MCE 260 Fall 2015 Homework 4, due September 22, 2015. PRESENT CLEARLY HOW YOU DEVELOPED THE SOLUTION TO THE PROBLEMS Each problem is worth up to 5 points. Points are given as follows: 5 points: Work was complete and presented clearly, the answer is correct 4 points: Work was complete, but not clearly presented or some errors in calculation 3 points: Some errors or omissions in methods or presentation 2 points: Major errors or omissions in methods or presentation 1 point: Problem was understood but incorrect approach was used DO SOMETHING WITH LINKAGES 1. (5 points) Fig 4-16b shows a Stephenson 6-bar linkage. Assume that the linkage is driven by a constant speed motor on the fixed pivot of link 7. Draw this linkage schematically (dimensions are not important). The link numbering and vector loops are already defined in Fig 4-16b. Add symbols for the angles θ2… θ8 and the lengths L2… L8 to the Figure. 2. (5 points) There are two vector loops (1-2-3-4, and 4-5-6-7-8). Write the vector loop equations as separate X and Y equations for each loop. 3. (5 points) Identify the unknowns that must be solved for doing position analysis. Make sure that the number of unknowns is the same as the number of equations. Hint: “links” 3 and 5 are both on the (rigid) coupler, so there is a simple relationship between the two angles. 4. (5 points) Write the vector loop equations for the inverted crank-slider (Fig. 4-13). Identify the two unknowns that must be solved when it is driven by the slider joint, which means that length b is a known input (as in the hydraulic excavator). Write expressions for the elements of the 2×2 Jacobian matrix. 5. (5 points) Modify the Matlab code fbpos1vec.m to solve the position analysis problem for this system. You may choose the dimensions and the input (probably best to make this similar to Fig 4-13). Show the lines of Matlab code that you changed (and no other lines) and show the values for the two unknowns that you solved. Page 1 of 1

## MCE 260 Fall 2015 Homework 4, due September 22, 2015. PRESENT CLEARLY HOW YOU DEVELOPED THE SOLUTION TO THE PROBLEMS Each problem is worth up to 5 points. Points are given as follows: 5 points: Work was complete and presented clearly, the answer is correct 4 points: Work was complete, but not clearly presented or some errors in calculation 3 points: Some errors or omissions in methods or presentation 2 points: Major errors or omissions in methods or presentation 1 point: Problem was understood but incorrect approach was used DO SOMETHING WITH LINKAGES 1. (5 points) Fig 4-16b shows a Stephenson 6-bar linkage. Assume that the linkage is driven by a constant speed motor on the fixed pivot of link 7. Draw this linkage schematically (dimensions are not important). The link numbering and vector loops are already defined in Fig 4-16b. Add symbols for the angles θ2… θ8 and the lengths L2… L8 to the Figure. 2. (5 points) There are two vector loops (1-2-3-4, and 4-5-6-7-8). Write the vector loop equations as separate X and Y equations for each loop. 3. (5 points) Identify the unknowns that must be solved for doing position analysis. Make sure that the number of unknowns is the same as the number of equations. Hint: “links” 3 and 5 are both on the (rigid) coupler, so there is a simple relationship between the two angles. 4. (5 points) Write the vector loop equations for the inverted crank-slider (Fig. 4-13). Identify the two unknowns that must be solved when it is driven by the slider joint, which means that length b is a known input (as in the hydraulic excavator). Write expressions for the elements of the 2×2 Jacobian matrix. 5. (5 points) Modify the Matlab code fbpos1vec.m to solve the position analysis problem for this system. You may choose the dimensions and the input (probably best to make this similar to Fig 4-13). Show the lines of Matlab code that you changed (and no other lines) and show the values for the two unknowns that you solved. Page 1 of 1

info@checkyourstudy.com
Materials Chemistry for Engineers 1. In the van der Waals corrections to the Ideal Gas Law: (P + a/V2)(V – b) = nRT (a) What do a and b correct for from the Ideal Gas Law? (b) How would one determine a and b experimentally? Describe a proposed experiment and data analysis method for your experiment. 2. (a) What are the assumptions of the Ideal Gas Law? How did van der Waal modify these assumptions to come up with his equation of state? (b) what is an equation of state, in general? Describe in your own words. 3. Given the following data: Material a b_____ (l2.atm/mole2) (l/mole) N2 1.39 0.03913 NH3 4.17 0.03107 Aniline 26.50 0.1369 Benzene 18.00 0.1154 (a) Plot P vs. T for each gas using the van der Waals equation of state. Assume that you have a 1 liter volume and 1 mole of gas and plot the temperature on the x-axis from room temperature to 1400 K (pressures should range from about 0 atm to about 120 atm, depending on the gas). Plot the Ideal Gas Law with the other data on one plot. Are the interactions between molecules attractive or repulsive at low temperature? How do you know? What is happening with the gases at high temperature? Is one of the gases different from the others at 1400 K? (b) Discuss the nature of the intermolecular interaction that creates the deviation from ideality for each material. Are there induced dipole-induced dipole interactions, iondipole interactions, etc. for each of the different gases? Draw their chemical structures. 4. Ethane (CH3CH3) and fluoromethane (CH3F) have the same number of electrons and are essentially the same size. However, ethane has a boiling point of 184.5 K and fluoromethane has a boiling point of 194.7 K. Explain this 10 degree difference in boiling point in terms of the van der Waals forces present. Bonus, what is the size of each molecule? Show your calculation/sources.

## Materials Chemistry for Engineers 1. In the van der Waals corrections to the Ideal Gas Law: (P + a/V2)(V – b) = nRT (a) What do a and b correct for from the Ideal Gas Law? (b) How would one determine a and b experimentally? Describe a proposed experiment and data analysis method for your experiment. 2. (a) What are the assumptions of the Ideal Gas Law? How did van der Waal modify these assumptions to come up with his equation of state? (b) what is an equation of state, in general? Describe in your own words. 3. Given the following data: Material a b_____ (l2.atm/mole2) (l/mole) N2 1.39 0.03913 NH3 4.17 0.03107 Aniline 26.50 0.1369 Benzene 18.00 0.1154 (a) Plot P vs. T for each gas using the van der Waals equation of state. Assume that you have a 1 liter volume and 1 mole of gas and plot the temperature on the x-axis from room temperature to 1400 K (pressures should range from about 0 atm to about 120 atm, depending on the gas). Plot the Ideal Gas Law with the other data on one plot. Are the interactions between molecules attractive or repulsive at low temperature? How do you know? What is happening with the gases at high temperature? Is one of the gases different from the others at 1400 K? (b) Discuss the nature of the intermolecular interaction that creates the deviation from ideality for each material. Are there induced dipole-induced dipole interactions, iondipole interactions, etc. for each of the different gases? Draw their chemical structures. 4. Ethane (CH3CH3) and fluoromethane (CH3F) have the same number of electrons and are essentially the same size. However, ethane has a boiling point of 184.5 K and fluoromethane has a boiling point of 194.7 K. Explain this 10 degree difference in boiling point in terms of the van der Waals forces present. Bonus, what is the size of each molecule? Show your calculation/sources.

No expert has answered this question yet. You can browse … Read More...
STUDENT GRADER Total Score I am submitting my own work, and I understand penalties will be assessed if I submit work for credit that is not my own. Print Name ID Number Sign Name Date # Points Score 1 4 2 8 3 6 4 12 5 4 6 10 7 8 8 6 9 6 Weeks late Adjusted Score Estimated Work Hours 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 Overall Weight Adjusted Score: Deduct 20% from score for each week late Problem 1. Sketch circuits for the following logic equations. Y <= (A and B and C) or not ((A and not B and C and not D) or not (B or D)); X <= (A xor (B and C) xor not D) or (not (B xor C) and not (C or D)) Problem 2. Sketch circuits and write VHDL assignment statements for the following equations. F = m(1, 2, 6) F = M(0, 7) Problem 3. Write logic assignment statements for the following circuit. Problem 4: Sketch circuits and write VHDL assignment statements for the truth tables below. Problem 5: Sketch POS circuits for the 2XOR and 2XNOR functions. Problem 6: Sketch the circuit described by the netlist shown, and complete the timing diagram for the stimulus shown to document the circuit’s response to the example stimulus. Use a 100ns vertical grid in your timing diagram, and show all inputs and outputs. Problem 7: Create a truth table that corresponds to the simulation shown below. Show all input and output values in the truth table, and sketch a logic circuit that could have been used to create the waveform. Problem 8. The Seattle Mariners haven’t had a stolen base in 6 months, and the manager decided it was because the other teams were reading his signals to the base runners. He came up with a new set of signals (pulling on his EAR, lifting one LEG, patting the top of his HEAD, and BOWing) to indicate when runners should attempt to steal a base. A runner should STEAL a base if and only if the manager pulls his EAR and BOWs while patting his HEAD, or if he lifts his LEG and pats his HEAD without BOWing, or anytime he pulls his EAR without lifting his LEG. Sketch a minimal circuit that could be used to indicate when a runner should steal a base. Problem 9. A room has four doors and four light switches (one by each door). Sketch a circuit that allows the four switches to control the light – each switch should be able to turn the light on if it is currently off, and off if it is currently on. Note that it will not be possible to associate a given switch position with “light on” or “light off” – simply moving any switch should modify the light’s status.

## STUDENT GRADER Total Score I am submitting my own work, and I understand penalties will be assessed if I submit work for credit that is not my own. Print Name ID Number Sign Name Date # Points Score 1 4 2 8 3 6 4 12 5 4 6 10 7 8 8 6 9 6 Weeks late Adjusted Score Estimated Work Hours 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 Overall Weight Adjusted Score: Deduct 20% from score for each week late Problem 1. Sketch circuits for the following logic equations. Y <= (A and B and C) or not ((A and not B and C and not D) or not (B or D)); X <= (A xor (B and C) xor not D) or (not (B xor C) and not (C or D)) Problem 2. Sketch circuits and write VHDL assignment statements for the following equations. F = m(1, 2, 6) F = M(0, 7) Problem 3. Write logic assignment statements for the following circuit. Problem 4: Sketch circuits and write VHDL assignment statements for the truth tables below. Problem 5: Sketch POS circuits for the 2XOR and 2XNOR functions. Problem 6: Sketch the circuit described by the netlist shown, and complete the timing diagram for the stimulus shown to document the circuit’s response to the example stimulus. Use a 100ns vertical grid in your timing diagram, and show all inputs and outputs. Problem 7: Create a truth table that corresponds to the simulation shown below. Show all input and output values in the truth table, and sketch a logic circuit that could have been used to create the waveform. Problem 8. The Seattle Mariners haven’t had a stolen base in 6 months, and the manager decided it was because the other teams were reading his signals to the base runners. He came up with a new set of signals (pulling on his EAR, lifting one LEG, patting the top of his HEAD, and BOWing) to indicate when runners should attempt to steal a base. A runner should STEAL a base if and only if the manager pulls his EAR and BOWs while patting his HEAD, or if he lifts his LEG and pats his HEAD without BOWing, or anytime he pulls his EAR without lifting his LEG. Sketch a minimal circuit that could be used to indicate when a runner should steal a base. Problem 9. A room has four doors and four light switches (one by each door). Sketch a circuit that allows the four switches to control the light – each switch should be able to turn the light on if it is currently off, and off if it is currently on. Note that it will not be possible to associate a given switch position with “light on” or “light off” – simply moving any switch should modify the light’s status.

info@checkyourstudy.com
Cereal grains are one of the easiest plants to genetically modify. Select one: True False

## Cereal grains are one of the easiest plants to genetically modify. Select one: True False

Cereal grains are one of the easiest plants to genetically … Read More...
• Question 8 When a company purchase COTS product: Answers: The typically have no rights to the intellectual property rights of the product Can modify the program to fit their specific needs Typically get access to the source code to allow proper software installation All the choices are correct

## • Question 8 When a company purchase COTS product: Answers: The typically have no rights to the intellectual property rights of the product Can modify the program to fit their specific needs Typically get access to the source code to allow proper software installation All the choices are correct

Question 8   When a company purchase COTS product: Answers: … Read More...
1- Which of the following is not a basic role of managers? Interpersonal Entrepreneurial Informational Decisional 2- A company’s IT architecture includes all of the following except: Hardware and software Networks Database management systems The members of the IT staff How IT decisions will be made 3- Which of the following is NOT one of the three objectives that the IT strategic plan must meet to allow an organization to achieve its goals? Alignment with the strategic plan Clearly defined IT steering committee IS development resources allocated Seamless IT architecture 4- In the _____ phase of the decision-making process, managers examine a situation and identify and define the problem. implementation choice design intelligence consideration 5- Which of the following systems acquisition methods can result in a company’s acquiring software that is controlled by another company, may be difficult to enhance or modify, and may not support the desired business processes? Systems development life cycle Prototyping End-user development Buy option Component-based development 6- Which of the following systems acquisition methods requires staff to systematically go through every step in the development process and has a lower probability of missing important user requirements? Systems development life cycle Prototyping End-user development External acquisition Object-oriented development 7- Which of the following is NOT an advantage of the buy option for acquiring IS applications? Few types of off-the-shelf software are available, thus limiting confusion. The software can be tried out. The buy option saves time. The company will know what it is getting. All of these 8- Evaluating the benefits of IT projects is more complex than evaluating their costs for all of the following reasons except: Benefits are harder than costs to quantify. Benefits tend to be more tangible than costs. IT can be used for several different purposes. The probability of obtaining a return from an IT investment is based on the probability of implementation success. The proposed system may be “cutting edge.” 9- Decisions today are becoming _____ complex due to _____ uncertainty in the decision environment. less, decreased more, decreased less, increased more, increased neither more nor less, decreased 10- Which of the following is/are disadvantages of the buy option for acquiring IS applications? The software may not exactly meet the company’s needs. The software may be impossible to modify. The company will not have control over software improvements. The software may not integrate with existing systems. All of these