1) a) Explain why metals are ductile and ceramics are brittle, in terms of their dislocation motion. b) Draw 2 pictures to sequentially show an edge dislocation gliding through a crystal, using dots to represent the atoms. c) Draw 2 pictures to show how a dislocation can climb by capturing a vacancy. d) What factors limit dislocation mobility? e) What positive and negative effects does limiting dislocation mobility have on mechanical properties?

1) a) Explain why metals are ductile and ceramics are brittle, in terms of their dislocation motion. b) Draw 2 pictures to sequentially show an edge dislocation gliding through a crystal, using dots to represent the atoms. c) Draw 2 pictures to show how a dislocation can climb by capturing a vacancy. d) What factors limit dislocation mobility? e) What positive and negative effects does limiting dislocation mobility have on mechanical properties?

1)    a) Explain why metals are ductile and ceramics are … Read More...
Assignment 8 Due: 11:59pm on Friday, April 4, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 10.3 Part A If a particle’s speed increases by a factor of 5, by what factor does its kinetic energy change? ANSWER: Correct Conceptual Question 10.11 A spring is compressed 1.5 . Part A How far must you compress a spring with twice the spring constant to store the same amount of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct = 25 K2 K1 cm x = 1.1 cm Problem 10.2 The lowest point in Death Valley is below sea level. The summit of nearby Mt. Whitney has an elevation of 4420 . Part A What is the change in potential energy of an energetic 80 hiker who makes it from the floor of Death Valley to the top of Mt.Whitney? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.3 Part A At what speed does a 1800 compact car have the same kinetic energy as a 1.80×104 truck going 21.0 ? Express your answer with the appropriate units. ANSWER: Correct Problem 10.5 A boy reaches out of a window and tosses a ball straight up with a speed of 13 . The ball is 21 above the ground as he releases it. 85m m kg U = 3.5×106 J kg kg km/hr vc = 66.4 km hr m/s m Part A Use energy to find the ball’s maximum height above the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B Use energy to find the ball’s speed as it passes the window on its way down. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C Use energy to find the speed of impact on the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Hmax = 30 m v = 13 ms v = 24 ms Problem 10.8 A 59.0 skateboarder wants to just make it to the upper edge of a “quarter pipe,” a track that is one-quarter of a circle with a radius of 2.30 . Part A What speed does he need at the bottom? Express your answer with the appropriate units. ANSWER: Correct Problem 10.12 A 1500 car traveling at 12 suddenly runs out of gas while approaching the valley shown in the figure. The alert driver immediately puts the car in neutral so that it will roll. Part A kg m 6.71 ms kg m/s What will be the car’s speed as it coasts into the gas station on the other side of the valley? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Ups and Downs Learning Goal: To apply the law of conservation of energy to an object launched upward in the gravitational field of the earth. In the absence of nonconservative forces such as friction and air resistance, the total mechanical energy in a closed system is conserved. This is one particular case of the law of conservation of energy. In this problem, you will apply the law of conservation of energy to different objects launched from the earth. The energy transformations that take place involve the object’s kinetic energy and its gravitational potential energy . The law of conservation of energy for such cases implies that the sum of the object’s kinetic energy and potential energy does not change with time. This idea can be expressed by the equation , where “i” denotes the “initial” moment and “f” denotes the “final” moment. Since any two moments will work, the choice of the moments to consider is, technically, up to you. That choice, though, is usually suggested by the question posed in the problem. First, let us consider an object launched vertically upward with an initial speed . Neglect air resistance. Part A As the projectile goes upward, what energy changes take place? ANSWER: v = 6.8 ms K = (1/2)mv2 U = mgh Ki + Ui = Kf + Uf v Correct Part B At the top point of the flight, what can be said about the projectile’s kinetic and potential energy? ANSWER: Correct Strictly speaking, it is not the ball that possesses potential energy; rather, it is the system “Earth-ball.” Although we will often talk about “the gravitational potential energy of an elevated object,” it is useful to keep in mind that the energy, in fact, is associated with the interactions between the earth and the elevated object. Part C The potential energy of the object at the moment of launch __________. ANSWER: Both kinetic and potential energy decrease. Both kinetic and potential energy increase. Kinetic energy decreases; potential energy increases. Kinetic energy increases; potential energy decreases. Both kinetic and potential energy are at their maximum values. Both kinetic and potential energy are at their minimum values. Kinetic energy is at a maximum; potential energy is at a minimum. Kinetic energy is at a minimum; potential energy is at a maximum. Correct Usually, the zero level is chosen so as to make the relevant calculations simpler. In this case, it makes good sense to assume that at the ground level–but this is not, by any means, the only choice! Part D Using conservation of energy, find the maximum height to which the object will rise. Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: Correct You may remember this result from kinematics. It is comforting to know that our new approach yields the same answer. Part E At what height above the ground does the projectile have a speed of ? Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: is negative is positive is zero depends on the choice of the “zero level” of potential energy U = 0 hmax v g hmax = v2 2g h 0.5v v g h = 3 v2 8g Correct Part F What is the speed of the object at the height of ? Express your answer in terms of and . Use three significant figures in the numeric coefficient. Hint 1. How to approach the problem You are being asked for the speed at half of the maximum height. You know that at the initial height ( ), the speed is . All of the energy is kinetic energy, and so, the total energy is . At the maximum height, all of the energy is potential energy. Since the gravitational potential energy is proportional to , half of the initial kinetic energy must have been converted to potential energy when the projectile is at . Thus, the kinetic energy must be half of its original value (i.e., when ). You need to determine the speed, as a multiple of , that corresponds to such a kinetic energy. ANSWER: Correct Let us now consider objects launched at an angle. For such situations, using conservation of energy leads to a quicker solution than can be produced by kinematics. Part G A ball is launched as a projectile with initial speed at an angle above the horizontal. Using conservation of energy, find the maximum height of the ball’s flight. Express your answer in terms of , , and . Hint 1. Find the final kinetic energy Find the final kinetic energy of the ball. Here, the best choice of “final” moment is the point at which the ball reaches its maximum height, since this is the point we are interested in. u (1/2)hmax v g h = 0 v (1/2)mv2 h (1/2)hmax (1/4)mv2 h = (1/2)hmax v u = 0.707v v hmax v g Kf Express your answer in terms of , , and . Hint 1. Find the speed at the maximum height The speed of the ball at the maximum height is __________. ANSWER: ANSWER: ANSWER: Correct Part H A ball is launched with initial speed from ground level up a frictionless slope. The slope makes an angle with the horizontal. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of , , and . You may or may not use all of these quantities. v m 0 v v cos v sin v tan Kf = 0.5m(vcos( ))2 hmax = (vsin( ))2 2g v hmax v g ANSWER: Correct Interestingly, the answer does not depend on . The difference between this situation and the projectile case is that the ball moving up a slope has no kinetic energy at the top of its trajectory whereas the projectile launched at an angle does. Part I A ball is launched with initial speed from the ground level up a frictionless hill. The hill becomes steeper as the ball slides up; however, the ball remains in contact with the hill at all times. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of and . ANSWER: Correct The profile of the hill does not matter; the equation would have the same terms regardless of the steepness of the hill. Problem 10.14 A 12- -long spring is attached to the ceiling. When a 2.2 mass is hung from it, the spring stretches to a length of 17 . Part A What is the spring constant ? Express your answer to two significant figures and include the appropriate units. hmax = v2 2g v hmax v g hmax = v2 2g Ki + Ui = Kf + Uf cm kg cm k ANSWER: Correct Part B How long is the spring when a 3.0 mass is suspended from it? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.17 A 6.2 mass hanging from a spring scale is slowly lowered onto a vertical spring, as shown in . You may want to review ( pages 255 – 257) . For help with math skills, you may want to review: Solving Algebraic Equations = 430 k Nm kg y = 19 cm kg Part A What does the spring scale read just before the mass touches the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass before it touches the scale. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? ANSWER: Correct Part B The scale reads 22 when the lower spring has been compressed by 2.7 . What is the value of the spring constant for the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? Use these to determine the force on the mass by the spring, taking note of the directions from your picture. How is the spring constant related to the force by the spring and the compression of the spring? Check your units. ANSWER: F = 61 N N cm k = 1400 k Nm Correct Part C At what compression length will the scale read zero? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces on the mass. When the scale reads zero, what is the force on the mass due to the scale? What is the gravitational force on the mass? What is the force on the mass by the spring? How is the compression length related to the force by the spring and the spring constant? Check your units. ANSWER: Correct Problem 10.18 Part A How far must you stretch a spring with = 800 to store 180 of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: y = 4.2 cm k N/m J Correct Problem 10.22 A 15 runaway grocery cart runs into a spring with spring constant 230 and compresses it by 57 . Part A What was the speed of the cart just before it hit the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Spring Gun A spring-loaded toy gun is used to shoot a ball straight up in the air. The ball reaches a maximum height , measured from the equilibrium position of the spring. s = 0.67 m kg N/m cm v = 2.2 ms H Part A The same ball is shot straight up a second time from the same gun, but this time the spring is compressed only half as far before firing. How far up does the ball go this time? Neglect friction. Assume that the spring is ideal and that the distance by which the spring is compressed is negligible compared to . Hint 1. Potential energy of the spring The potential energy of a spring is proportional to the square of the distance the spring is compressed. The spring was compressed half the distance, so the mass, when launched, has one quarter of the energy as in the first trial. Hint 2. Potential energy of the ball At the highest point in the ball’s trajectory, all of the spring’s potential energy has been converted into gravitational potential energy of the ball. ANSWER: Correct A Bullet Is Fired into a Wooden Block A bullet of mass is fired horizontally with speed at a wooden block of mass resting on a frictionless table. The bullet hits the block and becomes completely embedded within it. After the bullet has come to rest within the block, the block, with the bullet in it, is traveling at speed . H height = H 4 mb vi mw vf Part A Which of the following best describes this collision? Hint 1. Types of collisions An inelastic collision is a collision in which kinetic energy is not conserved. In a partially inelastic collision, kinetic energy is lost, but the objects colliding do not stick together. From this information, you can infer what completely inelastic and elastic collisions are. ANSWER: Correct Part B Which of the following quantities, if any, are conserved during this collision? Hint 1. When is kinetic energy conserved? Kinetic energy is conserved only in perfectly elastic collisions. ANSWER: perfectly elastic partially inelastic perfectly inelastic Correct Part C What is the speed of the block/bullet system after the collision? Express your answer in terms of , , and . Hint 1. Find the momentum after the collision What is the total momentum of the block/bullet system after the collision? Express your answer in terms of and other given quantities. ANSWER: Hint 2. Use conservation of momentum The momentum of the block/bullet system is conserved. Therefore, the momentum before the collision is the same as the momentum after the collision. Find a second expression for , this time expressed as the total momentum of the system before the collision. Express your answer in terms of and other given quantities. ANSWER: kinetic energy only momentum only kinetic energy and momentum neither momentum nor kinetic energy vi mw mb ptotal vf ptotal = (mw + mb)vf ptotal vi ptotal = mbvi ANSWER: Correct Problem 10.31 Ball 1, with a mass of 150 and traveling at 15.0 , collides head on with ball 2, which has a mass of 340 and is initially at rest. Part A What are the final velocities of each ball if the collision is perfectly elastic? Express your answer with the appropriate units. ANSWER: Correct Part B Express your answer with the appropriate units. ANSWER: Correct Part C vf = mb vi mb+mw g m/s g (vfx) = -5.82 1 ms (vfx) = 9.18 2 ms What are the final velocities of each ball if the collision is perfectly inelastic? Express your answer with the appropriate units. ANSWER: Correct Part D Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.43 A package of mass is released from rest at a warehouse loading dock and slides down the = 2.2 – high, frictionless chute to a waiting truck. Unfortunately, the truck driver went on a break without having removed the previous package, of mass , from the bottom of the chute. You may want to review ( pages 265 – 269) . For help with math skills, you may want to review: Solving Algebraic Equations (vfx) = 4.59 1 ms (vfx) = 4.59 2 ms m h m 2m Part A Suppose the packages stick together. What is their common speed after the collision? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are two parts to this problem: the block sliding down the frictionless incline and the collision. What conservation laws are valid in each part? In terms of , what are the kinetic and potential energies of the block at the top of the incline? What is the potential energy of the same block at the bottom just before the collision? What are the kinetic energy and velocity of block just before the collision? What is conserved during the collision? What is the total momentum of the two blocks before the collision? What is the momentum of the two blocks stuck together after the collision? What is the velocity of the two blocks after the collision? ANSWER: Correct Part B Suppose the collision between the packages is perfectly elastic. To what height does the package of mass rebound? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are three parts to this problem: the block sliding down the incline, the collision, and mass going back up the incline. What conservation laws are valid in each part? m m v = 2.2 ms m m What is an elastic collision? For an elastic collision, how are the initial and final velocities related when one of the masses is initially at rest? Using the velocity of just before the collision from Part A, what is the velocity of just after the collision in this case? What are the kinetic and potential energies of mass just after the collision? What is the kinetic energy of mass at its maximum rebound height? Using conservation of energy, what is the potential energy of mass at its maximum height? What is the maximum height? ANSWER: Correct Problem 10.35 A cannon tilted up at a 35.0 angle fires a cannon ball at 79.0 from atop a 21.0 -high fortress wall. Part A What is the ball’s impact speed on the ground below? Express your answer with the appropriate units. ANSWER: Correct Problem 10.45 A 1000 safe is 2.5 above a heavy-duty spring when the rope holding the safe breaks. The safe hits the spring and compresses it 48 . m m m m m h = 24 cm $ m/s m vf = 81.6 ms kg m cm Part A What is the spring constant of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.49 A 100 block on a frictionless table is firmly attached to one end of a spring with = 21 . The other end of the spring is anchored to the wall. A 30 ball is thrown horizontally toward the block with a speed of 6.0 . Part A If the collision is perfectly elastic, what is the ball’s speed immediately after the collision? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the maximum compression of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: = 2.5×105 k Nm g k N/m g m/s v = 3.2 ms Correct Part C Repeat part A for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D Repeat part B for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 99.4%. You received 120.28 out of a possible total of 121 points. x = 0.19 m v = 1.4 ms x = 0.11 m

Assignment 8 Due: 11:59pm on Friday, April 4, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 10.3 Part A If a particle’s speed increases by a factor of 5, by what factor does its kinetic energy change? ANSWER: Correct Conceptual Question 10.11 A spring is compressed 1.5 . Part A How far must you compress a spring with twice the spring constant to store the same amount of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct = 25 K2 K1 cm x = 1.1 cm Problem 10.2 The lowest point in Death Valley is below sea level. The summit of nearby Mt. Whitney has an elevation of 4420 . Part A What is the change in potential energy of an energetic 80 hiker who makes it from the floor of Death Valley to the top of Mt.Whitney? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.3 Part A At what speed does a 1800 compact car have the same kinetic energy as a 1.80×104 truck going 21.0 ? Express your answer with the appropriate units. ANSWER: Correct Problem 10.5 A boy reaches out of a window and tosses a ball straight up with a speed of 13 . The ball is 21 above the ground as he releases it. 85m m kg U = 3.5×106 J kg kg km/hr vc = 66.4 km hr m/s m Part A Use energy to find the ball’s maximum height above the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B Use energy to find the ball’s speed as it passes the window on its way down. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C Use energy to find the speed of impact on the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Hmax = 30 m v = 13 ms v = 24 ms Problem 10.8 A 59.0 skateboarder wants to just make it to the upper edge of a “quarter pipe,” a track that is one-quarter of a circle with a radius of 2.30 . Part A What speed does he need at the bottom? Express your answer with the appropriate units. ANSWER: Correct Problem 10.12 A 1500 car traveling at 12 suddenly runs out of gas while approaching the valley shown in the figure. The alert driver immediately puts the car in neutral so that it will roll. Part A kg m 6.71 ms kg m/s What will be the car’s speed as it coasts into the gas station on the other side of the valley? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Ups and Downs Learning Goal: To apply the law of conservation of energy to an object launched upward in the gravitational field of the earth. In the absence of nonconservative forces such as friction and air resistance, the total mechanical energy in a closed system is conserved. This is one particular case of the law of conservation of energy. In this problem, you will apply the law of conservation of energy to different objects launched from the earth. The energy transformations that take place involve the object’s kinetic energy and its gravitational potential energy . The law of conservation of energy for such cases implies that the sum of the object’s kinetic energy and potential energy does not change with time. This idea can be expressed by the equation , where “i” denotes the “initial” moment and “f” denotes the “final” moment. Since any two moments will work, the choice of the moments to consider is, technically, up to you. That choice, though, is usually suggested by the question posed in the problem. First, let us consider an object launched vertically upward with an initial speed . Neglect air resistance. Part A As the projectile goes upward, what energy changes take place? ANSWER: v = 6.8 ms K = (1/2)mv2 U = mgh Ki + Ui = Kf + Uf v Correct Part B At the top point of the flight, what can be said about the projectile’s kinetic and potential energy? ANSWER: Correct Strictly speaking, it is not the ball that possesses potential energy; rather, it is the system “Earth-ball.” Although we will often talk about “the gravitational potential energy of an elevated object,” it is useful to keep in mind that the energy, in fact, is associated with the interactions between the earth and the elevated object. Part C The potential energy of the object at the moment of launch __________. ANSWER: Both kinetic and potential energy decrease. Both kinetic and potential energy increase. Kinetic energy decreases; potential energy increases. Kinetic energy increases; potential energy decreases. Both kinetic and potential energy are at their maximum values. Both kinetic and potential energy are at their minimum values. Kinetic energy is at a maximum; potential energy is at a minimum. Kinetic energy is at a minimum; potential energy is at a maximum. Correct Usually, the zero level is chosen so as to make the relevant calculations simpler. In this case, it makes good sense to assume that at the ground level–but this is not, by any means, the only choice! Part D Using conservation of energy, find the maximum height to which the object will rise. Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: Correct You may remember this result from kinematics. It is comforting to know that our new approach yields the same answer. Part E At what height above the ground does the projectile have a speed of ? Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: is negative is positive is zero depends on the choice of the “zero level” of potential energy U = 0 hmax v g hmax = v2 2g h 0.5v v g h = 3 v2 8g Correct Part F What is the speed of the object at the height of ? Express your answer in terms of and . Use three significant figures in the numeric coefficient. Hint 1. How to approach the problem You are being asked for the speed at half of the maximum height. You know that at the initial height ( ), the speed is . All of the energy is kinetic energy, and so, the total energy is . At the maximum height, all of the energy is potential energy. Since the gravitational potential energy is proportional to , half of the initial kinetic energy must have been converted to potential energy when the projectile is at . Thus, the kinetic energy must be half of its original value (i.e., when ). You need to determine the speed, as a multiple of , that corresponds to such a kinetic energy. ANSWER: Correct Let us now consider objects launched at an angle. For such situations, using conservation of energy leads to a quicker solution than can be produced by kinematics. Part G A ball is launched as a projectile with initial speed at an angle above the horizontal. Using conservation of energy, find the maximum height of the ball’s flight. Express your answer in terms of , , and . Hint 1. Find the final kinetic energy Find the final kinetic energy of the ball. Here, the best choice of “final” moment is the point at which the ball reaches its maximum height, since this is the point we are interested in. u (1/2)hmax v g h = 0 v (1/2)mv2 h (1/2)hmax (1/4)mv2 h = (1/2)hmax v u = 0.707v v hmax v g Kf Express your answer in terms of , , and . Hint 1. Find the speed at the maximum height The speed of the ball at the maximum height is __________. ANSWER: ANSWER: ANSWER: Correct Part H A ball is launched with initial speed from ground level up a frictionless slope. The slope makes an angle with the horizontal. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of , , and . You may or may not use all of these quantities. v m 0 v v cos v sin v tan Kf = 0.5m(vcos( ))2 hmax = (vsin( ))2 2g v hmax v g ANSWER: Correct Interestingly, the answer does not depend on . The difference between this situation and the projectile case is that the ball moving up a slope has no kinetic energy at the top of its trajectory whereas the projectile launched at an angle does. Part I A ball is launched with initial speed from the ground level up a frictionless hill. The hill becomes steeper as the ball slides up; however, the ball remains in contact with the hill at all times. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of and . ANSWER: Correct The profile of the hill does not matter; the equation would have the same terms regardless of the steepness of the hill. Problem 10.14 A 12- -long spring is attached to the ceiling. When a 2.2 mass is hung from it, the spring stretches to a length of 17 . Part A What is the spring constant ? Express your answer to two significant figures and include the appropriate units. hmax = v2 2g v hmax v g hmax = v2 2g Ki + Ui = Kf + Uf cm kg cm k ANSWER: Correct Part B How long is the spring when a 3.0 mass is suspended from it? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.17 A 6.2 mass hanging from a spring scale is slowly lowered onto a vertical spring, as shown in . You may want to review ( pages 255 – 257) . For help with math skills, you may want to review: Solving Algebraic Equations = 430 k Nm kg y = 19 cm kg Part A What does the spring scale read just before the mass touches the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass before it touches the scale. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? ANSWER: Correct Part B The scale reads 22 when the lower spring has been compressed by 2.7 . What is the value of the spring constant for the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? Use these to determine the force on the mass by the spring, taking note of the directions from your picture. How is the spring constant related to the force by the spring and the compression of the spring? Check your units. ANSWER: F = 61 N N cm k = 1400 k Nm Correct Part C At what compression length will the scale read zero? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces on the mass. When the scale reads zero, what is the force on the mass due to the scale? What is the gravitational force on the mass? What is the force on the mass by the spring? How is the compression length related to the force by the spring and the spring constant? Check your units. ANSWER: Correct Problem 10.18 Part A How far must you stretch a spring with = 800 to store 180 of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: y = 4.2 cm k N/m J Correct Problem 10.22 A 15 runaway grocery cart runs into a spring with spring constant 230 and compresses it by 57 . Part A What was the speed of the cart just before it hit the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Spring Gun A spring-loaded toy gun is used to shoot a ball straight up in the air. The ball reaches a maximum height , measured from the equilibrium position of the spring. s = 0.67 m kg N/m cm v = 2.2 ms H Part A The same ball is shot straight up a second time from the same gun, but this time the spring is compressed only half as far before firing. How far up does the ball go this time? Neglect friction. Assume that the spring is ideal and that the distance by which the spring is compressed is negligible compared to . Hint 1. Potential energy of the spring The potential energy of a spring is proportional to the square of the distance the spring is compressed. The spring was compressed half the distance, so the mass, when launched, has one quarter of the energy as in the first trial. Hint 2. Potential energy of the ball At the highest point in the ball’s trajectory, all of the spring’s potential energy has been converted into gravitational potential energy of the ball. ANSWER: Correct A Bullet Is Fired into a Wooden Block A bullet of mass is fired horizontally with speed at a wooden block of mass resting on a frictionless table. The bullet hits the block and becomes completely embedded within it. After the bullet has come to rest within the block, the block, with the bullet in it, is traveling at speed . H height = H 4 mb vi mw vf Part A Which of the following best describes this collision? Hint 1. Types of collisions An inelastic collision is a collision in which kinetic energy is not conserved. In a partially inelastic collision, kinetic energy is lost, but the objects colliding do not stick together. From this information, you can infer what completely inelastic and elastic collisions are. ANSWER: Correct Part B Which of the following quantities, if any, are conserved during this collision? Hint 1. When is kinetic energy conserved? Kinetic energy is conserved only in perfectly elastic collisions. ANSWER: perfectly elastic partially inelastic perfectly inelastic Correct Part C What is the speed of the block/bullet system after the collision? Express your answer in terms of , , and . Hint 1. Find the momentum after the collision What is the total momentum of the block/bullet system after the collision? Express your answer in terms of and other given quantities. ANSWER: Hint 2. Use conservation of momentum The momentum of the block/bullet system is conserved. Therefore, the momentum before the collision is the same as the momentum after the collision. Find a second expression for , this time expressed as the total momentum of the system before the collision. Express your answer in terms of and other given quantities. ANSWER: kinetic energy only momentum only kinetic energy and momentum neither momentum nor kinetic energy vi mw mb ptotal vf ptotal = (mw + mb)vf ptotal vi ptotal = mbvi ANSWER: Correct Problem 10.31 Ball 1, with a mass of 150 and traveling at 15.0 , collides head on with ball 2, which has a mass of 340 and is initially at rest. Part A What are the final velocities of each ball if the collision is perfectly elastic? Express your answer with the appropriate units. ANSWER: Correct Part B Express your answer with the appropriate units. ANSWER: Correct Part C vf = mb vi mb+mw g m/s g (vfx) = -5.82 1 ms (vfx) = 9.18 2 ms What are the final velocities of each ball if the collision is perfectly inelastic? Express your answer with the appropriate units. ANSWER: Correct Part D Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.43 A package of mass is released from rest at a warehouse loading dock and slides down the = 2.2 – high, frictionless chute to a waiting truck. Unfortunately, the truck driver went on a break without having removed the previous package, of mass , from the bottom of the chute. You may want to review ( pages 265 – 269) . For help with math skills, you may want to review: Solving Algebraic Equations (vfx) = 4.59 1 ms (vfx) = 4.59 2 ms m h m 2m Part A Suppose the packages stick together. What is their common speed after the collision? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are two parts to this problem: the block sliding down the frictionless incline and the collision. What conservation laws are valid in each part? In terms of , what are the kinetic and potential energies of the block at the top of the incline? What is the potential energy of the same block at the bottom just before the collision? What are the kinetic energy and velocity of block just before the collision? What is conserved during the collision? What is the total momentum of the two blocks before the collision? What is the momentum of the two blocks stuck together after the collision? What is the velocity of the two blocks after the collision? ANSWER: Correct Part B Suppose the collision between the packages is perfectly elastic. To what height does the package of mass rebound? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are three parts to this problem: the block sliding down the incline, the collision, and mass going back up the incline. What conservation laws are valid in each part? m m v = 2.2 ms m m What is an elastic collision? For an elastic collision, how are the initial and final velocities related when one of the masses is initially at rest? Using the velocity of just before the collision from Part A, what is the velocity of just after the collision in this case? What are the kinetic and potential energies of mass just after the collision? What is the kinetic energy of mass at its maximum rebound height? Using conservation of energy, what is the potential energy of mass at its maximum height? What is the maximum height? ANSWER: Correct Problem 10.35 A cannon tilted up at a 35.0 angle fires a cannon ball at 79.0 from atop a 21.0 -high fortress wall. Part A What is the ball’s impact speed on the ground below? Express your answer with the appropriate units. ANSWER: Correct Problem 10.45 A 1000 safe is 2.5 above a heavy-duty spring when the rope holding the safe breaks. The safe hits the spring and compresses it 48 . m m m m m h = 24 cm $ m/s m vf = 81.6 ms kg m cm Part A What is the spring constant of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.49 A 100 block on a frictionless table is firmly attached to one end of a spring with = 21 . The other end of the spring is anchored to the wall. A 30 ball is thrown horizontally toward the block with a speed of 6.0 . Part A If the collision is perfectly elastic, what is the ball’s speed immediately after the collision? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the maximum compression of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: = 2.5×105 k Nm g k N/m g m/s v = 3.2 ms Correct Part C Repeat part A for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D Repeat part B for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 99.4%. You received 120.28 out of a possible total of 121 points. x = 0.19 m v = 1.4 ms x = 0.11 m

please email info@checkyourstudy.com
How will this affect its mechanical properties (strength, ductility)? Hint: think about how the motion of dislocations is blocked by grain boundaries.

How will this affect its mechanical properties (strength, ductility)? Hint: think about how the motion of dislocations is blocked by grain boundaries.

info@checkyourstudy.com Also, during recrystallization, the mechanical properties that were changed … Read More...
Assignment 9 Due: 11:59pm on Friday, April 11, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 11.2 Part A Evaluate the dot product if and . Express your answer using two significant figures. ANSWER: Correct Part B Evaluate the dot product if and . Express your answer using two significant figures. ANSWER: Correct Problem 11.4  A B = 5 − 6 A i ^ j ^ = −9 − 5 B i ^ j ^ A  B  = -15  A B = −5 + 9 A i ^ j ^ = 5 + 6 B i ^ j ^ A  B  = 29 Part A What is the angle between vectors and if and ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part B What is the angle between vectors and if and ? Express your answer as an integer and include the appropriate units. ANSWER: Correct ± All Work and No Play Learning Goal: To be able to calculate work done by a constant force directed at different angles relative to displacement If an object undergoes displacement while being acted upon by a force (or several forces), it is said that work is being done on the object. If the object is moving in a straight line and the displacement and the force are known, the work done by the force can be calculated as , where is the work done by force on the object that undergoes displacement directed at angle relative to .  A B A = 2 + 5 ı ^  ^ B = −2 − 4 ı ^  ^  = 175  A B A = −6 + 2 ı ^  ^ B = − − 3 ı ^  ^  = 90 W =  = cos  F  s  F   s  W F  s  F  Note that depending on the value of , the work done can be positive, negative, or zero. In this problem, you will practice calculating work done on an object moving in a straight line. The first series of questions is related to the accompanying figure. Part A What can be said about the sign of the work done by the force ? ANSWER: Correct When , the cosine of is zero, and therefore the work done is zero. Part B cos  F  1 It is positive. It is negative. It is zero. There is not enough information to answer the question.  = 90  What can be said about the work done by force ? ANSWER: Correct When , is positive, and so the work done is positive. Part C The work done by force is ANSWER: Correct When , is negative, and so the work done is negative. Part D The work done by force is ANSWER: F  2 It is positive. It is negative. It is zero. 0 <  < 90 cos  F  3 positive negative zero 90 <  < 180 cos  F  4 Correct Part E The work done by force is ANSWER: Correct positive negative zero F  5 positive negative zero Part F The work done by force is ANSWER: Correct Part G The work done by force is ANSWER: Correct In the next series of questions, you will use the formula to calculate the work done by various forces on an object that moves 160 meters to the right. F  6 positive negative zero F  7 positive negative zero W =  = cos  F  s  F   s  Part H Find the work done by the 18-newton force. Use two significant figures in your answer. Express your answer in joules. ANSWER: Correct Part I Find the work done by the 30-newton force. Use two significant figures in your answer. Express your answer in joules. ANSWER: Correct Part J Find the work done by the 12-newton force. Use two significant figures in your answer. Express your answer in joules. W W = 2900 J W W = 4200 J W ANSWER: Correct Part K Find the work done by the 15-newton force. Use two significant figures in your answer. Express your answer in joules. ANSWER: Correct Introduction to Potential Energy Learning Goal: Understand that conservative forces can be removed from the work integral by incorporating them into a new form of energy called potential energy that must be added to the kinetic energy to get the total mechanical energy. The first part of this problem contains short-answer questions that review the work-energy theorem. In the second part we introduce the concept of potential energy. But for now, please answer in terms of the work-energy theorem. Work-Energy Theorem The work-energy theorem states , where is the work done by all forces that act on the object, and and are the initial and final kinetic energies, respectively. Part A The work-energy theorem states that a force acting on a particle as it moves over a ______ changes the ______ energy of the particle if the force has a component parallel to the motion. W = -1900 J W W = -1800 J Kf = Ki + Wall Wall Ki Kf Choose the best answer to fill in the blanks above: ANSWER: Correct It is important that the force have a component acting in the direction of motion. For example, if a ball is attached to a string and whirled in uniform circular motion, the string does apply a force to the ball, but since the string's force is always perpendicular to the motion it does no work and cannot change the kinetic energy of the ball. Part B To calculate the change in energy, you must know the force as a function of _______. The work done by the force causes the energy change. Choose the best answer to fill in the blank above: ANSWER: Correct Part C To illustrate the work-energy concept, consider the case of a stone falling from to under the influence of gravity. Using the work-energy concept, we say that work is done by the gravitational _____, resulting in an increase of the ______ energy of the stone. Choose the best answer to fill in the blanks above: distance / potential distance / kinetic vertical displacement / potential none of the above acceleration work distance potential energy xi xf ANSWER: Correct Potential Energy You should read about potential energy in your text before answering the following questions. Potential energy is a concept that builds on the work-energy theorem, enlarging the concept of energy in the most physically useful way. The key aspect that allows for potential energy is the existence of conservative forces, forces for which the work done on an object does not depend on the path of the object, only the initial and final positions of the object. The gravitational force is conservative; the frictional force is not. The change in potential energy is the negative of the work done by conservative forces. Hence considering the initial and final potential energies is equivalent to calculating the work done by the conservative forces. When potential energy is used, it replaces the work done by the associated conservative force. Then only the work due to nonconservative forces needs to be calculated. In summary, when using the concept of potential energy, only nonconservative forces contribute to the work, which now changes the total energy: , where and are the final and initial potential energies, and is the work due only to nonconservative forces. Now, we will revisit the falling stone example using the concept of potential energy. Part D Rather than ascribing the increased kinetic energy of the stone to the work of gravity, we now (when using potential energy rather than work-energy) say that the increased kinetic energy comes from the ______ of the _______ energy. Choose the best answer to fill in the blanks above: ANSWER: force / kinetic potential energy / potential force / potential potential energy / kinetic Kf + Uf = Ef = Wnc + Ei = Wnc + Ki + Ui Uf Ui Wnc Correct Part E This process happens in such a way that total mechanical energy, equal to the ______ of the kinetic and potential energies, is _______. Choose the best answer to fill in the blanks above: ANSWER: Correct Problem 11.7 Part A How much work is done by the force 2.2 6.6 on a particle that moves through displacement 3.9 Express your answer to two significant figures and include the appropriate units. ANSWER: work / potential force / kinetic change / potential sum / conserved sum / zero sum / not conserved difference / conserved F  = (− + i ^ ) N j ^ ! = r m i ^ Correct Part B How much work is done by the force 2.2 6.6 on a particle that moves through displacement 3.9 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.10 A 1.8 book is lying on a 0.80- -high table. You pick it up and place it on a bookshelf 2.27 above the floor. Part A How much work does gravity do on the book? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B W = -8.6 J F  = (− + i ^ ) N j ^ ! = r m? j ^ W = 26 J kg m m Wg = -26 J How much work does your hand do on the book? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.12 The three ropes shown in the bird's-eye view of the figure are used to drag a crate 3.3 across the floor. Part A How much work is done by each of the three forces? Express your answers using two significant figures. Enter your answers numerically separated by commas. ANSWER: WH = 26 J m W1 , W2 , W3 = 1.9,1.2,-2.1 kJ Correct Enhanced EOC: Problem 11.16 A 1.2 particle moving along the x-axis experiences the force shown in the figure. The particle's velocity is 4.6 at . You may want to review ( pages 286 - 287) . For help with math skills, you may want to review: The Definite Integral Part A What is its velocity at ? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the work–kinetic energy theorem? What is the kinetic energy at ? How is the work done in going from to related to force shown in the graph? Using the work–kinetic energy theorem, what is the kinetic energy at ? What is the velocity at ? ANSWER: kg m/s x = 0m x = 2m x = 0 m x = 0 m x = 2 m x = 2 m x = 2 m Correct Part B What is its velocity at ? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the work–kinetic energy theorem? What is the kinetic energy at ? How is the work done in going from to related to force shown in the graph? Can the work be negative? Using the work–kinetic energy theorem, what is the kinetic energy at ? What is the velocity at ? ANSWER: Correct Work on a Sliding Block A block of weight sits on a frictionless inclined plane, which makes an angle with respect to the horizontal, as shown. A force of magnitude , applied parallel to the incline, pulls the block up the plane at constant speed. v = 6.2 ms x = 4m x = 0 m x = 0 m x = 4 m x = 4 m x = 4 m v = 4.6 ms w  F Part A The block moves a distance up the incline. The block does not stop after moving this distance but continues to move with constant speed. What is the total work done on the block by all forces? (Include only the work done after the block has started moving, not the work needed to start the block moving from rest.) Express your answer in terms of given quantities. Hint 1. What physical principle to use To find the total work done on the block, use the work-energy theorem: . Hint 2. Find the change in kinetic energy What is the change in the kinetic energy of the block, from the moment it starts moving until it has been pulled a distance ? Remember that the block is pulled at constant speed. Hint 1. Consider kinetic energy If the block's speed does not change, its kinetic energy cannot change. ANSWER: ANSWER: L Wtot Wtot = Kf − Ki L Kf − Ki = 0 Wtot = 0 Correct Part B What is , the work done on the block by the force of gravity as the block moves a distance up the incline? Express the work done by gravity in terms of the weight and any other quantities given in the problem introduction. Hint 1. Force diagram Hint 2. Force of gravity component What is the component of the force of gravity in the direction of the block's displacement (along the inclined plane)? Express your answer in terms of and . Hint 1. Relative direction of the force and the motion Remember that the force of gravity acts down the plane, whereas the block's displacement is directed up the plane. ANSWER: Wg L w w  ANSWER: Correct Part C What is , the work done on the block by the applied force as the block moves a distance up the incline? Express your answer in terms of and other given quantities. Hint 1. How to find the work done by a constant force Remember that the work done on an object by a particular force is the integral of the dot product of the force and the instantaneous displacement of the object, over the path followed by the object. In this case, since the force is constant and the path is a straight segment of length up the inclined plane, the dot product becomes simple multiplication. ANSWER: Correct Part D What is , the work done on the block by the normal force as the block moves a distance up the inclined plane? Express your answer in terms of given quantities. Hint 1. First step in computing the work Fg|| = −wsin() Wg = −wLsin() WF F L F L WF = FL Wnormal L The work done by the normal force is equal to the dot product of the force vector and the block's displacement vector. The normal force and the block's displacement vector are perpendicular. Therefore, what is their dot product? ANSWER: ANSWER: Correct Problem 11.20 A particle moving along the -axis has the potential energy , where is in . Part A What is the -component of the force on the particle at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the -component of the force on the particle at ? Express your answer to two significant figures and include the appropriate units. N  L = 0 Wnormal = 0 y U = 3.2y3 J y m y y = 0 m Fy = 0 N y y = 1 m ANSWER: Correct Part C What is the -component of the force on the particle at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.28 A cable with 25.0 of tension pulls straight up on a 1.08 block that is initially at rest. Part A What is the block's speed after being lifted 2.40 ? Solve this problem using work and energy. Express your answer with the appropriate units. ANSWER: Correct Fy = -9.6 N y y = 2 m Fy = -38 N N kg m vf = 8.00 ms Problem 11.29 Part A How much work does an elevator motor do to lift a 1500 elevator a height of 110 ? Express your answer with the appropriate units. ANSWER: Correct Part B How much power must the motor supply to do this in 50 at constant speed? Express your answer with the appropriate units. ANSWER: Correct Problem 11.32 How many energy is consumed by a 1.20 hair dryer used for 10.0 and a 11.0 night light left on for 16.0 ? Part A Hair dryer: Express your answer with the appropriate units. kg m Wext = 1.62×106 J s = 3.23×104 P W kW min W hr ANSWER: Correct Part B Night light: Express your answer with the appropriate units. ANSWER: Correct Problem 11.42 A 2500 elevator accelerates upward at 1.20 for 10.0 , starting from rest. Part A How much work does gravity do on the elevator? Express your answer with the appropriate units. ANSWER: Correct W = 7.20×105 J = 6.34×105 W J kg m/s2 m −2.45×105 J Part B How much work does the tension in the elevator cable do on the elevator? Express your answer with the appropriate units. ANSWER: Correct Part C Use the work-kinetic energy theorem to find the kinetic energy of the elevator as it reaches 10.0 . Express your answer with the appropriate units. ANSWER: Correct Part D What is the speed of the elevator as it reaches 10.0 ? Express your answer with the appropriate units. ANSWER: Correct 2.75×105 J m 3.00×104 J m 4.90 ms Problem 11.47 A horizontal spring with spring constant 130 is compressed 17 and used to launch a 2.4 box across a frictionless, horizontal surface. After the box travels some distance, the surface becomes rough. The coefficient of kinetic friction of the box on the surface is 0.15. Part A Use work and energy to find how far the box slides across the rough surface before stopping. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.49 Truck brakes can fail if they get too hot. In some mountainous areas, ramps of loose gravel are constructed to stop runaway trucks that have lost their brakes. The combination of a slight upward slope and a large coefficient of rolling friction as the truck tires sink into the gravel brings the truck safely to a halt. Suppose a gravel ramp slopes upward at 6.0 and the coefficient of rolling friction is 0.45. Part A Use work and energy to find the length of a ramp that will stop a 15,000 truck that enters the ramp at 30 . Express your answer to two significant figures and include the appropriate units. ANSWER: Correct N/m cm kg l = 53 cm kg m/s l = 83 m Problem 11.51 Use work and energy to find an expression for the speed of the block in the following figure just before it hits the floor. Part A Find an expression for the speed of the block if the coefficient of kinetic friction for the block on the table is . Express your answer in terms of the variables , , , , and free fall acceleration . ANSWER: Part B Find an expression for the speed of the block if the table is frictionless. Express your answer in terms of the variables , , , and free fall acceleration . ANSWER: μk M m h μk g v = M m h g Problem 11.57 The spring shown in the figure is compressed 60 and used to launch a 100 physics student. The track is frictionless until it starts up the incline. The student's coefficient of kinetic friction on the incline is 0.12 . Part A What is the student's speed just after losing contact with the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How far up the incline does the student go? Express your answer to two significant figures and include the appropriate units. ANSWER: v = cm kg 30 v = 17 ms Correct Score Summary: Your score on this assignment is 93.6%. You received 112.37 out of a possible total of 120 points. !s = 41 m

Assignment 9 Due: 11:59pm on Friday, April 11, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 11.2 Part A Evaluate the dot product if and . Express your answer using two significant figures. ANSWER: Correct Part B Evaluate the dot product if and . Express your answer using two significant figures. ANSWER: Correct Problem 11.4  A B = 5 − 6 A i ^ j ^ = −9 − 5 B i ^ j ^ A  B  = -15  A B = −5 + 9 A i ^ j ^ = 5 + 6 B i ^ j ^ A  B  = 29 Part A What is the angle between vectors and if and ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part B What is the angle between vectors and if and ? Express your answer as an integer and include the appropriate units. ANSWER: Correct ± All Work and No Play Learning Goal: To be able to calculate work done by a constant force directed at different angles relative to displacement If an object undergoes displacement while being acted upon by a force (or several forces), it is said that work is being done on the object. If the object is moving in a straight line and the displacement and the force are known, the work done by the force can be calculated as , where is the work done by force on the object that undergoes displacement directed at angle relative to .  A B A = 2 + 5 ı ^  ^ B = −2 − 4 ı ^  ^  = 175  A B A = −6 + 2 ı ^  ^ B = − − 3 ı ^  ^  = 90 W =  = cos  F  s  F   s  W F  s  F  Note that depending on the value of , the work done can be positive, negative, or zero. In this problem, you will practice calculating work done on an object moving in a straight line. The first series of questions is related to the accompanying figure. Part A What can be said about the sign of the work done by the force ? ANSWER: Correct When , the cosine of is zero, and therefore the work done is zero. Part B cos  F  1 It is positive. It is negative. It is zero. There is not enough information to answer the question.  = 90  What can be said about the work done by force ? ANSWER: Correct When , is positive, and so the work done is positive. Part C The work done by force is ANSWER: Correct When , is negative, and so the work done is negative. Part D The work done by force is ANSWER: F  2 It is positive. It is negative. It is zero. 0 <  < 90 cos  F  3 positive negative zero 90 <  < 180 cos  F  4 Correct Part E The work done by force is ANSWER: Correct positive negative zero F  5 positive negative zero Part F The work done by force is ANSWER: Correct Part G The work done by force is ANSWER: Correct In the next series of questions, you will use the formula to calculate the work done by various forces on an object that moves 160 meters to the right. F  6 positive negative zero F  7 positive negative zero W =  = cos  F  s  F   s  Part H Find the work done by the 18-newton force. Use two significant figures in your answer. Express your answer in joules. ANSWER: Correct Part I Find the work done by the 30-newton force. Use two significant figures in your answer. Express your answer in joules. ANSWER: Correct Part J Find the work done by the 12-newton force. Use two significant figures in your answer. Express your answer in joules. W W = 2900 J W W = 4200 J W ANSWER: Correct Part K Find the work done by the 15-newton force. Use two significant figures in your answer. Express your answer in joules. ANSWER: Correct Introduction to Potential Energy Learning Goal: Understand that conservative forces can be removed from the work integral by incorporating them into a new form of energy called potential energy that must be added to the kinetic energy to get the total mechanical energy. The first part of this problem contains short-answer questions that review the work-energy theorem. In the second part we introduce the concept of potential energy. But for now, please answer in terms of the work-energy theorem. Work-Energy Theorem The work-energy theorem states , where is the work done by all forces that act on the object, and and are the initial and final kinetic energies, respectively. Part A The work-energy theorem states that a force acting on a particle as it moves over a ______ changes the ______ energy of the particle if the force has a component parallel to the motion. W = -1900 J W W = -1800 J Kf = Ki + Wall Wall Ki Kf Choose the best answer to fill in the blanks above: ANSWER: Correct It is important that the force have a component acting in the direction of motion. For example, if a ball is attached to a string and whirled in uniform circular motion, the string does apply a force to the ball, but since the string's force is always perpendicular to the motion it does no work and cannot change the kinetic energy of the ball. Part B To calculate the change in energy, you must know the force as a function of _______. The work done by the force causes the energy change. Choose the best answer to fill in the blank above: ANSWER: Correct Part C To illustrate the work-energy concept, consider the case of a stone falling from to under the influence of gravity. Using the work-energy concept, we say that work is done by the gravitational _____, resulting in an increase of the ______ energy of the stone. Choose the best answer to fill in the blanks above: distance / potential distance / kinetic vertical displacement / potential none of the above acceleration work distance potential energy xi xf ANSWER: Correct Potential Energy You should read about potential energy in your text before answering the following questions. Potential energy is a concept that builds on the work-energy theorem, enlarging the concept of energy in the most physically useful way. The key aspect that allows for potential energy is the existence of conservative forces, forces for which the work done on an object does not depend on the path of the object, only the initial and final positions of the object. The gravitational force is conservative; the frictional force is not. The change in potential energy is the negative of the work done by conservative forces. Hence considering the initial and final potential energies is equivalent to calculating the work done by the conservative forces. When potential energy is used, it replaces the work done by the associated conservative force. Then only the work due to nonconservative forces needs to be calculated. In summary, when using the concept of potential energy, only nonconservative forces contribute to the work, which now changes the total energy: , where and are the final and initial potential energies, and is the work due only to nonconservative forces. Now, we will revisit the falling stone example using the concept of potential energy. Part D Rather than ascribing the increased kinetic energy of the stone to the work of gravity, we now (when using potential energy rather than work-energy) say that the increased kinetic energy comes from the ______ of the _______ energy. Choose the best answer to fill in the blanks above: ANSWER: force / kinetic potential energy / potential force / potential potential energy / kinetic Kf + Uf = Ef = Wnc + Ei = Wnc + Ki + Ui Uf Ui Wnc Correct Part E This process happens in such a way that total mechanical energy, equal to the ______ of the kinetic and potential energies, is _______. Choose the best answer to fill in the blanks above: ANSWER: Correct Problem 11.7 Part A How much work is done by the force 2.2 6.6 on a particle that moves through displacement 3.9 Express your answer to two significant figures and include the appropriate units. ANSWER: work / potential force / kinetic change / potential sum / conserved sum / zero sum / not conserved difference / conserved F  = (− + i ^ ) N j ^ ! = r m i ^ Correct Part B How much work is done by the force 2.2 6.6 on a particle that moves through displacement 3.9 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.10 A 1.8 book is lying on a 0.80- -high table. You pick it up and place it on a bookshelf 2.27 above the floor. Part A How much work does gravity do on the book? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B W = -8.6 J F  = (− + i ^ ) N j ^ ! = r m? j ^ W = 26 J kg m m Wg = -26 J How much work does your hand do on the book? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.12 The three ropes shown in the bird's-eye view of the figure are used to drag a crate 3.3 across the floor. Part A How much work is done by each of the three forces? Express your answers using two significant figures. Enter your answers numerically separated by commas. ANSWER: WH = 26 J m W1 , W2 , W3 = 1.9,1.2,-2.1 kJ Correct Enhanced EOC: Problem 11.16 A 1.2 particle moving along the x-axis experiences the force shown in the figure. The particle's velocity is 4.6 at . You may want to review ( pages 286 - 287) . For help with math skills, you may want to review: The Definite Integral Part A What is its velocity at ? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the work–kinetic energy theorem? What is the kinetic energy at ? How is the work done in going from to related to force shown in the graph? Using the work–kinetic energy theorem, what is the kinetic energy at ? What is the velocity at ? ANSWER: kg m/s x = 0m x = 2m x = 0 m x = 0 m x = 2 m x = 2 m x = 2 m Correct Part B What is its velocity at ? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the work–kinetic energy theorem? What is the kinetic energy at ? How is the work done in going from to related to force shown in the graph? Can the work be negative? Using the work–kinetic energy theorem, what is the kinetic energy at ? What is the velocity at ? ANSWER: Correct Work on a Sliding Block A block of weight sits on a frictionless inclined plane, which makes an angle with respect to the horizontal, as shown. A force of magnitude , applied parallel to the incline, pulls the block up the plane at constant speed. v = 6.2 ms x = 4m x = 0 m x = 0 m x = 4 m x = 4 m x = 4 m v = 4.6 ms w  F Part A The block moves a distance up the incline. The block does not stop after moving this distance but continues to move with constant speed. What is the total work done on the block by all forces? (Include only the work done after the block has started moving, not the work needed to start the block moving from rest.) Express your answer in terms of given quantities. Hint 1. What physical principle to use To find the total work done on the block, use the work-energy theorem: . Hint 2. Find the change in kinetic energy What is the change in the kinetic energy of the block, from the moment it starts moving until it has been pulled a distance ? Remember that the block is pulled at constant speed. Hint 1. Consider kinetic energy If the block's speed does not change, its kinetic energy cannot change. ANSWER: ANSWER: L Wtot Wtot = Kf − Ki L Kf − Ki = 0 Wtot = 0 Correct Part B What is , the work done on the block by the force of gravity as the block moves a distance up the incline? Express the work done by gravity in terms of the weight and any other quantities given in the problem introduction. Hint 1. Force diagram Hint 2. Force of gravity component What is the component of the force of gravity in the direction of the block's displacement (along the inclined plane)? Express your answer in terms of and . Hint 1. Relative direction of the force and the motion Remember that the force of gravity acts down the plane, whereas the block's displacement is directed up the plane. ANSWER: Wg L w w  ANSWER: Correct Part C What is , the work done on the block by the applied force as the block moves a distance up the incline? Express your answer in terms of and other given quantities. Hint 1. How to find the work done by a constant force Remember that the work done on an object by a particular force is the integral of the dot product of the force and the instantaneous displacement of the object, over the path followed by the object. In this case, since the force is constant and the path is a straight segment of length up the inclined plane, the dot product becomes simple multiplication. ANSWER: Correct Part D What is , the work done on the block by the normal force as the block moves a distance up the inclined plane? Express your answer in terms of given quantities. Hint 1. First step in computing the work Fg|| = −wsin() Wg = −wLsin() WF F L F L WF = FL Wnormal L The work done by the normal force is equal to the dot product of the force vector and the block's displacement vector. The normal force and the block's displacement vector are perpendicular. Therefore, what is their dot product? ANSWER: ANSWER: Correct Problem 11.20 A particle moving along the -axis has the potential energy , where is in . Part A What is the -component of the force on the particle at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the -component of the force on the particle at ? Express your answer to two significant figures and include the appropriate units. N  L = 0 Wnormal = 0 y U = 3.2y3 J y m y y = 0 m Fy = 0 N y y = 1 m ANSWER: Correct Part C What is the -component of the force on the particle at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.28 A cable with 25.0 of tension pulls straight up on a 1.08 block that is initially at rest. Part A What is the block's speed after being lifted 2.40 ? Solve this problem using work and energy. Express your answer with the appropriate units. ANSWER: Correct Fy = -9.6 N y y = 2 m Fy = -38 N N kg m vf = 8.00 ms Problem 11.29 Part A How much work does an elevator motor do to lift a 1500 elevator a height of 110 ? Express your answer with the appropriate units. ANSWER: Correct Part B How much power must the motor supply to do this in 50 at constant speed? Express your answer with the appropriate units. ANSWER: Correct Problem 11.32 How many energy is consumed by a 1.20 hair dryer used for 10.0 and a 11.0 night light left on for 16.0 ? Part A Hair dryer: Express your answer with the appropriate units. kg m Wext = 1.62×106 J s = 3.23×104 P W kW min W hr ANSWER: Correct Part B Night light: Express your answer with the appropriate units. ANSWER: Correct Problem 11.42 A 2500 elevator accelerates upward at 1.20 for 10.0 , starting from rest. Part A How much work does gravity do on the elevator? Express your answer with the appropriate units. ANSWER: Correct W = 7.20×105 J = 6.34×105 W J kg m/s2 m −2.45×105 J Part B How much work does the tension in the elevator cable do on the elevator? Express your answer with the appropriate units. ANSWER: Correct Part C Use the work-kinetic energy theorem to find the kinetic energy of the elevator as it reaches 10.0 . Express your answer with the appropriate units. ANSWER: Correct Part D What is the speed of the elevator as it reaches 10.0 ? Express your answer with the appropriate units. ANSWER: Correct 2.75×105 J m 3.00×104 J m 4.90 ms Problem 11.47 A horizontal spring with spring constant 130 is compressed 17 and used to launch a 2.4 box across a frictionless, horizontal surface. After the box travels some distance, the surface becomes rough. The coefficient of kinetic friction of the box on the surface is 0.15. Part A Use work and energy to find how far the box slides across the rough surface before stopping. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.49 Truck brakes can fail if they get too hot. In some mountainous areas, ramps of loose gravel are constructed to stop runaway trucks that have lost their brakes. The combination of a slight upward slope and a large coefficient of rolling friction as the truck tires sink into the gravel brings the truck safely to a halt. Suppose a gravel ramp slopes upward at 6.0 and the coefficient of rolling friction is 0.45. Part A Use work and energy to find the length of a ramp that will stop a 15,000 truck that enters the ramp at 30 . Express your answer to two significant figures and include the appropriate units. ANSWER: Correct N/m cm kg l = 53 cm kg m/s l = 83 m Problem 11.51 Use work and energy to find an expression for the speed of the block in the following figure just before it hits the floor. Part A Find an expression for the speed of the block if the coefficient of kinetic friction for the block on the table is . Express your answer in terms of the variables , , , , and free fall acceleration . ANSWER: Part B Find an expression for the speed of the block if the table is frictionless. Express your answer in terms of the variables , , , and free fall acceleration . ANSWER: μk M m h μk g v = M m h g Problem 11.57 The spring shown in the figure is compressed 60 and used to launch a 100 physics student. The track is frictionless until it starts up the incline. The student's coefficient of kinetic friction on the incline is 0.12 . Part A What is the student's speed just after losing contact with the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How far up the incline does the student go? Express your answer to two significant figures and include the appropriate units. ANSWER: v = cm kg 30 v = 17 ms Correct Score Summary: Your score on this assignment is 93.6%. You received 112.37 out of a possible total of 120 points. !s = 41 m

please email info@checkyourstudy.com
2. The failure density distribution for mechanical component is given by: fT(t) = (ct)* exp(-.5*c*t^2) where ‘c’ is a parameter of the distribution. Determine: • Cumulative distribution of the failures (5 points) • Reliability of the components (5 points) • Hazard rate for the components (5 points) • Mean, standard deviation of the failure distribution and reliability of components at the end of 2 years, when c=0.0025 (5 points) • Plot the Failure rate density function, Failure time distribution function, Reliability function and Hard Rate function for the given distribution when c=0.0025 (5 points)

2. The failure density distribution for mechanical component is given by: fT(t) = (ct)* exp(-.5*c*t^2) where ‘c’ is a parameter of the distribution. Determine: • Cumulative distribution of the failures (5 points) • Reliability of the components (5 points) • Hazard rate for the components (5 points) • Mean, standard deviation of the failure distribution and reliability of components at the end of 2 years, when c=0.0025 (5 points) • Plot the Failure rate density function, Failure time distribution function, Reliability function and Hard Rate function for the given distribution when c=0.0025 (5 points)

info@checkyourstudy.com 2.    The failure density distribution for  mechanical component is … Read More...
Chapter 10 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A One-Dimensional Inelastic Collision Block 1, of mass = 3.70 , moves along a frictionless air track with speed = 15.0 . It collides with block 2, of mass = 19.0 , which was initially at rest. The blocks stick together after the collision. Part A Find the magnitude of the total initial momentum of the two-block system. Express your answer numerically. You did not open hints for this part. ANSWER: m1 kg v1 m/s m2 kg pi Part B Find , the magnitude of the final velocity of the two-block system. Express your answer numerically. You did not open hints for this part. ANSWER: Part C What is the change in the two-block system’s kinetic energy due to the collision? Express your answer numerically in joules. You did not open hints for this part. ANSWER: pi = kg m/s vf vf = m/s K = Kfinal − Kinitial K = J Conservation of Energy Ranking Task Six pendulums of various masses are released from various heights above a tabletop, as shown in the figures below. All the pendulums have the same length and are mounted such that at the vertical position their lowest points are the height of the tabletop and just do not strike the tabletop when released. Assume that the size of each bob is negligible. Part A Rank each pendulum on the basis of its initial gravitational potential energy (before being released) relative to the tabletop. Rank from largest to smallest To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: m h Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Momentum and Kinetic Energy Consider two objects (Object 1 and Object 2) moving in the same direction on a frictionless surface. Object 1 moves with speed and has mass . Object 2 moves with speed and has mass . Part A Which object has the larger magnitude of its momentum? You did not open hints for this part. ANSWER: Part B Which object has the larger kinetic energy? You did not open hints for this part. ANSWER: v1 = v m1 = 2m v2 = 2v m2 = m Object 1 has the greater magnitude of its momentum. Object 2 has the greater magnitude of its momentum. Both objects have the same magnitude of their momenta. Object 1 has the greater kinetic energy. Object 2 has the greater kinetic energy. The objects have the same kinetic energy. Projectile Motion and Conservation of Energy Ranking Task Part A Six baseball throws are shown below. In each case the baseball is thrown at the same initial speed and from the same height above the ground. Assume that the effects of air resistance are negligible. Rank these throws according to the speed of the baseball the instant before it hits the ground. Rank from largest to smallest. To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: H PSS 10.1 Conservation of Mechanical Energy Learning Goal: To practice Problem-Solving Strategy 10.1 for conservation of mechanical energy problems. Tarzan, in one tree, sights Jane in another tree. He grabs the end of a vine with length 20 that makes an angle of 45 with the vertical, steps off his tree limb, and swings down and then up to Jane’s open arms. When he arrives, his vine makes an angle of 30 with the vertical. Determine whether he gives her a tender embrace or knocks her off her limb by calculating Tarzan’s speed just before he reaches Jane. You can ignore air resistance and the mass of the vine. PROBLEM-SOLVING STRATEGY 10.1 Conservation of mechanical energy MODEL: Choose a system without friction or other losses of mechanical energy. m   VISUALIZE: Draw a before-and-after pictorial representation. Define symbols that will be used in the problem, list known values, and identify what you’re trying to find. SOLVE: The mathematical representation is based on the law of conservation of mechanical energy: . ASSESS: Check that your result has the correct units, is reasonable, and answers the question. Model The problem does not involve friction, nor are there losses of mechanical energy, so conservation of mechanical energy applies. Model Tarzan and the vine as a pendulum. Visualize Part A Which of the following sketches can be used in drawing a before-and-after pictorial representation? ANSWER: Kf + Uf = Ki + Ui Solve Part B What is Tarzan’s speed just before he reaches Jane? Express your answer in meters per second to two significant figures. You did not open hints for this part. ANSWER: Assess Part C This question will be shown after you complete previous question(s). Bungee Jumping Diagram A Diagram B Diagram C Diagram D vf vf = m/s Kate, a bungee jumper, wants to jump off the edge of a bridge that spans a river below. Kate has a mass , and the surface of the bridge is a height above the water. The bungee cord, which has length when unstretched, will first straighten and then stretch as Kate falls. Assume the following: The bungee cord behaves as an ideal spring once it begins to stretch, with spring constant . Kate doesn’t actually jump but simply steps off the edge of the bridge and falls straight downward. Kate’s height is negligible compared to the length of the bungee cord. Hence, she can be treated as a point particle. Use for the magnitude of the acceleration due to gravity. Part A How far below the bridge will Kate eventually be hanging, once she stops oscillating and comes finally to rest? Assume that she doesn’t touch the water. Express the distance in terms of quantities given in the problem introduction. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Spinning Mass on a Spring An object of mass is attached to a spring with spring constant whose unstretched length is , and whose far end is fixed to a shaft that is rotating with angular speed . Neglect gravity and assume that the mass rotates with angular speed as shown. When solving this problem use an inertial coordinate system, as drawn here. m h L k g d = M k L Part A Given the angular speed , find the radius at which the mass rotates without moving toward or away from the origin. Express the radius in terms of , , , and . You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C R( ) k L M R( ) = This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). ± Baby Bounce with a Hooke One of the pioneers of modern science, Sir Robert Hooke (1635-1703), studied the elastic properties of springs and formulated the law that bears his name. Hooke found the relationship among the force a spring exerts, , the distance from equilibrium the end of the spring is displaced, , and a number called the spring constant (or, sometimes, the force constant of the spring). According to Hooke, the force of the spring is directly proportional to its displacement from equilibrium, or . In its scalar form, this equation is simply . The negative sign indicates that the force that the spring exerts and its displacement have opposite directions. The value of depends on the geometry and the material of the spring; it can be easily determined experimentally using this scalar equation. Toy makers have always been interested in springs for the entertainment value of the motion they produce. One well-known application is a baby bouncer,which consists of a harness seat for a toddler, attached to a spring. The entire contraption hooks onto the top of a doorway. The idea is for the baby to hang in the seat with his or her feet just touching the ground so that a good push up will get the baby bouncing, providing potentially hours of entertainment. F  x k F = −kx F = −kx k Part A The following chart and accompanying graph depict an experiment to determine the spring constant for a baby bouncer. Displacement from equilibrium, ( ) Force exerted on the spring, ( ) 0 0 0.005 2.5 0.010 5.0 0.015 7.5 0.020 10 What is the spring constant of the spring being tested for the baby bouncer? Express your answer to two significant figures in newtons per meter. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Shooting a ball into a box Two children are trying to shoot a marble of mass into a small box using a spring-loaded gun that is fixed on a table and shoots horizontally from the edge of the table. The edge of the table is a height above the top of the box (the height of which is negligibly small), and the center of the box is a distance from the edge of the table. x m F N k k = N/m m H d The spring has a spring constant . The first child compresses the spring a distance and finds that the marble falls short of its target by a horizontal distance . Part A By what distance, , should the second child compress the spring so that the marble lands in the middle of the box? (Assume that height of the box is negligible, so that there is no chance that the marble will hit the side of the box before it lands in the bottom.) Express the distance in terms of , , , , and . You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). k x1 d12 x2 m k g H d x2 = Elastic Collision in One Dimension Block 1, of mass , moves across a frictionless surface with speed . It collides elastically with block 2, of mass , which is at rest ( ). After the collision, block 1 moves with speed , while block 2 moves with speed . Assume that , so that after the collision, the two objects move off in the direction of the first object before the collision. Part A This collision is elastic. What quantities, if any, are conserved in this collision? You did not open hints for this part. ANSWER: Part B What is the final speed of block 1? m1 ui m2 vi = 0 uf vf m1 > m2 kinetic energy only momentum only kinetic energy and momentum uf Express in terms of , , and . You did not open hints for this part. ANSWER: Part C What is the final speed of block 2? Express in terms of , , and . You did not open hints for this part. ANSWER: Ballistic Pendulum In a ballistic pendulum an object of mass is fired with an initial speed at a pendulum bob. The bob has a mass , which is suspended by a rod of length and negligible mass. After the collision, the pendulum and object stick together and swing to a maximum angular displacement as shown . uf m1 m2 ui uf = vf vf m1 m2 ui vf = m v0 M L  Part A Find an expression for , the initial speed of the fired object. Express your answer in terms of some or all of the variables , , , and and the acceleration due to gravity, . You did not open hints for this part. ANSWER: Part B An experiment is done to compare the initial speed of bullets fired from different handguns: a 9.0 and a .44 caliber. The guns are fired into a 10- pendulum bob of length . Assume that the 9.0- bullet has a mass of 6.0 and the .44-caliber bullet has a mass of 12 . If the 9.0- bullet causes the pendulum to swing to a maximum angular displacement of 4.3 and the .44-caliber bullet causes a displacement of 10.1 , find the ratio of the initial speed of the 9.0- bullet to the speed of the .44-caliber bullet, . Express your answer numerically. You did not open hints for this part. ANSWER: v0 m M L  g v0 = mm kg L mm g g mm   mm (v /( 0 )9.0 v0)44 Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. (v0 )9.0/(v0 )44 =

Chapter 10 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A One-Dimensional Inelastic Collision Block 1, of mass = 3.70 , moves along a frictionless air track with speed = 15.0 . It collides with block 2, of mass = 19.0 , which was initially at rest. The blocks stick together after the collision. Part A Find the magnitude of the total initial momentum of the two-block system. Express your answer numerically. You did not open hints for this part. ANSWER: m1 kg v1 m/s m2 kg pi Part B Find , the magnitude of the final velocity of the two-block system. Express your answer numerically. You did not open hints for this part. ANSWER: Part C What is the change in the two-block system’s kinetic energy due to the collision? Express your answer numerically in joules. You did not open hints for this part. ANSWER: pi = kg m/s vf vf = m/s K = Kfinal − Kinitial K = J Conservation of Energy Ranking Task Six pendulums of various masses are released from various heights above a tabletop, as shown in the figures below. All the pendulums have the same length and are mounted such that at the vertical position their lowest points are the height of the tabletop and just do not strike the tabletop when released. Assume that the size of each bob is negligible. Part A Rank each pendulum on the basis of its initial gravitational potential energy (before being released) relative to the tabletop. Rank from largest to smallest To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: m h Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Momentum and Kinetic Energy Consider two objects (Object 1 and Object 2) moving in the same direction on a frictionless surface. Object 1 moves with speed and has mass . Object 2 moves with speed and has mass . Part A Which object has the larger magnitude of its momentum? You did not open hints for this part. ANSWER: Part B Which object has the larger kinetic energy? You did not open hints for this part. ANSWER: v1 = v m1 = 2m v2 = 2v m2 = m Object 1 has the greater magnitude of its momentum. Object 2 has the greater magnitude of its momentum. Both objects have the same magnitude of their momenta. Object 1 has the greater kinetic energy. Object 2 has the greater kinetic energy. The objects have the same kinetic energy. Projectile Motion and Conservation of Energy Ranking Task Part A Six baseball throws are shown below. In each case the baseball is thrown at the same initial speed and from the same height above the ground. Assume that the effects of air resistance are negligible. Rank these throws according to the speed of the baseball the instant before it hits the ground. Rank from largest to smallest. To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: H PSS 10.1 Conservation of Mechanical Energy Learning Goal: To practice Problem-Solving Strategy 10.1 for conservation of mechanical energy problems. Tarzan, in one tree, sights Jane in another tree. He grabs the end of a vine with length 20 that makes an angle of 45 with the vertical, steps off his tree limb, and swings down and then up to Jane’s open arms. When he arrives, his vine makes an angle of 30 with the vertical. Determine whether he gives her a tender embrace or knocks her off her limb by calculating Tarzan’s speed just before he reaches Jane. You can ignore air resistance and the mass of the vine. PROBLEM-SOLVING STRATEGY 10.1 Conservation of mechanical energy MODEL: Choose a system without friction or other losses of mechanical energy. m   VISUALIZE: Draw a before-and-after pictorial representation. Define symbols that will be used in the problem, list known values, and identify what you’re trying to find. SOLVE: The mathematical representation is based on the law of conservation of mechanical energy: . ASSESS: Check that your result has the correct units, is reasonable, and answers the question. Model The problem does not involve friction, nor are there losses of mechanical energy, so conservation of mechanical energy applies. Model Tarzan and the vine as a pendulum. Visualize Part A Which of the following sketches can be used in drawing a before-and-after pictorial representation? ANSWER: Kf + Uf = Ki + Ui Solve Part B What is Tarzan’s speed just before he reaches Jane? Express your answer in meters per second to two significant figures. You did not open hints for this part. ANSWER: Assess Part C This question will be shown after you complete previous question(s). Bungee Jumping Diagram A Diagram B Diagram C Diagram D vf vf = m/s Kate, a bungee jumper, wants to jump off the edge of a bridge that spans a river below. Kate has a mass , and the surface of the bridge is a height above the water. The bungee cord, which has length when unstretched, will first straighten and then stretch as Kate falls. Assume the following: The bungee cord behaves as an ideal spring once it begins to stretch, with spring constant . Kate doesn’t actually jump but simply steps off the edge of the bridge and falls straight downward. Kate’s height is negligible compared to the length of the bungee cord. Hence, she can be treated as a point particle. Use for the magnitude of the acceleration due to gravity. Part A How far below the bridge will Kate eventually be hanging, once she stops oscillating and comes finally to rest? Assume that she doesn’t touch the water. Express the distance in terms of quantities given in the problem introduction. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Spinning Mass on a Spring An object of mass is attached to a spring with spring constant whose unstretched length is , and whose far end is fixed to a shaft that is rotating with angular speed . Neglect gravity and assume that the mass rotates with angular speed as shown. When solving this problem use an inertial coordinate system, as drawn here. m h L k g d = M k L Part A Given the angular speed , find the radius at which the mass rotates without moving toward or away from the origin. Express the radius in terms of , , , and . You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C R( ) k L M R( ) = This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). ± Baby Bounce with a Hooke One of the pioneers of modern science, Sir Robert Hooke (1635-1703), studied the elastic properties of springs and formulated the law that bears his name. Hooke found the relationship among the force a spring exerts, , the distance from equilibrium the end of the spring is displaced, , and a number called the spring constant (or, sometimes, the force constant of the spring). According to Hooke, the force of the spring is directly proportional to its displacement from equilibrium, or . In its scalar form, this equation is simply . The negative sign indicates that the force that the spring exerts and its displacement have opposite directions. The value of depends on the geometry and the material of the spring; it can be easily determined experimentally using this scalar equation. Toy makers have always been interested in springs for the entertainment value of the motion they produce. One well-known application is a baby bouncer,which consists of a harness seat for a toddler, attached to a spring. The entire contraption hooks onto the top of a doorway. The idea is for the baby to hang in the seat with his or her feet just touching the ground so that a good push up will get the baby bouncing, providing potentially hours of entertainment. F  x k F = −kx F = −kx k Part A The following chart and accompanying graph depict an experiment to determine the spring constant for a baby bouncer. Displacement from equilibrium, ( ) Force exerted on the spring, ( ) 0 0 0.005 2.5 0.010 5.0 0.015 7.5 0.020 10 What is the spring constant of the spring being tested for the baby bouncer? Express your answer to two significant figures in newtons per meter. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Shooting a ball into a box Two children are trying to shoot a marble of mass into a small box using a spring-loaded gun that is fixed on a table and shoots horizontally from the edge of the table. The edge of the table is a height above the top of the box (the height of which is negligibly small), and the center of the box is a distance from the edge of the table. x m F N k k = N/m m H d The spring has a spring constant . The first child compresses the spring a distance and finds that the marble falls short of its target by a horizontal distance . Part A By what distance, , should the second child compress the spring so that the marble lands in the middle of the box? (Assume that height of the box is negligible, so that there is no chance that the marble will hit the side of the box before it lands in the bottom.) Express the distance in terms of , , , , and . You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). k x1 d12 x2 m k g H d x2 = Elastic Collision in One Dimension Block 1, of mass , moves across a frictionless surface with speed . It collides elastically with block 2, of mass , which is at rest ( ). After the collision, block 1 moves with speed , while block 2 moves with speed . Assume that , so that after the collision, the two objects move off in the direction of the first object before the collision. Part A This collision is elastic. What quantities, if any, are conserved in this collision? You did not open hints for this part. ANSWER: Part B What is the final speed of block 1? m1 ui m2 vi = 0 uf vf m1 > m2 kinetic energy only momentum only kinetic energy and momentum uf Express in terms of , , and . You did not open hints for this part. ANSWER: Part C What is the final speed of block 2? Express in terms of , , and . You did not open hints for this part. ANSWER: Ballistic Pendulum In a ballistic pendulum an object of mass is fired with an initial speed at a pendulum bob. The bob has a mass , which is suspended by a rod of length and negligible mass. After the collision, the pendulum and object stick together and swing to a maximum angular displacement as shown . uf m1 m2 ui uf = vf vf m1 m2 ui vf = m v0 M L  Part A Find an expression for , the initial speed of the fired object. Express your answer in terms of some or all of the variables , , , and and the acceleration due to gravity, . You did not open hints for this part. ANSWER: Part B An experiment is done to compare the initial speed of bullets fired from different handguns: a 9.0 and a .44 caliber. The guns are fired into a 10- pendulum bob of length . Assume that the 9.0- bullet has a mass of 6.0 and the .44-caliber bullet has a mass of 12 . If the 9.0- bullet causes the pendulum to swing to a maximum angular displacement of 4.3 and the .44-caliber bullet causes a displacement of 10.1 , find the ratio of the initial speed of the 9.0- bullet to the speed of the .44-caliber bullet, . Express your answer numerically. You did not open hints for this part. ANSWER: v0 m M L  g v0 = mm kg L mm g g mm   mm (v /( 0 )9.0 v0)44 Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. (v0 )9.0/(v0 )44 =

please email info@checkyourstudy.com
8) A heavy steel ball is attached to a light rod to make a pendulum. The pendulum begins at rest at instant A, as shown. The ball is then pulled to one side and held at rest. At instant B, the pendulum is released from rest. It swings down and passes its original height at instant C, as shown. The total mechanical energy of the pendulum is greatest at: a) Point B b) Point C c) Equal at both instants d) Since the mass of the ball and the height it is raised to before it is released is not given it is impossible to determine.

8) A heavy steel ball is attached to a light rod to make a pendulum. The pendulum begins at rest at instant A, as shown. The ball is then pulled to one side and held at rest. At instant B, the pendulum is released from rest. It swings down and passes its original height at instant C, as shown. The total mechanical energy of the pendulum is greatest at: a) Point B b) Point C c) Equal at both instants d) Since the mass of the ball and the height it is raised to before it is released is not given it is impossible to determine.

8) A heavy steel ball is attached to a light … Read More...
What is meant by the term viscoelasticity

What is meant by the term viscoelasticity

In actuality all materials depart from Hooke’s law in numerous … Read More...
Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = -60 % s t = 0 s cm cm/s 0 = -2.09 rad Correct Part B What is the phase at ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part C What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: t = 0.5 s  = 0 rad t = 1.0 s  = 2.09 rad t = 1.5 s  = 4.19 rad Correct Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct g cm s 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 0.628 s 5.00 Nm -0.785 rad Part E The initial coordinate of the mass. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part F The initial velocity. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part G The maximum speed. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 1.41 cm 14.1 cms 20.0 cms Part H The total energy. Express your answer to one decimal place and include the appropriate units. ANSWER: Correct Part I The velocity at . Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? 1.0 mJ t = 0.40 s 1.46 cms N/m cm s Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum m = 110 g vmax = 49 cms A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. m L T T L T = 2 Lg −−  g T/2 T ‘2T 2T g/6 ANSWER: Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. T/6 T/’6 ‘6T 6T It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. g % s L = 19 cm m lmoon = 0.35 m m g 1.0 MHz Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 94.2%. You received 135.71 out of a possible total of 144 points. N amax = 6.6 μm vmax = 41 ms

Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = -60 % s t = 0 s cm cm/s 0 = -2.09 rad Correct Part B What is the phase at ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part C What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: t = 0.5 s  = 0 rad t = 1.0 s  = 2.09 rad t = 1.5 s  = 4.19 rad Correct Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct g cm s 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 0.628 s 5.00 Nm -0.785 rad Part E The initial coordinate of the mass. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part F The initial velocity. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part G The maximum speed. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 1.41 cm 14.1 cms 20.0 cms Part H The total energy. Express your answer to one decimal place and include the appropriate units. ANSWER: Correct Part I The velocity at . Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? 1.0 mJ t = 0.40 s 1.46 cms N/m cm s Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum m = 110 g vmax = 49 cms A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. m L T T L T = 2 Lg −−  g T/2 T ‘2T 2T g/6 ANSWER: Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. T/6 T/’6 ‘6T 6T It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. g % s L = 19 cm m lmoon = 0.35 m m g 1.0 MHz Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 94.2%. You received 135.71 out of a possible total of 144 points. N amax = 6.6 μm vmax = 41 ms

please email info@checkyourstudy.com