________  and __________  bonds in the H −C º C−H molecule. A) 3 and 2 B) 3 and 4 C) 4 and 3 D) 2 and 3 E) 5 and 0 7) A sample of a gas (5.0 mol) at 1.0 atm is expanded at constant temperature from 10 L to 15 L. The final pressure is __________ atm. A) 1.5 B) 7.5 C) 0.67 D) 3.3 E) 15 8) A mixture of He and Ne at a total pressure of 0.95 atm is found to contain 0.32 mol of He and 0.56 mol of Ne. The partial pressure of Ne is __________ atm. A) 1.7 B) 1.5 C) 0.60 D) 0.35 E) 1.0 9) Automobile air bags use the decomposition of sodium azide as their source of gas for rapid inflation: 3 2 2NaN (s)®2Na (s) + 3N (g) . What mass (g) of 3 NaN is required to provide 40.0 L of 2 N at 25.0 °C and 763 torr? A) 1.64 B) 1.09 C) 160 D) 71.1  10) The reaction of 50 mL of 2 Cl gas with 50 mL of 4 CH gas via the equation: 2 4 3 Cl (g) + CH (g)®HCl (g) + CH Cl (g) will produce a total of __________ mL of products if pressure and temperature are kept constant. A) 100 B) 50 C) 200 D) 150 E) 250 -4- CHM 114: Exam #3 11) The density of 2 N O at 1.53 atm and 45.2 °C is __________ g/L. A) 18.2 B) 1.76 C) 0.388 D) 9.99 E) 2.58 12) A gas at a pressure of 325 torr exerts a force of __________ N on an area of 2 5.5 m . A)1.8×103 B) 59 C) 5 2.4×10 D) 0.018 E) 2.4 13) According to kinetic-molecular theory, in which of the following gases will the root-mean-square speed of the molecules be the highest at 200 °C? A) HCl B) 2 Cl C) 2 H O D) 6 SF E) None. The molecules of all gases have the same root-mean-square speed at any given temperature. 14) A real gas will behave most like an ideal gas under conditions of __________. A) high temperature and high pressure B) high temperature and low pressure C) low temperature and high pressure D) low temperature and low pressure E) STP 15) Elemental iodine (I2) is a solid at room temperature. What is the major attractive force that exists among different I2 molecules in the solid? A) London dispersion forces B) dipole-dipole rejections C) ionic-dipole interactions D) covalent-ionic interactions E) dipole-dipole attractions -5- CHM 114: Exam #3 16) The heat of fusion of water is 6.01 kJ/mol. The heat capacity of liquid water is 75.3 Jmol-1K-1. The conversion of 50.0 g of ice at 0.00 °C to liquid water at 22.0 °C requires __________ kJ of heat. A) 3.8×102 B) 21.3 C) 17.2 D) 0.469 E) Insufficient data are given. 17) Of the following substances, __________ has the highest boiling point. A) 2 H O B) 2 CO C) 4 CH D) Kr E) SF4 18) Which statements about viscosity are true? (i) Viscosity increases as temperature decreases. (ii) Viscosity increases as molecular weight increases. (iii) Viscosity increases as intermolecular forces increase. A) (i) only B) (ii) and (iii) C) (i) and (iii) D) none E) all 19) Based on molecular mass and dipole moment of the five compounds in the table below, which should have the highest boiling point? A) 3 2 3 CH CH CH B) 3 3 CH OCH C) 3 CH Cl D) 3 CH CHO E) 3 CH CN -6- CHM 114: Exam #3 20) On the phase diagram shown above, the coordinates of point __________ correspond to the critical temperature and pressure. A) A B) B C) C D) D E) E 21) The vapor pressure of pure ethanol at 60 °C is 0.459 atm. Raoult’s Law predicts that a solution prepared by dissolving 10.0 mmol naphthalene (nonvolatile) in 90.0 mmol ethanol will have a vapor pressure of _______ atm. A) 0.498 B) 0.413 C) 0.790 D) 0.367 E) 0.0918 Of the following, a 0.1 M aqueous solution of __________ will have the highest freezing point. A) NaCl B) Al(NO3)3 C) K2CrO4 D) Na2SO4 E) sucrose (a sugar) 23) What is the freezing point (°C) of a solution prepared by dissolving 11.3 g of Ca(NO3)2 (formula weight = 164 g/mol) in 115 g of water? The molal freezing point depression constant for water is 1.86 °C/m. A) -3.34 B) -1.11 C) 3.34 D) 1.11 E) 0.00 -7- CHM 114: Exam #3 24) The phase changes B  C and D  E are not associated with temperature increases because the heat energy is used up to __________. A) break intermolecular bonds B) break intramolecular bonds C) rearrange atoms within molecules D) increase the velocity of molecules E) increase the density of the sample 25) Ammonium nitrate (NH4NO3) dissolves readily in water even though the dissolution is endothermic by 26.4 kJ/mol. The solution process is spontaneous because __________. A) the vapor pressure of the water decreases upon addition of the solute B) the ammonium and the nitrate ion both contain nitrogen C) of the decrease in enthalpy upon addition of the solute D) of the increase in enthalpy upon dissolution of this strong electrolyte E) of the increase in disorder (entropy) upon dissolution of this strong electrolyte    -8- CHM 114: Exam #3

CHM114: Exam #3 CHM 114 Exam #3 Practice Exam (Chapters 9.1-9.4, 9.6, 10, 11.1-11.6, 13.1-13.5) Instructor: O. Graudejus Points: 100 Print Name Sign Name Student I.D. # 1. You are responsible for the information on this page. Please read it carefully. 2. If you enter your ASU ID incorrectly on the scantron, a 3 point penalty will be assessed. 3. Code your name and 10 digit affiliate identification number on the separate scantron answer sheet. Use only a #2 pencil 4. Do all calculations on the exam pages. Do not make any unnecessary marks on the answer sheet. 5. This exam consists of 25 multiple choice questions worth 4 points each and a periodic table. Make sure you have them all. 6. Choose the best answer to each of the questions and answer it on the computer-graded answer sheet. Read all responses before making a selection. 7. Read the directions carefully for each problem. 8. Avoid even casual glances at other students’ exams. 9. Stop writing and hand in your scantron answer sheet and your test promptly when instructed. LATE EXAMS MAY HAVE POINTS DEDUCTED. 10. You will have 50 minutes to complete the exam. 11. If you leave early, please do so quietly. 12. Work the easiest problems first. 13. A periodic table is attached as the last page to this exam. 14. Answers will be posted online this afternoon. Potentially useful information: K = ºC + 273.15 PV=nRT R=8.314 J·K-1·mol-1 DE = q + w 760 torr = 1 atm = 101325 Pa = 1.013 bar Avogadro’s Number = 6.022 × 1023 particles/mole q = (Sp. Heat) × m × DT (Specific Heatwater = 4.184 J/g°C) 1 2 2 3 2 ( is a constant) KE mv KE RT R = = M RT u 3 = \ -2- CHM 114: Exam #3 1) Of the following molecules, only __________ is polar. A) CCl4 B) BCl3 C) NCl3 D) BeCl2 E) Cl2 2) The molecular geometry of the CHF3 molecule is __________, and the molecule is __________. A) trigonal pyramidal, polar B) tetrahedral, nonpolar C) seesaw, nonpolar D) tetrahedral, polar E) seesaw, polar 3) The electron-domain geometry of __________ is tetrahedral. A) 4 CBr B) 3 PH C) 2 2 CCl Br D) 4 XeF E) all of the above except 4 XeF 4) Of the following substances, only __________ has London dispersion forces as its only intermolecular force. A) H2O B) CCl4 C) HF D) CH3COOH E) PH3 5) The principal reason for the extremely low solubility of NaCl in benzene (C6H6) is the __________. A) strong solvent-solvent interactions B) hydrogen bonding in C6H6 C) strength of the covalent bond in NaCl D) weak solvation (interaction) of Na+ and Cl- by C6H6 E) increased disorder due to mixing of solute and solvent -3- CHM 114: Exam #3 6) There are __________  and __________  bonds in the H −C º C−H molecule. A) 3 and 2 B) 3 and 4 C) 4 and 3 D) 2 and 3 E) 5 and 0 7) A sample of a gas (5.0 mol) at 1.0 atm is expanded at constant temperature from 10 L to 15 L. The final pressure is __________ atm. A) 1.5 B) 7.5 C) 0.67 D) 3.3 E) 15 8) A mixture of He and Ne at a total pressure of 0.95 atm is found to contain 0.32 mol of He and 0.56 mol of Ne. The partial pressure of Ne is __________ atm. A) 1.7 B) 1.5 C) 0.60 D) 0.35 E) 1.0 9) Automobile air bags use the decomposition of sodium azide as their source of gas for rapid inflation: 3 2 2NaN (s)®2Na (s) + 3N (g) . What mass (g) of 3 NaN is required to provide 40.0 L of 2 N at 25.0 °C and 763 torr? A) 1.64 B) 1.09 C) 160 D) 71.1  10) The reaction of 50 mL of 2 Cl gas with 50 mL of 4 CH gas via the equation: 2 4 3 Cl (g) + CH (g)®HCl (g) + CH Cl (g) will produce a total of __________ mL of products if pressure and temperature are kept constant. A) 100 B) 50 C) 200 D) 150 E) 250 -4- CHM 114: Exam #3 11) The density of 2 N O at 1.53 atm and 45.2 °C is __________ g/L. A) 18.2 B) 1.76 C) 0.388 D) 9.99 E) 2.58 12) A gas at a pressure of 325 torr exerts a force of __________ N on an area of 2 5.5 m . A)1.8×103 B) 59 C) 5 2.4×10 D) 0.018 E) 2.4 13) According to kinetic-molecular theory, in which of the following gases will the root-mean-square speed of the molecules be the highest at 200 °C? A) HCl B) 2 Cl C) 2 H O D) 6 SF E) None. The molecules of all gases have the same root-mean-square speed at any given temperature. 14) A real gas will behave most like an ideal gas under conditions of __________. A) high temperature and high pressure B) high temperature and low pressure C) low temperature and high pressure D) low temperature and low pressure E) STP 15) Elemental iodine (I2) is a solid at room temperature. What is the major attractive force that exists among different I2 molecules in the solid? A) London dispersion forces B) dipole-dipole rejections C) ionic-dipole interactions D) covalent-ionic interactions E) dipole-dipole attractions -5- CHM 114: Exam #3 16) The heat of fusion of water is 6.01 kJ/mol. The heat capacity of liquid water is 75.3 Jmol-1K-1. The conversion of 50.0 g of ice at 0.00 °C to liquid water at 22.0 °C requires __________ kJ of heat. A) 3.8×102 B) 21.3 C) 17.2 D) 0.469 E) Insufficient data are given. 17) Of the following substances, __________ has the highest boiling point. A) 2 H O B) 2 CO C) 4 CH D) Kr E) SF4 18) Which statements about viscosity are true? (i) Viscosity increases as temperature decreases. (ii) Viscosity increases as molecular weight increases. (iii) Viscosity increases as intermolecular forces increase. A) (i) only B) (ii) and (iii) C) (i) and (iii) D) none E) all 19) Based on molecular mass and dipole moment of the five compounds in the table below, which should have the highest boiling point? A) 3 2 3 CH CH CH B) 3 3 CH OCH C) 3 CH Cl D) 3 CH CHO E) 3 CH CN -6- CHM 114: Exam #3 20) On the phase diagram shown above, the coordinates of point __________ correspond to the critical temperature and pressure. A) A B) B C) C D) D E) E 21) The vapor pressure of pure ethanol at 60 °C is 0.459 atm. Raoult’s Law predicts that a solution prepared by dissolving 10.0 mmol naphthalene (nonvolatile) in 90.0 mmol ethanol will have a vapor pressure of _______ atm. A) 0.498 B) 0.413 C) 0.790 D) 0.367 E) 0.0918 Of the following, a 0.1 M aqueous solution of __________ will have the highest freezing point. A) NaCl B) Al(NO3)3 C) K2CrO4 D) Na2SO4 E) sucrose (a sugar) 23) What is the freezing point (°C) of a solution prepared by dissolving 11.3 g of Ca(NO3)2 (formula weight = 164 g/mol) in 115 g of water? The molal freezing point depression constant for water is 1.86 °C/m. A) -3.34 B) -1.11 C) 3.34 D) 1.11 E) 0.00 -7- CHM 114: Exam #3 24) The phase changes B  C and D  E are not associated with temperature increases because the heat energy is used up to __________. A) break intermolecular bonds B) break intramolecular bonds C) rearrange atoms within molecules D) increase the velocity of molecules E) increase the density of the sample 25) Ammonium nitrate (NH4NO3) dissolves readily in water even though the dissolution is endothermic by 26.4 kJ/mol. The solution process is spontaneous because __________. A) the vapor pressure of the water decreases upon addition of the solute B) the ammonium and the nitrate ion both contain nitrogen C) of the decrease in enthalpy upon addition of the solute D) of the increase in enthalpy upon dissolution of this strong electrolyte E) of the increase in disorder (entropy) upon dissolution of this strong electrolyte    -8- CHM 114: Exam #3