In your opinion, will BitCoins stick around? Why or Why Not?

In your opinion, will BitCoins stick around? Why or Why Not?

In your opinion, will BitCoins stick around? Why or Why … Read More...
Chapter 1 Practice Problems (Practice – no credit) Due: 11:59pm on Wednesday, February 5, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Curved Motion Diagram The motion diagram shown in the figure represents a pendulum released from rest at an angle of 45 from the vertical. The dots in the motion diagram represent the positions of the pendulum bob at eleven moments separated by equal time intervals. The green arrows represent the average velocity between adjacent dots. Also given is a “compass rose” in which directions are labeled with the letters of the alphabet.  Part A What is the direction of the acceleration of the object at moment 5? Enter the letter of the arrow with this direction from the compass rose in the figure. Type Z if the acceleration vector has zero length. You did not open hints for this part. ANSWER: Incorrect; Try Again Part B What is the direction of the acceleration of the object at moments 0 and 10? Enter the letters corresponding to the arrows with these directions from the compass rose in the figure, separated by commas. Type Z if the acceleration vector has zero length. You did not open hints for this part. ANSWER: Incorrect; Try Again PSS 1.1 Motion Diagrams Learning Goal: To practice Problem-Solving Strategy 1.1 for motion diagram problems. A car is traveling with constant velocity along a highway. The driver notices he is late for work, so he stomps down on the gas pedal and the car begins to speed up. The car has just achieved double its directions at time step 0, time step 10 = initial velocity when the driver spots a police officer behind him and applies the brakes. The car then slows down, coming to rest at a stoplight ahead. Draw a complete motion diagram for this situation. PROBLEM-SOLVING STRATEGY 1.1 Motion diagrams MODEL: Represent the moving object as a particle. Make simplifying assumptions when interpreting the problem statement. VISUALIZE: A complete motion diagram consists of: The position of the object in each frame of the film, shown as a dot. Use five or six dots to make the motion clear but without overcrowding the picture. More complex motions may need more dots. The average velocity vectors, found by connecting each dot in the motion diagram to the next with a vector arrow. There is one velocity vector linking each set of two position dots. Label the row of velocity vectors . The average acceleration vectors, found using Tactics Box 1.3. There is one acceleration vector linking each set of two velocity vectors. Each acceleration vector is drawn at the dot between the two velocity vectors it links. Use to indicate a point at which the acceleration is zero. Label the row of acceleration vectors . Model It is appropriate to use the particle model for the car. You should also make some simplifying assumptions. v 0 a Part A The car’s motion can be divided into three different stages: its motion before the driver realizes he’s late, its motion after the driver hits the gas (but before he sees the police car), and its motion after the driver sees the police car. Which of the following simplifying assumptions is it reasonable to make in this problem? During each of the three different stages of its motion, the car is moving with constant A. acceleration. B. During each of the three different stages of its motion, the car is moving with constant velocity. C. The highway is straight (i.e., there are no curves). D. The highway is level (i.e., there are no hills or valleys). Enter all the correct answers in alphabetical order without commas. For example, if statements C and D are correct, enter CD. ANSWER: Correct In addition to the assumptions listed above, in the rest of this problem assume that the car is moving in a straight line to the right. Visualize Part B In the three diagrams shown to the left, the position of the car at five subsequent instants of time is represented by black dots, and the car’s average velocity is represented by green arrows. Which of these diagrams best describes the position and the velocity of the car before the driver notices he is late? ANSWER: Correct Part C Which of the diagrams shown to the left best describes the position and the velocity of the car after the driver hits the gas, but before he notices the police officer? ANSWER: Correct A B C A B C Part D Which of the diagrams shown to the left best describes the position and the velocity of the car after the driver notices the police officer? ANSWER: Correct Part E Which of the diagrams shown below most accurately depicts the average acceleration vectors of the car during the events described in the problem introduction? ANSWER: A B C Correct You can now draw a complete motion diagram for the situation described in this problem. Your diagram should look like this: Measurements in SI Units Familiarity with SI units will aid your study of physics and all other sciences. Part A What is the approximate height of the average adult in centimeters? Hint 1. Converting between feet and centimeters The distance from your elbow to your fingertips is typically about 50 . A B C cm ANSWER: Correct If you’re not familiar with metric units of length, you can use your body to develop intuition for them. The average height of an adult is 5 6.4 . The distance from elbow to fingertips on the average adult is about 50 . Ten (1 ) is about the width of this adult’s little finger and 10 is about the width of the average hand. Part B Approximately what is the mass of the average adult in kilograms? Hint 1. Converting between pounds and kilograms Something that weighs 1 has a mass of about . ANSWER: Correct Something that weighs 1 has a mass of about . This is a useful conversion to keep in mind! ± A Trip to Europe 100 200 300 cm cm cm feet inches cm mm cm cm pound 1 kg 2 80 500 1200 kg kg kg pound (1/2) kg Learning Goal: To understand how to use dimensional analysis to solve problems. Dimensional analysis is a useful tool for solving problems that involve unit conversions. Since unit conversion is not limited to physics problems but is part of our everyday life, correct use of conversion factors is essential to working through problems of practical importance. For example, dimensional analysis could be used in problems involving currency exchange. Say you want to calculate how many euros you get if you exchange 3600 ( ), given the exchange rate , that is, 1 to 1.20 . Begin by writing down the starting value, 3600 . This can also be written as a fraction: . Next, convert dollars to euros. This conversion involves multiplying by a simple conversion factor derived from the exchange rate: . Note that the “dollar” unit, , should appear on the bottom of this conversion factor, since appears on the top of the starting value. Finally, since dollars are divided by dollars, the units can be canceled and the final result is . Currency exchange is only one example of many practical situations where dimensional analysis may help you to work through problems. Remember that dimensional analysis involves multiplying a given value by a conversion factor, resulting in a value in the new units. The conversion factor can be the ratio of any two quantities, as long as the ratio is equal to one. You and your friends are organizing a trip to Europe. Your plan is to rent a car and drive through the major European capitals. By consulting a map you estimate that you will cover a total distance of 5000 . Consider the euro-dollar exchange rate given in the introduction and use dimensional analysis to work through these simple problems. Part A You select a rental package that includes a car with an average consumption of 6.00 of fuel per 100 . Considering that in Europe the average fuel cost is 1.063 , how much (in US dollars) will you spend in fuel on your trip? Express your answer numerically in US dollars to three significant figures. You did not open hints for this part. ANSWER: US dollars USD 1 EUR = 1.20 USD euro US dollars USD 3600 USD 1 1.00 EUR 1.20 USD USD USD ( )( ) = 3000 EUR 3600 USD 1 1.00 EUR 1.20 USD km liters km euros/liter Part B How many gallons of fuel would the rental car consume per mile? Express your answer numerically in gallons per mile to three significant figures. You did not open hints for this part. ANSWER: Part C This question will be shown after you complete previous question(s). Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. Cost of fuel = USD gallons/mile

Chapter 1 Practice Problems (Practice – no credit) Due: 11:59pm on Wednesday, February 5, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Curved Motion Diagram The motion diagram shown in the figure represents a pendulum released from rest at an angle of 45 from the vertical. The dots in the motion diagram represent the positions of the pendulum bob at eleven moments separated by equal time intervals. The green arrows represent the average velocity between adjacent dots. Also given is a “compass rose” in which directions are labeled with the letters of the alphabet.  Part A What is the direction of the acceleration of the object at moment 5? Enter the letter of the arrow with this direction from the compass rose in the figure. Type Z if the acceleration vector has zero length. You did not open hints for this part. ANSWER: Incorrect; Try Again Part B What is the direction of the acceleration of the object at moments 0 and 10? Enter the letters corresponding to the arrows with these directions from the compass rose in the figure, separated by commas. Type Z if the acceleration vector has zero length. You did not open hints for this part. ANSWER: Incorrect; Try Again PSS 1.1 Motion Diagrams Learning Goal: To practice Problem-Solving Strategy 1.1 for motion diagram problems. A car is traveling with constant velocity along a highway. The driver notices he is late for work, so he stomps down on the gas pedal and the car begins to speed up. The car has just achieved double its directions at time step 0, time step 10 = initial velocity when the driver spots a police officer behind him and applies the brakes. The car then slows down, coming to rest at a stoplight ahead. Draw a complete motion diagram for this situation. PROBLEM-SOLVING STRATEGY 1.1 Motion diagrams MODEL: Represent the moving object as a particle. Make simplifying assumptions when interpreting the problem statement. VISUALIZE: A complete motion diagram consists of: The position of the object in each frame of the film, shown as a dot. Use five or six dots to make the motion clear but without overcrowding the picture. More complex motions may need more dots. The average velocity vectors, found by connecting each dot in the motion diagram to the next with a vector arrow. There is one velocity vector linking each set of two position dots. Label the row of velocity vectors . The average acceleration vectors, found using Tactics Box 1.3. There is one acceleration vector linking each set of two velocity vectors. Each acceleration vector is drawn at the dot between the two velocity vectors it links. Use to indicate a point at which the acceleration is zero. Label the row of acceleration vectors . Model It is appropriate to use the particle model for the car. You should also make some simplifying assumptions. v 0 a Part A The car’s motion can be divided into three different stages: its motion before the driver realizes he’s late, its motion after the driver hits the gas (but before he sees the police car), and its motion after the driver sees the police car. Which of the following simplifying assumptions is it reasonable to make in this problem? During each of the three different stages of its motion, the car is moving with constant A. acceleration. B. During each of the three different stages of its motion, the car is moving with constant velocity. C. The highway is straight (i.e., there are no curves). D. The highway is level (i.e., there are no hills or valleys). Enter all the correct answers in alphabetical order without commas. For example, if statements C and D are correct, enter CD. ANSWER: Correct In addition to the assumptions listed above, in the rest of this problem assume that the car is moving in a straight line to the right. Visualize Part B In the three diagrams shown to the left, the position of the car at five subsequent instants of time is represented by black dots, and the car’s average velocity is represented by green arrows. Which of these diagrams best describes the position and the velocity of the car before the driver notices he is late? ANSWER: Correct Part C Which of the diagrams shown to the left best describes the position and the velocity of the car after the driver hits the gas, but before he notices the police officer? ANSWER: Correct A B C A B C Part D Which of the diagrams shown to the left best describes the position and the velocity of the car after the driver notices the police officer? ANSWER: Correct Part E Which of the diagrams shown below most accurately depicts the average acceleration vectors of the car during the events described in the problem introduction? ANSWER: A B C Correct You can now draw a complete motion diagram for the situation described in this problem. Your diagram should look like this: Measurements in SI Units Familiarity with SI units will aid your study of physics and all other sciences. Part A What is the approximate height of the average adult in centimeters? Hint 1. Converting between feet and centimeters The distance from your elbow to your fingertips is typically about 50 . A B C cm ANSWER: Correct If you’re not familiar with metric units of length, you can use your body to develop intuition for them. The average height of an adult is 5 6.4 . The distance from elbow to fingertips on the average adult is about 50 . Ten (1 ) is about the width of this adult’s little finger and 10 is about the width of the average hand. Part B Approximately what is the mass of the average adult in kilograms? Hint 1. Converting between pounds and kilograms Something that weighs 1 has a mass of about . ANSWER: Correct Something that weighs 1 has a mass of about . This is a useful conversion to keep in mind! ± A Trip to Europe 100 200 300 cm cm cm feet inches cm mm cm cm pound 1 kg 2 80 500 1200 kg kg kg pound (1/2) kg Learning Goal: To understand how to use dimensional analysis to solve problems. Dimensional analysis is a useful tool for solving problems that involve unit conversions. Since unit conversion is not limited to physics problems but is part of our everyday life, correct use of conversion factors is essential to working through problems of practical importance. For example, dimensional analysis could be used in problems involving currency exchange. Say you want to calculate how many euros you get if you exchange 3600 ( ), given the exchange rate , that is, 1 to 1.20 . Begin by writing down the starting value, 3600 . This can also be written as a fraction: . Next, convert dollars to euros. This conversion involves multiplying by a simple conversion factor derived from the exchange rate: . Note that the “dollar” unit, , should appear on the bottom of this conversion factor, since appears on the top of the starting value. Finally, since dollars are divided by dollars, the units can be canceled and the final result is . Currency exchange is only one example of many practical situations where dimensional analysis may help you to work through problems. Remember that dimensional analysis involves multiplying a given value by a conversion factor, resulting in a value in the new units. The conversion factor can be the ratio of any two quantities, as long as the ratio is equal to one. You and your friends are organizing a trip to Europe. Your plan is to rent a car and drive through the major European capitals. By consulting a map you estimate that you will cover a total distance of 5000 . Consider the euro-dollar exchange rate given in the introduction and use dimensional analysis to work through these simple problems. Part A You select a rental package that includes a car with an average consumption of 6.00 of fuel per 100 . Considering that in Europe the average fuel cost is 1.063 , how much (in US dollars) will you spend in fuel on your trip? Express your answer numerically in US dollars to three significant figures. You did not open hints for this part. ANSWER: US dollars USD 1 EUR = 1.20 USD euro US dollars USD 3600 USD 1 1.00 EUR 1.20 USD USD USD ( )( ) = 3000 EUR 3600 USD 1 1.00 EUR 1.20 USD km liters km euros/liter Part B How many gallons of fuel would the rental car consume per mile? Express your answer numerically in gallons per mile to three significant figures. You did not open hints for this part. ANSWER: Part C This question will be shown after you complete previous question(s). Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. Cost of fuel = USD gallons/mile

please email info@checkyourstudy.com
university physics young and freedman 13th edition-Chapter Summary Chapter 9

university physics young and freedman 13th edition-Chapter Summary Chapter 9

Section 9.1 “Angular velocity,” of an object is its instantaneous … Read More...
Chapter 11 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Understanding Work and Kinetic Energy Learning Goal: To learn about the Work-Energy Theorem and its basic applications. In this problem, you will learn about the relationship between the work done on an object and the kinetic energy of that object. The kinetic energy of an object of mass moving at a speed is defined as . It seems reasonable to say that the speed of an object–and, therefore, its kinetic energy–can be changed by performing work on the object. In this problem, we will explore the mathematical relationship between the work done on an object and the change in the kinetic energy of that object. First, let us consider a sled of mass being pulled by a constant, horizontal force of magnitude along a rough, horizontal surface. The sled is speeding up. Part A How many forces are acting on the sled? ANSWER: Part B This question will be shown after you complete previous question(s). Part C K m v K = (1/2)mv2 m F one two three four This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I Typesetting math: 91% This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Work-Energy Theorem Reviewed Learning Goal: Review the work-energy theorem and apply it to a simple problem. If you push a particle of mass in the direction in which it is already moving, you expect the particle’s speed to increase. If you push with a constant force , then the particle will accelerate with acceleration (from Newton’s 2nd law). Part A Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied for a fixed interval of time , then the _____ of the particle will increase by an amount . You did not open hints for this part. ANSWER: M F a = F/M t at Typesetting math: 91% Part B Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied over a given distance , along the path of the particle, then the _____ of the particle will increase by . ANSWER: Part C If the initial kinetic energy of the particle is , and its final kinetic energy is , express in terms of and the work done on the particle. ANSWER: Part D In general, the work done by a force is written as . Now, consider whether the following statements are true or false: The dot product assures that the integrand is always nonnegative. The dot product indicates that only the component of the force perpendicular to the path contributes to the integral. The dot product indicates that only the component of the force parallel to the path contributes to the integral. Enter t for true or f for false for each statement. Separate your responses with commas (e.g., t,f,t). ANSWER: D FD Ki Kf Kf Ki W Kf = F W =  ( ) d f i F r r Typesetting math: 91% Part E Assume that the particle has initial speed . Find its final kinetic energy in terms of , , , and . You did not open hints for this part. ANSWER: Part F What is the final speed of the particle? Express your answer in terms of and . ANSWER: ± The Work Done in Pulling a Supertanker Two tugboats pull a disabled supertanker. Each tug exerts a constant force of 2.20×106 , one at an angle 10.0 west of north, and the other at an angle 10.0 east of north, as they pull the tanker a distance 0.660 toward the north. Part A What is the total work done by the two tugboats on the supertanker? Express your answer in joules, to three significant figures. vi Kf vi M F D Kf = Kf M vf = N km Typesetting math: 91% You did not open hints for this part. ANSWER: Energy Required to Lift a Heavy Box As you are trying to move a heavy box of mass , you realize that it is too heavy for you to lift by yourself. There is no one around to help, so you attach an ideal pulley to the box and a massless rope to the ceiling, which you wrap around the pulley. You pull up on the rope to lift the box. Use for the magnitude of the acceleration due to gravity and neglect friction forces. Part A Once you have pulled hard enough to start the box moving upward, what is the magnitude of the upward force you must apply to the rope to start raising the box with constant velocity? Express the magnitude of the force in terms of , the mass of the box. J m g F m Typesetting math: 91% You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Pulling a Block on an Incline with Friction A block of weight sits on an inclined plane as shown. A force of magnitude is applied to pull the block up the incline at constant speed. The coefficient of kinetic friction between the plane and the block is . Part A F = mg F μ Typesetting math: 91% What is the total work done on the block by the force of friction as the block moves a distance up the incline? Express the work done by friction in terms of any or all of the variables , , , , , and . You did not open hints for this part. ANSWER: Part B What is the total work done on the block by the applied force as the block moves a distance up the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Now the applied force is changed so that instead of pulling the block up the incline, the force pulls the block down the incline at a constant speed. Wfric L μ m g  L F Wfric = WF F L μ m g  L F WF = Typesetting math: 91% Part C What is the total work done on the block by the force of friction as the block moves a distance down the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Part D What is the total work done on the box by the appled force in this case? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: When Push Comes to Shove Two forces, of magnitudes = 75.0 and = 25.0 , act in opposite directions on a block, which sits atop a frictionless surface, as shown in the figure. Initially, the center of the block is at position = -1.00 . At some later time, the block has moved to the right, and its center is at a new position, = 1.00 . Wfric L μ m g  L F Wfric = WF μ m g  L F WF = F1 N F2 N xi cm xf cm Typesetting math: 91% Part A Find the work done on the block by the force of magnitude = 75.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Part B Find the work done by the force of magnitude = 25.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: W1 F1 N xi cm xf cm W1 = J W2 F2 N xi cm xf cm Typesetting math: 91% Part C What is the net work done on the block by the two forces? Express your answer numerically, in joules. ANSWER: Part D Determine the change in the kinetic energy of the block as it moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Work from a Constant Force Learning Goal: W2 = J Wnet Wnet = J Kf − Ki xi cm xf cm Kf − Ki = J Typesetting math: 91% To understand how to compute the work done by a constant force acting on a particle that moves in a straight line. In this problem, you will calculate the work done by a constant force. A force is considered constant if is independent of . This is the most frequently encountered situation in elementary Newtonian mechanics. Part A Consider a particle moving in a straight line from initial point B to final point A, acted upon by a constant force . The force (think of it as a field, having a magnitude and direction at every position ) is indicated by a series of identical vectors pointing to the left, parallel to the horizontal axis. The vectors are all identical only because the force is constant along the path. The magnitude of the force is , and the displacement vector from point B to point A is (of magnitude , making and angle (radians) with the positive x axis). Find , the work that the force performs on the particle as it moves from point B to point A. Express the work in terms of , , and . Remember to use radians, not degrees, for any angles that appear in your answer. You did not open hints for this part. ANSWER: Part B Now consider the same force acting on a particle that travels from point A to point B. The displacement vector now points in the opposite direction as it did in Part A. Find the work done by in this case. Express your answer in terms of , , and . F( r) r F r F L L  WBA F L F  WBA = F L WAB F Typesetting math: 91% L F  You did not open hints for this part. ANSWER: ± Vector Dot Product Let vectors , , and . Calculate the following: Part A You did not open hints for this part. ANSWER: WAB = A = (2, 1,−4) B = (−3, 0, 1) C = (−1,−1, 2) Typesetting math: 91% Part B What is the angle between and ? Express your answer using one significant figure. You did not open hints for this part. ANSWER: Part C ANSWER: Part D ANSWER: A B = AB A B AB = radians 2B 3C = Typesetting math: 91% Part E Which of the following can be computed? You did not open hints for this part. ANSWER: and are different vectors with lengths and respectively. Find the following: Part F Express your answer in terms of You did not open hints for this part. ANSWER: 2(B 3C) = A B C A (B C) A (B + C) 3 A V 1 V 2 V1 V2 V1 Typesetting math: 91% Part G If and are perpendicular, You did not open hints for this part. ANSWER: Part H If and are parallel, Express your answer in terms of and . You did not open hints for this part. ANSWER: ± Tactics Box 11.1 Calculating the Work Done by a Constant Force V = 1 V 1 V 1 V 2 V = 1 V 2 V 1 V 2 V1 V2 V = 1 V 2 Typesetting math: 91% Learning Goal: To practice Tactics Box 11.1 Calculating the Work Done by a Constant Force. Recall that the work done by a constant force at an angle to the displacement is . The vector magnitudes and are always positive, so the sign of is determined entirely by the angle between the force and the displacement. W F  d W = Fd cos  F d W  Typesetting math: 91% TACTICS BOX 11.1 Calculating the work done by a constant force Force and displacement Work Sign of Energy transfer Energy is transferred into the system. The particle speeds up. increases. No energy is transferred. Speed and are constant. Energy is transferred out of the system. The particle slows down. decreases. A box has weight of magnitude = 2.00 accelerates down a rough plane that is inclined at an angle = 30.0 above the horizontal, as shown at left. The normal force acting on the box has a magnitude = 1.732 , the coefficient of kinetic friction between the box and the plane is = 0.300, and the displacement of the box is 1.80 down the inclined plane.  W W 0 F(“r) + K < 90 F("r) cos  + 90 0 0 K > 90 F(“r) cos  − K 180 −F(“r) − FG N  n N μk d m Typesetting math: 91% Part A What is the work done on the box by gravity? Express your answers in joules to two significant figures. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Wgrav Wgrav = J Typesetting math: 91% Work and Potential Energy on a Sliding Block with Friction A block of weight sits on a plane inclined at an angle as shown. The coefficient of kinetic friction between the plane and the block is . A force is applied to push the block up the incline at constant speed. Part A What is the work done on the block by the force of friction as the block moves a distance up the incline? Express your answer in terms of some or all of the following: , , , . You did not open hints for this part. ANSWER: w  μ F Wf L μ w  L Wf = Typesetting math: 91% Part B What is the work done by the applied force of magnitude ? Express your answer in terms of some or all of the following: , , , . ANSWER: Part C What is the change in the potential energy of the block, , after it has been pushed a distance up the incline? Express your answer in terms of some or all of the following: , , , . ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). W F μ w  L W = “U L μ w  L “U = Typesetting math: 91% Part F This question will be shown after you complete previous question(s). Where’s the Energy? Learning Goal: To understand how to apply the law of conservation of energy to situations with and without nonconservative forces acting. The law of conservation of energy states the following: In an isolated system the total energy remains constant. If the objects within the system interact through gravitational and elastic forces only, then the total mechanical energy is conserved. The mechanical energy of a system is defined as the sum of kinetic energy and potential energy . For such systems where no forces other than the gravitational and elastic forces do work, the law of conservation of energy can be written as , where the quantities with subscript “i” refer to the “initial” moment and those with subscript “f” refer to the final moment. A wise choice of initial and final moments, which is not always obvious, may significantly simplify the solution. The kinetic energy of an object that has mass \texttip{m}{m} and velocity \texttip{v}{v} is given by \large{K=\frac{1}{2}mv^2}. Potential energy, instead, has many forms. The two forms that you will be dealing with most often in this chapter are the gravitational and elastic potential energy. Gravitational potential energy is the energy possessed by elevated objects. For small heights, it can be found as U_{\rm g}=mgh, where \texttip{m}{m} is the mass of the object, \texttip{g}{g} is the acceleration due to gravity, and \texttip{h}{h} is the elevation of the object above the zero level. The zero level is the elevation at which the gravitational potential energy is assumed to be (you guessed it) zero. The choice of the zero level is dictated by convenience; typically (but not necessarily), it is selected to coincide with the lowest position of the object during the motion explored in the problem. Elastic potential energy is associated with stretched or compressed elastic objects such as springs. For a spring with a force constant \texttip{k}{k}, stretched or compressed a distance \texttip{x}{x}, the associated elastic potential energy is \large{U_{\rm e}=\frac{1}{2}kx^2}. When all three types of energy change, the law of conservation of energy for an object of mass \texttip{m}{m} can be written as K U Ki + Ui = Kf + Uf Typesetting math: 91% \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}. The gravitational force and the elastic force are two examples of conservative forces. What if nonconservative forces, such as friction, also act within the system? In that case, the total mechanical energy would change. The law of conservation of energy is then written as \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2+W_{\rm nc}=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}, where \texttip{W_{\rm nc}}{W_nc} represents the work done by the nonconservative forces acting on the object between the initial and the final moments. The work \texttip{W_{\rm nc}}{W_nc} is usually negative; that is, the nonconservative forces tend to decrease, or dissipate, the mechanical energy of the system. In this problem, we will consider the following situation as depicted in the diagram : A block of mass \texttip{m}{m} slides at a speed \texttip{v}{v} along a horizontal, smooth table. It next slides down a smooth ramp, descending a height \texttip{h}{h}, and then slides along a horizontal rough floor, stopping eventually. Assume that the block slides slowly enough so that it does not lose contact with the supporting surfaces (table, ramp, or floor). You will analyze the motion of the block at different moments using the law of conservation of energy. Part A Which word in the statement of this problem allows you to assume that the table is frictionless? ANSWER: Part B straight smooth horizontal Typesetting math: 91% This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H Typesetting math: 91% This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Sliding In Socks Suppose that the coefficient of kinetic friction between Zak’s feet and the floor, while wearing socks, is 0.250. Knowing this, Zak decides to get a running start and then slide across the floor. Part A If Zak’s speed is 3.00 \rm m/s when he starts to slide, what distance \texttip{d}{d} will he slide before stopping? Express your answer in meters. ANSWER: Typesetting math: 91% Part B This question will be shown after you complete previous question(s). Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. \rm m Typesetting math: 91%

Chapter 11 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Understanding Work and Kinetic Energy Learning Goal: To learn about the Work-Energy Theorem and its basic applications. In this problem, you will learn about the relationship between the work done on an object and the kinetic energy of that object. The kinetic energy of an object of mass moving at a speed is defined as . It seems reasonable to say that the speed of an object–and, therefore, its kinetic energy–can be changed by performing work on the object. In this problem, we will explore the mathematical relationship between the work done on an object and the change in the kinetic energy of that object. First, let us consider a sled of mass being pulled by a constant, horizontal force of magnitude along a rough, horizontal surface. The sled is speeding up. Part A How many forces are acting on the sled? ANSWER: Part B This question will be shown after you complete previous question(s). Part C K m v K = (1/2)mv2 m F one two three four This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I Typesetting math: 91% This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Work-Energy Theorem Reviewed Learning Goal: Review the work-energy theorem and apply it to a simple problem. If you push a particle of mass in the direction in which it is already moving, you expect the particle’s speed to increase. If you push with a constant force , then the particle will accelerate with acceleration (from Newton’s 2nd law). Part A Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied for a fixed interval of time , then the _____ of the particle will increase by an amount . You did not open hints for this part. ANSWER: M F a = F/M t at Typesetting math: 91% Part B Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied over a given distance , along the path of the particle, then the _____ of the particle will increase by . ANSWER: Part C If the initial kinetic energy of the particle is , and its final kinetic energy is , express in terms of and the work done on the particle. ANSWER: Part D In general, the work done by a force is written as . Now, consider whether the following statements are true or false: The dot product assures that the integrand is always nonnegative. The dot product indicates that only the component of the force perpendicular to the path contributes to the integral. The dot product indicates that only the component of the force parallel to the path contributes to the integral. Enter t for true or f for false for each statement. Separate your responses with commas (e.g., t,f,t). ANSWER: D FD Ki Kf Kf Ki W Kf = F W =  ( ) d f i F r r Typesetting math: 91% Part E Assume that the particle has initial speed . Find its final kinetic energy in terms of , , , and . You did not open hints for this part. ANSWER: Part F What is the final speed of the particle? Express your answer in terms of and . ANSWER: ± The Work Done in Pulling a Supertanker Two tugboats pull a disabled supertanker. Each tug exerts a constant force of 2.20×106 , one at an angle 10.0 west of north, and the other at an angle 10.0 east of north, as they pull the tanker a distance 0.660 toward the north. Part A What is the total work done by the two tugboats on the supertanker? Express your answer in joules, to three significant figures. vi Kf vi M F D Kf = Kf M vf = N km Typesetting math: 91% You did not open hints for this part. ANSWER: Energy Required to Lift a Heavy Box As you are trying to move a heavy box of mass , you realize that it is too heavy for you to lift by yourself. There is no one around to help, so you attach an ideal pulley to the box and a massless rope to the ceiling, which you wrap around the pulley. You pull up on the rope to lift the box. Use for the magnitude of the acceleration due to gravity and neglect friction forces. Part A Once you have pulled hard enough to start the box moving upward, what is the magnitude of the upward force you must apply to the rope to start raising the box with constant velocity? Express the magnitude of the force in terms of , the mass of the box. J m g F m Typesetting math: 91% You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Pulling a Block on an Incline with Friction A block of weight sits on an inclined plane as shown. A force of magnitude is applied to pull the block up the incline at constant speed. The coefficient of kinetic friction between the plane and the block is . Part A F = mg F μ Typesetting math: 91% What is the total work done on the block by the force of friction as the block moves a distance up the incline? Express the work done by friction in terms of any or all of the variables , , , , , and . You did not open hints for this part. ANSWER: Part B What is the total work done on the block by the applied force as the block moves a distance up the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Now the applied force is changed so that instead of pulling the block up the incline, the force pulls the block down the incline at a constant speed. Wfric L μ m g  L F Wfric = WF F L μ m g  L F WF = Typesetting math: 91% Part C What is the total work done on the block by the force of friction as the block moves a distance down the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Part D What is the total work done on the box by the appled force in this case? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: When Push Comes to Shove Two forces, of magnitudes = 75.0 and = 25.0 , act in opposite directions on a block, which sits atop a frictionless surface, as shown in the figure. Initially, the center of the block is at position = -1.00 . At some later time, the block has moved to the right, and its center is at a new position, = 1.00 . Wfric L μ m g  L F Wfric = WF μ m g  L F WF = F1 N F2 N xi cm xf cm Typesetting math: 91% Part A Find the work done on the block by the force of magnitude = 75.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Part B Find the work done by the force of magnitude = 25.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: W1 F1 N xi cm xf cm W1 = J W2 F2 N xi cm xf cm Typesetting math: 91% Part C What is the net work done on the block by the two forces? Express your answer numerically, in joules. ANSWER: Part D Determine the change in the kinetic energy of the block as it moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Work from a Constant Force Learning Goal: W2 = J Wnet Wnet = J Kf − Ki xi cm xf cm Kf − Ki = J Typesetting math: 91% To understand how to compute the work done by a constant force acting on a particle that moves in a straight line. In this problem, you will calculate the work done by a constant force. A force is considered constant if is independent of . This is the most frequently encountered situation in elementary Newtonian mechanics. Part A Consider a particle moving in a straight line from initial point B to final point A, acted upon by a constant force . The force (think of it as a field, having a magnitude and direction at every position ) is indicated by a series of identical vectors pointing to the left, parallel to the horizontal axis. The vectors are all identical only because the force is constant along the path. The magnitude of the force is , and the displacement vector from point B to point A is (of magnitude , making and angle (radians) with the positive x axis). Find , the work that the force performs on the particle as it moves from point B to point A. Express the work in terms of , , and . Remember to use radians, not degrees, for any angles that appear in your answer. You did not open hints for this part. ANSWER: Part B Now consider the same force acting on a particle that travels from point A to point B. The displacement vector now points in the opposite direction as it did in Part A. Find the work done by in this case. Express your answer in terms of , , and . F( r) r F r F L L  WBA F L F  WBA = F L WAB F Typesetting math: 91% L F  You did not open hints for this part. ANSWER: ± Vector Dot Product Let vectors , , and . Calculate the following: Part A You did not open hints for this part. ANSWER: WAB = A = (2, 1,−4) B = (−3, 0, 1) C = (−1,−1, 2) Typesetting math: 91% Part B What is the angle between and ? Express your answer using one significant figure. You did not open hints for this part. ANSWER: Part C ANSWER: Part D ANSWER: A B = AB A B AB = radians 2B 3C = Typesetting math: 91% Part E Which of the following can be computed? You did not open hints for this part. ANSWER: and are different vectors with lengths and respectively. Find the following: Part F Express your answer in terms of You did not open hints for this part. ANSWER: 2(B 3C) = A B C A (B C) A (B + C) 3 A V 1 V 2 V1 V2 V1 Typesetting math: 91% Part G If and are perpendicular, You did not open hints for this part. ANSWER: Part H If and are parallel, Express your answer in terms of and . You did not open hints for this part. ANSWER: ± Tactics Box 11.1 Calculating the Work Done by a Constant Force V = 1 V 1 V 1 V 2 V = 1 V 2 V 1 V 2 V1 V2 V = 1 V 2 Typesetting math: 91% Learning Goal: To practice Tactics Box 11.1 Calculating the Work Done by a Constant Force. Recall that the work done by a constant force at an angle to the displacement is . The vector magnitudes and are always positive, so the sign of is determined entirely by the angle between the force and the displacement. W F  d W = Fd cos  F d W  Typesetting math: 91% TACTICS BOX 11.1 Calculating the work done by a constant force Force and displacement Work Sign of Energy transfer Energy is transferred into the system. The particle speeds up. increases. No energy is transferred. Speed and are constant. Energy is transferred out of the system. The particle slows down. decreases. A box has weight of magnitude = 2.00 accelerates down a rough plane that is inclined at an angle = 30.0 above the horizontal, as shown at left. The normal force acting on the box has a magnitude = 1.732 , the coefficient of kinetic friction between the box and the plane is = 0.300, and the displacement of the box is 1.80 down the inclined plane.  W W 0 F(“r) + K < 90 F("r) cos  + 90 0 0 K > 90 F(“r) cos  − K 180 −F(“r) − FG N  n N μk d m Typesetting math: 91% Part A What is the work done on the box by gravity? Express your answers in joules to two significant figures. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Wgrav Wgrav = J Typesetting math: 91% Work and Potential Energy on a Sliding Block with Friction A block of weight sits on a plane inclined at an angle as shown. The coefficient of kinetic friction between the plane and the block is . A force is applied to push the block up the incline at constant speed. Part A What is the work done on the block by the force of friction as the block moves a distance up the incline? Express your answer in terms of some or all of the following: , , , . You did not open hints for this part. ANSWER: w  μ F Wf L μ w  L Wf = Typesetting math: 91% Part B What is the work done by the applied force of magnitude ? Express your answer in terms of some or all of the following: , , , . ANSWER: Part C What is the change in the potential energy of the block, , after it has been pushed a distance up the incline? Express your answer in terms of some or all of the following: , , , . ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). W F μ w  L W = “U L μ w  L “U = Typesetting math: 91% Part F This question will be shown after you complete previous question(s). Where’s the Energy? Learning Goal: To understand how to apply the law of conservation of energy to situations with and without nonconservative forces acting. The law of conservation of energy states the following: In an isolated system the total energy remains constant. If the objects within the system interact through gravitational and elastic forces only, then the total mechanical energy is conserved. The mechanical energy of a system is defined as the sum of kinetic energy and potential energy . For such systems where no forces other than the gravitational and elastic forces do work, the law of conservation of energy can be written as , where the quantities with subscript “i” refer to the “initial” moment and those with subscript “f” refer to the final moment. A wise choice of initial and final moments, which is not always obvious, may significantly simplify the solution. The kinetic energy of an object that has mass \texttip{m}{m} and velocity \texttip{v}{v} is given by \large{K=\frac{1}{2}mv^2}. Potential energy, instead, has many forms. The two forms that you will be dealing with most often in this chapter are the gravitational and elastic potential energy. Gravitational potential energy is the energy possessed by elevated objects. For small heights, it can be found as U_{\rm g}=mgh, where \texttip{m}{m} is the mass of the object, \texttip{g}{g} is the acceleration due to gravity, and \texttip{h}{h} is the elevation of the object above the zero level. The zero level is the elevation at which the gravitational potential energy is assumed to be (you guessed it) zero. The choice of the zero level is dictated by convenience; typically (but not necessarily), it is selected to coincide with the lowest position of the object during the motion explored in the problem. Elastic potential energy is associated with stretched or compressed elastic objects such as springs. For a spring with a force constant \texttip{k}{k}, stretched or compressed a distance \texttip{x}{x}, the associated elastic potential energy is \large{U_{\rm e}=\frac{1}{2}kx^2}. When all three types of energy change, the law of conservation of energy for an object of mass \texttip{m}{m} can be written as K U Ki + Ui = Kf + Uf Typesetting math: 91% \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}. The gravitational force and the elastic force are two examples of conservative forces. What if nonconservative forces, such as friction, also act within the system? In that case, the total mechanical energy would change. The law of conservation of energy is then written as \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2+W_{\rm nc}=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}, where \texttip{W_{\rm nc}}{W_nc} represents the work done by the nonconservative forces acting on the object between the initial and the final moments. The work \texttip{W_{\rm nc}}{W_nc} is usually negative; that is, the nonconservative forces tend to decrease, or dissipate, the mechanical energy of the system. In this problem, we will consider the following situation as depicted in the diagram : A block of mass \texttip{m}{m} slides at a speed \texttip{v}{v} along a horizontal, smooth table. It next slides down a smooth ramp, descending a height \texttip{h}{h}, and then slides along a horizontal rough floor, stopping eventually. Assume that the block slides slowly enough so that it does not lose contact with the supporting surfaces (table, ramp, or floor). You will analyze the motion of the block at different moments using the law of conservation of energy. Part A Which word in the statement of this problem allows you to assume that the table is frictionless? ANSWER: Part B straight smooth horizontal Typesetting math: 91% This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H Typesetting math: 91% This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Sliding In Socks Suppose that the coefficient of kinetic friction between Zak’s feet and the floor, while wearing socks, is 0.250. Knowing this, Zak decides to get a running start and then slide across the floor. Part A If Zak’s speed is 3.00 \rm m/s when he starts to slide, what distance \texttip{d}{d} will he slide before stopping? Express your answer in meters. ANSWER: Typesetting math: 91% Part B This question will be shown after you complete previous question(s). Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. \rm m Typesetting math: 91%

please email info@checkyourstudy.com