4. Using your knowledge of the Stevenson’s career management model identify and briefly describe one activity that should be included in an organization’s career management program. Identify which element of the model the activity you identified fits within.

4. Using your knowledge of the Stevenson’s career management model identify and briefly describe one activity that should be included in an organization’s career management program. Identify which element of the model the activity you identified fits within.

Discipline Expertise- There is an apparent type of interdisciplinary in … Read More...
Consider a test you have taken. Did it measure what it was supposed to measure? If you had taken a different test over the same material, do you think you would have gotten the same score?

Consider a test you have taken. Did it measure what it was supposed to measure? If you had taken a different test over the same material, do you think you would have gotten the same score?

Most of the test, I have given, does not measure … Read More...
EBIO/ECHM 100 – Homework #6 2015 Due Thursday October 8, 2015 1. Flow rates – in most bio- or chemical engineering problems, you will be working with flow rates rather than a singular amount of mass, moles or volume. When working with gases, a molar flow rate (mol/time) or a volumetric flow rate (volume/time) can be used in the ideal gas law. Consider a mixed gas consisting of 60% Hydrogen, 20% Nitrogen and 20% Carbon Monoxide (CO) which has a molar flow rate of 175 lbmol/min. The temperature is 200oF and pressure is 3 atm gauge. a. Calculate the individual molar flow rates of each component (mol/min) b. Calculate the total volumetric flow rate in ft3/min c. Determine the molar density of the mixed gas (mol/ft3) d. Determine the mass flow rate of the gas (g/min) e. Determine the mass fraction of hydrogen in the gas Read Section 6.5 of your textbook and/or watch the mini-lecture on statistics. That information will help you complete problems 2-4 In previous years, students in EBIO/ECHM 100 would test their ability to brew a repeatable batch of coffee. Let’s say you tried your best to brew three identical batches of coffee – you ground your own beans and measured exactly how many grounds you added to the pot. You took three samples from each batch and measured the absorbance. Representative data for the absorbance readings is given below. Batch 1 Batch 2 Batch 3 Measurement 1 0.343 0.374 0.327 Measurement 2 0.342 0.372 0.327 Measurement 3 0.371 0.375 0.328 2. For each batch of coffee (data in a vertical column), calculate the mean and standard deviation of the absorbance measurement of the three measurements taken from each batch (batch 1 has 3 absorbance measurements of .343, 0.342 and 0.371). Show at least one hand calculation on engineering paper, but you can do the rest in Excel if you wish, using the functions for average, =average(), and standard deviation, =stdev(). For example if you put data from batch 1 in column B, cells B2, B3 and B4 you could tell Excel to compute the average of those numbers by entering the equation =average(B2,B3,B4) in a neighboring cell. An alternate to way compute the average would be to type =(B2+B3+B4)/3. While you get the same answer with both methods, the second method become more cumbersome as your number of samples goes up. 3. Now, calculate the mean and standard deviation for the combination of all nine samples. 4. Why is the standard deviation calculated in #3 greater than those calculated in #2? Discuss this question in terms of experimental factors that could lead to scatter in your data (think back to the steps of making coffee and try to come up with at least 3 factors – these can address sample to sample variations or batch to batch variations). Staple the spreadsheet to the rest of your HW if using Excel. Adjust numbers so they report correct significant figures.

EBIO/ECHM 100 – Homework #6 2015 Due Thursday October 8, 2015 1. Flow rates – in most bio- or chemical engineering problems, you will be working with flow rates rather than a singular amount of mass, moles or volume. When working with gases, a molar flow rate (mol/time) or a volumetric flow rate (volume/time) can be used in the ideal gas law. Consider a mixed gas consisting of 60% Hydrogen, 20% Nitrogen and 20% Carbon Monoxide (CO) which has a molar flow rate of 175 lbmol/min. The temperature is 200oF and pressure is 3 atm gauge. a. Calculate the individual molar flow rates of each component (mol/min) b. Calculate the total volumetric flow rate in ft3/min c. Determine the molar density of the mixed gas (mol/ft3) d. Determine the mass flow rate of the gas (g/min) e. Determine the mass fraction of hydrogen in the gas Read Section 6.5 of your textbook and/or watch the mini-lecture on statistics. That information will help you complete problems 2-4 In previous years, students in EBIO/ECHM 100 would test their ability to brew a repeatable batch of coffee. Let’s say you tried your best to brew three identical batches of coffee – you ground your own beans and measured exactly how many grounds you added to the pot. You took three samples from each batch and measured the absorbance. Representative data for the absorbance readings is given below. Batch 1 Batch 2 Batch 3 Measurement 1 0.343 0.374 0.327 Measurement 2 0.342 0.372 0.327 Measurement 3 0.371 0.375 0.328 2. For each batch of coffee (data in a vertical column), calculate the mean and standard deviation of the absorbance measurement of the three measurements taken from each batch (batch 1 has 3 absorbance measurements of .343, 0.342 and 0.371). Show at least one hand calculation on engineering paper, but you can do the rest in Excel if you wish, using the functions for average, =average(), and standard deviation, =stdev(). For example if you put data from batch 1 in column B, cells B2, B3 and B4 you could tell Excel to compute the average of those numbers by entering the equation =average(B2,B3,B4) in a neighboring cell. An alternate to way compute the average would be to type =(B2+B3+B4)/3. While you get the same answer with both methods, the second method become more cumbersome as your number of samples goes up. 3. Now, calculate the mean and standard deviation for the combination of all nine samples. 4. Why is the standard deviation calculated in #3 greater than those calculated in #2? Discuss this question in terms of experimental factors that could lead to scatter in your data (think back to the steps of making coffee and try to come up with at least 3 factors – these can address sample to sample variations or batch to batch variations). Staple the spreadsheet to the rest of your HW if using Excel. Adjust numbers so they report correct significant figures.

Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Typesetting math: 100% Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Typesetting math: 100% Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Typesetting math: 100% Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Typesetting math: 100% Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms Typesetting math: 100% What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Typesetting math: 100% Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Typesetting math: 100% Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s Typesetting math: 100% ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s Typesetting math: 100% ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 Typesetting math: 100% block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Typesetting math: 100% Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Typesetting math: 100% Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Typesetting math: 100% Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a Typesetting math: 100% period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Typesetting math: 100% Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Typesetting math: 100% Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = s t = 0 s cm cm/s Typesetting math: 100% Incorrect; Try Again Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: 0 = g cm s Typesetting math: 100% Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm 0.628 s Typesetting math: 100% The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G Typesetting math: 100% This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? N/m cm s Typesetting math: 100% ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by m = 110 g vmax = 49 cms m L T Typesetting math: 10T0% L , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. ANSWER: T = 2 Lg −−  g T/2 T &2T 2T g/6 T/6 T/&6 &6T 6T Typesetting math: 100% Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. g ( s Typesetting math: 100% ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: L = 19 cm m lmoon = 0.35 m m g 1.0 MHz N amax = 6.6 μm Typesetting math: 100% Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 81.4%. You received 117.25 out of a possible total of 144 points. vmax = 41 ms

Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Typesetting math: 100% Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Typesetting math: 100% Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Typesetting math: 100% Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Typesetting math: 100% Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms Typesetting math: 100% What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Typesetting math: 100% Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Typesetting math: 100% Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s Typesetting math: 100% ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s Typesetting math: 100% ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 Typesetting math: 100% block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Typesetting math: 100% Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Typesetting math: 100% Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Typesetting math: 100% Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a Typesetting math: 100% period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Typesetting math: 100% Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Typesetting math: 100% Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = s t = 0 s cm cm/s Typesetting math: 100% Incorrect; Try Again Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: 0 = g cm s Typesetting math: 100% Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm 0.628 s Typesetting math: 100% The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G Typesetting math: 100% This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? N/m cm s Typesetting math: 100% ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by m = 110 g vmax = 49 cms m L T Typesetting math: 10T0% L , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. ANSWER: T = 2 Lg −−  g T/2 T &2T 2T g/6 T/6 T/&6 &6T 6T Typesetting math: 100% Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. g ( s Typesetting math: 100% ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: L = 19 cm m lmoon = 0.35 m m g 1.0 MHz N amax = 6.6 μm Typesetting math: 100% Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 81.4%. You received 117.25 out of a possible total of 144 points. vmax = 41 ms

info@checkyourstudy.com
ENGR 3300: Fluid Mechanics, Fall 2015 Assignment 3 Due: Friday, Oct. 2, 2015 Topics: Chapter 3 & 4 Solutions must be neatly written and must include the following steps (if applicable) to receive full credit. 1. Given: List all known parameters in the problem. 2. Find: List what parameters the problem is asking you to find. 3. Solution: List all equations needed to solve the problem, and show all your work. Draw any necessary sketches or free body diagrams. Circle or box your final answer, and make sure to include appropriate units in your final answer. Grading: 15 total points (10 points for completeness + 5 points for one randomly chosen problem graded for correctness) 1. Water flows at a steady rate up a vertical pipe and out a nozzle into open air. The pipe diameter is 1 inch and the nozzle diameter is 0.5 inches. (a) Determine the minimum pressure that would be required at section 1 (shown in the figure below) to produce a fluid velocity of 30 ft/s at the nozzle (section 2). (b) If the pipe was inverted, determine the minimum pressure that would be required at section 1 to maintain the 30 ft/s velocity at the nozzle. 2. Water flows from a large tank through a small pipe with a diameter of 5 cm. A mercury manometer is placed along the pipe. Assuming the flow is frictionless, (a) estimate the velocity of the water in the pipe and (b) determine the rate of discharge (i.e. volumetric flow rate) from the tank. 3. An engineer is designing a suit for a race car driver and wants to supply cooling air to the suit from an air inlet on the body of the race car. The air speed at the inlet location must be 65 mph when the race car is traveling at 230 mph. Under these conditions, what would be the static pressure at the proposed inlet location? 4. Air flows downward toward a horizontal flat plate. The velocity field is given by ? = (??! − ??!)(2 + cos ??) where a = 5 s-1, ω = 2π s-1, and x and y (measured in meters) are horizontal and vertically upward, respectively, and t is in seconds. (a) Obtain an algebraic equation for a streamline at t = 0. (b) Plot the streamline that passes through point (x,y) = (3,3) at this instant.

ENGR 3300: Fluid Mechanics, Fall 2015 Assignment 3 Due: Friday, Oct. 2, 2015 Topics: Chapter 3 & 4 Solutions must be neatly written and must include the following steps (if applicable) to receive full credit. 1. Given: List all known parameters in the problem. 2. Find: List what parameters the problem is asking you to find. 3. Solution: List all equations needed to solve the problem, and show all your work. Draw any necessary sketches or free body diagrams. Circle or box your final answer, and make sure to include appropriate units in your final answer. Grading: 15 total points (10 points for completeness + 5 points for one randomly chosen problem graded for correctness) 1. Water flows at a steady rate up a vertical pipe and out a nozzle into open air. The pipe diameter is 1 inch and the nozzle diameter is 0.5 inches. (a) Determine the minimum pressure that would be required at section 1 (shown in the figure below) to produce a fluid velocity of 30 ft/s at the nozzle (section 2). (b) If the pipe was inverted, determine the minimum pressure that would be required at section 1 to maintain the 30 ft/s velocity at the nozzle. 2. Water flows from a large tank through a small pipe with a diameter of 5 cm. A mercury manometer is placed along the pipe. Assuming the flow is frictionless, (a) estimate the velocity of the water in the pipe and (b) determine the rate of discharge (i.e. volumetric flow rate) from the tank. 3. An engineer is designing a suit for a race car driver and wants to supply cooling air to the suit from an air inlet on the body of the race car. The air speed at the inlet location must be 65 mph when the race car is traveling at 230 mph. Under these conditions, what would be the static pressure at the proposed inlet location? 4. Air flows downward toward a horizontal flat plate. The velocity field is given by ? = (??! − ??!)(2 + cos ??) where a = 5 s-1, ω = 2π s-1, and x and y (measured in meters) are horizontal and vertically upward, respectively, and t is in seconds. (a) Obtain an algebraic equation for a streamline at t = 0. (b) Plot the streamline that passes through point (x,y) = (3,3) at this instant.

3. Career management is the lifelong process of investing resources to achieve your career goals. As such, one needs to be responsible for his or her career in the present and in the future. What’s the major issue facing this industry today? How will you handle it from a career development and career management perspective?

3. Career management is the lifelong process of investing resources to achieve your career goals. As such, one needs to be responsible for his or her career in the present and in the future. What’s the major issue facing this industry today? How will you handle it from a career development and career management perspective?

Career Management makes certain others be acquainted with about you … Read More...
Lab #02 Relationship between distance & illumination As engineers, we deal with the effects of light on many projects. The first key to working with light is understanding how the light waves propagate. Once we understand light waves, we will test a manufacturers claim that lower wattage fluorescent bulbs output the same quantity of light as incandescent bulbs. This experiment is designed for you to work as a class to collect data regarding a given light source and then, working within your individual group, attempt to determine the re-lationship(s) between the measured parameter (lux) and the distance (meter) from the source. Measure and record data, in the manner described below, as a class. Work on your so-lutions as a group of 2-3. Your first task is to develop a mathematical formula, or a simple relationship that predicts the amount of lux that can be expected at a given distance from the light source. Purpose: The purpose of this assignment is to accomplish the following goals: • Gain experience collecting data in a controlled, systematic fashion. • Practice working as a group to infer relationships between variables from your collected data. • Use the data you collect to draw conclusions. In this case, to evaluate the hypothesis that the fluorescent and incandescent bulb output the same quantity of light. • Become accustomed to working in teams (note, teamwork often requires individual work as well). • Learn to balance workload across your team. (Individuals will be responsible for certain tasks, and ensure they are performed on time and to the desired quality level. • Demonstrate to me what your group’s attention to detail is, as well as your ability to construct a written explanation of work. Problem: What effect does distance have on the lux, intensity, emitted from a light source and are the 5 light bulbs producing the same intensity light? Use the rough protocol listed below and the data sheet provided to collect your data, then complete the assignment outlined below. 1. Set up a light source on one of the lab tables. 2. Using the illumination meter, measure the lux at 0.5 meter increments from the source back to 3 meters from the source. • Be sure the keep the meter perpendicular to the horizontal line from the source at all times! 3. Record your measurements on your data sheets. 4. Measurements should be taken in a random order 5. Repeat the experiment 3 times, using different people and a different order of collection and different colors. Assignment Requirements: 1. Create the appropriate graph(s) to express the data you have collected. Your report must, at the minimum, contain the following: a. An X-Y Scatter plot showing the data from both bulbs. The chart should follow all conventions taught in lecture, and display the equation for the trend-line you choose. b. A column or bar chart of your choosing showing the difference, if any, between the two bulbs. 2. Write an introduction, briefly explaining what you are accomplishing with this exper-iment. 3. Create a hierarchal outline that states, step by step, each activity that was performed to conduct the experiment and analyze the experimental data. 4. Anova analysis for data collected 5. Write a verbal explanation of what each of the charts from requirement #1 are showing. 6. Include, at the end of the document, a summary of all the tasks required to complete the assignment, including the 5 listed above, and which member or members of the group were principally responsible for completing those tasks. This should be in the form of a simple list. 7. Write at least 3 possible applications of the experiment with detailed explanation. DUE DATE: This assignment is to be completed and turned in at the beginning of your laboratory meeting during the week of 18th February Microsoft office package: Excel: Insert, page layout tab functions, Mean, standard deviation, graph functions

Lab #02 Relationship between distance & illumination As engineers, we deal with the effects of light on many projects. The first key to working with light is understanding how the light waves propagate. Once we understand light waves, we will test a manufacturers claim that lower wattage fluorescent bulbs output the same quantity of light as incandescent bulbs. This experiment is designed for you to work as a class to collect data regarding a given light source and then, working within your individual group, attempt to determine the re-lationship(s) between the measured parameter (lux) and the distance (meter) from the source. Measure and record data, in the manner described below, as a class. Work on your so-lutions as a group of 2-3. Your first task is to develop a mathematical formula, or a simple relationship that predicts the amount of lux that can be expected at a given distance from the light source. Purpose: The purpose of this assignment is to accomplish the following goals: • Gain experience collecting data in a controlled, systematic fashion. • Practice working as a group to infer relationships between variables from your collected data. • Use the data you collect to draw conclusions. In this case, to evaluate the hypothesis that the fluorescent and incandescent bulb output the same quantity of light. • Become accustomed to working in teams (note, teamwork often requires individual work as well). • Learn to balance workload across your team. (Individuals will be responsible for certain tasks, and ensure they are performed on time and to the desired quality level. • Demonstrate to me what your group’s attention to detail is, as well as your ability to construct a written explanation of work. Problem: What effect does distance have on the lux, intensity, emitted from a light source and are the 5 light bulbs producing the same intensity light? Use the rough protocol listed below and the data sheet provided to collect your data, then complete the assignment outlined below. 1. Set up a light source on one of the lab tables. 2. Using the illumination meter, measure the lux at 0.5 meter increments from the source back to 3 meters from the source. • Be sure the keep the meter perpendicular to the horizontal line from the source at all times! 3. Record your measurements on your data sheets. 4. Measurements should be taken in a random order 5. Repeat the experiment 3 times, using different people and a different order of collection and different colors. Assignment Requirements: 1. Create the appropriate graph(s) to express the data you have collected. Your report must, at the minimum, contain the following: a. An X-Y Scatter plot showing the data from both bulbs. The chart should follow all conventions taught in lecture, and display the equation for the trend-line you choose. b. A column or bar chart of your choosing showing the difference, if any, between the two bulbs. 2. Write an introduction, briefly explaining what you are accomplishing with this exper-iment. 3. Create a hierarchal outline that states, step by step, each activity that was performed to conduct the experiment and analyze the experimental data. 4. Anova analysis for data collected 5. Write a verbal explanation of what each of the charts from requirement #1 are showing. 6. Include, at the end of the document, a summary of all the tasks required to complete the assignment, including the 5 listed above, and which member or members of the group were principally responsible for completing those tasks. This should be in the form of a simple list. 7. Write at least 3 possible applications of the experiment with detailed explanation. DUE DATE: This assignment is to be completed and turned in at the beginning of your laboratory meeting during the week of 18th February Microsoft office package: Excel: Insert, page layout tab functions, Mean, standard deviation, graph functions

info@checkyourstudy.com Lab #02 Relationship between distance & illumination As engineers, … Read More...
Name___________________________________ Period_____ Investigation: Making Waves PART I: Objectives: • Learn vocabulary describing waves • Calculate the speed of a wave • Understand how amplitude affects the speed of a wave • Understand how frequency and wavelength affect the speed of a wave Open this web site: http://phet.colorado.edu/new/simulations/sims.php?sim=Wave_on_a_String You can click on Run Now! to run the simulation online, or Run Offline to save it to your desktop. It might run faster this way. Start by Wiggling the Wrench. Spend about 5 minutes experimenting with the Tension, Manual/Pulse/Oscillate, Fixed/Loose/No end, and changing the Amplitude, Frequency and Damping. Click on Show Rulers and Timer. Practice moving the rulers around and starting/resetting the timer. Click on the Pause/Play and Step buttons to see how they work. Use these settings: Pulse, Amplitude=50, Pulse Width=35, Damping=0, Tension at High and No End. NOTE that the amplitude is just a relative scale (not centimeters). Send a single pulse down the string. This is called a TRANSVERSE PULSE. Watch the motion of the green dots.  1. As the pulse goes by from left to right, in what direction does the string move? ________________________________________________________________________________________________________________________________________________  2. A definition of TRANSVERSE is “lying across”. Why is TRANSVERSE a good name for the wave you just observed? ________________________________________________________________________________________________________________________________________________ Make another pulse, and then PAUSE the wave. Use the vertical ruler to measure the amplitude of the wave in centimeters. This is the distance from the dotted orange line to the crest of the wave. Record the amplitude in Table 1 in the first row. Now, measure the time for a pulse to travel 100 cm. To do this: • Reset the clock to 0:00 and reset the generator • Click Pause/Play—it should say PAUSED on the screen • Click Pulse • Click Pause/Play again to start a timed pulse. Pause again just as the crest (peak) of the pulse touches the window 100 cm away. Record the time for a pulse to travel 100 cm in Table 1. Run 3 time trials, and record in the table. Calculate the average time. Now, measure the amplitude and timing of pulses for two other amplitudes (one smaller than 50, one larger than 50). Do three trials at each amplitude and calculate the average times. Calculate the average wave speed for each of the three amplitudes. See below for a sample calculation. Table 1 Your measured amplitude, cm Time for pulse to travel 100 cm, seconds Average time, seconds Speed=length of string / average time Example of speed calculation: Speed = string length/ average time Speed = 100 cm/2 seconds = 50 cm/second  3. How does the amplitude of a wave affect the speed of a wave? ________________________________________________________________________ Use these settings: Oscillate, Fixed end. Try amplitude=20, frequency=51, damping=0. The result is called a periodic wave. 4. Describe the appearance of the wave you created. ________________________________________________________________________________________________________________________________________________________________________________________________________________________ You should see waves that do not move along the string. You will also see points where the string does not move at all. These waves are called STANDING WAVES. The points where the wave doesn’t move are called NODES. Pause the simulation.  5. Draw the standing wave in the box below, labeling the AMPLITUDE, WAVELENGTH and NODES of a standing wave. Use these settings: Amplitude=20, Frequency=50, Damping=0, Oscillate, No End. Reset the clock. You can also measure the wave frequency. To do this, you should pair up with another student if possible. Watch the piston go up and down to make the wave. One up and down motion represents one wave. Use the clock to measure the time required for 10 complete cycles or waves. You will also need to PAUSE the wave to measure the wavelength of the wave in centimeters (cm). The frequency of the wave is calculated in the following way: Frequency = 10 waves/# seconds for 10 cycles For example, 10 waves/5 seconds = 2 cycles per second, or 2 Hertz. Make several waves by changing the wave frequency—use numbers over 30 on the scale. For each wave, measure the wavelength using the ruler. Now, calculate the frequency. See the example in the first row of Table 2. Record the wavelength and frequency of three waves with different wavelengths. Wavelength (cm) Frequency (cycles/second or Hertz) Speed (cm/s) = Wavelength x frequency 33 cm 10 waves/5.45 sec = 1.8 Hertz 33 cm x 1.8 Hertz = 59.4 cm/second Based on the equation used to calculate the speed of a wave, answer questions 6 and 7.  6. If you increase the wavelength of a wave, how does the speed change? ________________________________________________________________________________________________________________________________________________  7. If you increase the frequency of a wave, how does the speed change? ________________________________________________________________________________________________________________________________________________ Part II: Objectives: • Interpret a 2D top view picture of a wave • Identify areas of constructive and destructive interference in 2D • Predict the behavior of water, sound, or light when you have two sources o What will happen in constructive areas o What will happen in destructive areas 1) Open the “Wave Interference” simulation from the PhET website (in Sound & Waves) 2) On the water simulation, what does the crest (peak) of the wave look like in the top view? What does the trough look like? 3) When you add two drips, what changes about the waves’ patterns? 4) What does the wave look like in the area that the two waves constructively interfere? Describe both the top view and what the side view would look like. a. TOP: b. SIDE: 5) What does the wave look like in the area that the two waves destructively interfere? Describe both the top view and what the side view would look like. a. TOP: b. SIDE: 6) Switch to the sound simulation. a. What do you think will happen when you put two speakers next to each other? b. Why do you think this will happen? c. Try it (putting two speakers together) and tell me what happened. 7) Now switch to the light simulation. a. What do you think will happen when you put two light sources next to each other? b. Why do you think this will happen? c. Try it (putting two light sources together) and tell me what happened. d. What happens when you use one light source and two slits? 8) What is similar about all three of these simulations (i.e. water, sound & light)? 9) How do I know that these things are waves and not particles? (Think about what would happen in the two slit experiment if they were particles).

Name___________________________________ Period_____ Investigation: Making Waves PART I: Objectives: • Learn vocabulary describing waves • Calculate the speed of a wave • Understand how amplitude affects the speed of a wave • Understand how frequency and wavelength affect the speed of a wave Open this web site: http://phet.colorado.edu/new/simulations/sims.php?sim=Wave_on_a_String You can click on Run Now! to run the simulation online, or Run Offline to save it to your desktop. It might run faster this way. Start by Wiggling the Wrench. Spend about 5 minutes experimenting with the Tension, Manual/Pulse/Oscillate, Fixed/Loose/No end, and changing the Amplitude, Frequency and Damping. Click on Show Rulers and Timer. Practice moving the rulers around and starting/resetting the timer. Click on the Pause/Play and Step buttons to see how they work. Use these settings: Pulse, Amplitude=50, Pulse Width=35, Damping=0, Tension at High and No End. NOTE that the amplitude is just a relative scale (not centimeters). Send a single pulse down the string. This is called a TRANSVERSE PULSE. Watch the motion of the green dots.  1. As the pulse goes by from left to right, in what direction does the string move? ________________________________________________________________________________________________________________________________________________  2. A definition of TRANSVERSE is “lying across”. Why is TRANSVERSE a good name for the wave you just observed? ________________________________________________________________________________________________________________________________________________ Make another pulse, and then PAUSE the wave. Use the vertical ruler to measure the amplitude of the wave in centimeters. This is the distance from the dotted orange line to the crest of the wave. Record the amplitude in Table 1 in the first row. Now, measure the time for a pulse to travel 100 cm. To do this: • Reset the clock to 0:00 and reset the generator • Click Pause/Play—it should say PAUSED on the screen • Click Pulse • Click Pause/Play again to start a timed pulse. Pause again just as the crest (peak) of the pulse touches the window 100 cm away. Record the time for a pulse to travel 100 cm in Table 1. Run 3 time trials, and record in the table. Calculate the average time. Now, measure the amplitude and timing of pulses for two other amplitudes (one smaller than 50, one larger than 50). Do three trials at each amplitude and calculate the average times. Calculate the average wave speed for each of the three amplitudes. See below for a sample calculation. Table 1 Your measured amplitude, cm Time for pulse to travel 100 cm, seconds Average time, seconds Speed=length of string / average time Example of speed calculation: Speed = string length/ average time Speed = 100 cm/2 seconds = 50 cm/second  3. How does the amplitude of a wave affect the speed of a wave? ________________________________________________________________________ Use these settings: Oscillate, Fixed end. Try amplitude=20, frequency=51, damping=0. The result is called a periodic wave. 4. Describe the appearance of the wave you created. ________________________________________________________________________________________________________________________________________________________________________________________________________________________ You should see waves that do not move along the string. You will also see points where the string does not move at all. These waves are called STANDING WAVES. The points where the wave doesn’t move are called NODES. Pause the simulation.  5. Draw the standing wave in the box below, labeling the AMPLITUDE, WAVELENGTH and NODES of a standing wave. Use these settings: Amplitude=20, Frequency=50, Damping=0, Oscillate, No End. Reset the clock. You can also measure the wave frequency. To do this, you should pair up with another student if possible. Watch the piston go up and down to make the wave. One up and down motion represents one wave. Use the clock to measure the time required for 10 complete cycles or waves. You will also need to PAUSE the wave to measure the wavelength of the wave in centimeters (cm). The frequency of the wave is calculated in the following way: Frequency = 10 waves/# seconds for 10 cycles For example, 10 waves/5 seconds = 2 cycles per second, or 2 Hertz. Make several waves by changing the wave frequency—use numbers over 30 on the scale. For each wave, measure the wavelength using the ruler. Now, calculate the frequency. See the example in the first row of Table 2. Record the wavelength and frequency of three waves with different wavelengths. Wavelength (cm) Frequency (cycles/second or Hertz) Speed (cm/s) = Wavelength x frequency 33 cm 10 waves/5.45 sec = 1.8 Hertz 33 cm x 1.8 Hertz = 59.4 cm/second Based on the equation used to calculate the speed of a wave, answer questions 6 and 7.  6. If you increase the wavelength of a wave, how does the speed change? ________________________________________________________________________________________________________________________________________________  7. If you increase the frequency of a wave, how does the speed change? ________________________________________________________________________________________________________________________________________________ Part II: Objectives: • Interpret a 2D top view picture of a wave • Identify areas of constructive and destructive interference in 2D • Predict the behavior of water, sound, or light when you have two sources o What will happen in constructive areas o What will happen in destructive areas 1) Open the “Wave Interference” simulation from the PhET website (in Sound & Waves) 2) On the water simulation, what does the crest (peak) of the wave look like in the top view? What does the trough look like? 3) When you add two drips, what changes about the waves’ patterns? 4) What does the wave look like in the area that the two waves constructively interfere? Describe both the top view and what the side view would look like. a. TOP: b. SIDE: 5) What does the wave look like in the area that the two waves destructively interfere? Describe both the top view and what the side view would look like. a. TOP: b. SIDE: 6) Switch to the sound simulation. a. What do you think will happen when you put two speakers next to each other? b. Why do you think this will happen? c. Try it (putting two speakers together) and tell me what happened. 7) Now switch to the light simulation. a. What do you think will happen when you put two light sources next to each other? b. Why do you think this will happen? c. Try it (putting two light sources together) and tell me what happened. d. What happens when you use one light source and two slits? 8) What is similar about all three of these simulations (i.e. water, sound & light)? 9) How do I know that these things are waves and not particles? (Think about what would happen in the two slit experiment if they were particles).