4. Using your knowledge of the Stevenson’s career management model identify and briefly describe one activity that should be included in an organization’s career management program. Identify which element of the model the activity you identified fits within.

4. Using your knowledge of the Stevenson’s career management model identify and briefly describe one activity that should be included in an organization’s career management program. Identify which element of the model the activity you identified fits within.

Discipline Expertise- There is an apparent type of interdisciplinary in … Read More...
Consider a test you have taken. Did it measure what it was supposed to measure? If you had taken a different test over the same material, do you think you would have gotten the same score?

Consider a test you have taken. Did it measure what it was supposed to measure? If you had taken a different test over the same material, do you think you would have gotten the same score?

Most of the test, I have given, does not measure … Read More...

info@checkyourstudy.com
ENGR 3300: Fluid Mechanics, Fall 2015 Assignment 3 Due: Friday, Oct. 2, 2015 Topics: Chapter 3 & 4 Solutions must be neatly written and must include the following steps (if applicable) to receive full credit. 1. Given: List all known parameters in the problem. 2. Find: List what parameters the problem is asking you to find. 3. Solution: List all equations needed to solve the problem, and show all your work. Draw any necessary sketches or free body diagrams. Circle or box your final answer, and make sure to include appropriate units in your final answer. Grading: 15 total points (10 points for completeness + 5 points for one randomly chosen problem graded for correctness) 1. Water flows at a steady rate up a vertical pipe and out a nozzle into open air. The pipe diameter is 1 inch and the nozzle diameter is 0.5 inches. (a) Determine the minimum pressure that would be required at section 1 (shown in the figure below) to produce a fluid velocity of 30 ft/s at the nozzle (section 2). (b) If the pipe was inverted, determine the minimum pressure that would be required at section 1 to maintain the 30 ft/s velocity at the nozzle. 2. Water flows from a large tank through a small pipe with a diameter of 5 cm. A mercury manometer is placed along the pipe. Assuming the flow is frictionless, (a) estimate the velocity of the water in the pipe and (b) determine the rate of discharge (i.e. volumetric flow rate) from the tank. 3. An engineer is designing a suit for a race car driver and wants to supply cooling air to the suit from an air inlet on the body of the race car. The air speed at the inlet location must be 65 mph when the race car is traveling at 230 mph. Under these conditions, what would be the static pressure at the proposed inlet location? 4. Air flows downward toward a horizontal flat plate. The velocity field is given by ? = (??! − ??!)(2 + cos ??) where a = 5 s-1, ω = 2π s-1, and x and y (measured in meters) are horizontal and vertically upward, respectively, and t is in seconds. (a) Obtain an algebraic equation for a streamline at t = 0. (b) Plot the streamline that passes through point (x,y) = (3,3) at this instant.