Essay Assignment: Due December 6th, on Blackboard by 11:59 PM. Note: At least one draft (hardcopy, handed up in class) should be given to the instructor one week before due date (last date to give instructor draft is 1st December). If draft is not given, 20% will be taken off final grade for essay. Assignment Objective: This assignment is intended to provide you with the opportunity to reflect upon the course and material over the semester. Instructions: In this essay you will need think back prior to the semester and construct how you would have described ‘the self.’ Consider as your guide the many ways that the self has been studied over the course of the semester. For instance, you might consider the ways we have discussed: (1) the nature of the soul, (2) personal identity, (3) the relationship to others, (4) the ‘racial’ or ‘gendered’ self, (5) the self and freedom, (6) the social influences (economics, technology, and consumerism, for example) upon your self-development, etc. You should select one to two dimensions of the self and provide a description of what you thought about those prior to the course. Then, give a description of what you think about that or those dimension(s) of the self now. Be sure to reference the course material, either through the literature, or an author, or a driving concept from the course that you can explain in reference to the concept(s) you now hold. Within your discussion provide a comparison of what you thought prior to the course to what you now think of those dimension(s) of the self. In what ways has your conception of the ‘self’ changed, stayed the same, become enriched (or not). Be sure to give some explanation as to what has changed, or has not changed, and in what ways. Format: The paper should be in Times New Roman font, size 12, and double spaced. It should be about 1,200 words (approx. 4-5 pages). You will be required to have a bibliography and a cover page which includes the following: 1) The title of your paper. 2) Your name. 3) Your Student ID number. Citations: The recommended style of citation is Chicago (please see Blackboard for guidelines). You can use other styles if you like but the most important thing is to remain clear and consistent in the referencing style that you use. Please use at least 2-3 citations. Instruction for upload: Please upload it online onto Blackboard on the tab on the left hand side, entitled ‘Final Essay’ before midnight on December 6th. No hard copy is needed, but, as stated above, you will be required to give a hard copy of the draft at least one week before to the instructor. Grading: The final essay will be graded on: (1) how the instructions of the assignment were followed, (2) the accurateness and clarity in descriptions of course material (authors, core concepts, arguments, etc.), (3) the precision/correctness of writing, and (4) accuracy of referencing style.

Essay Assignment: Due December 6th, on Blackboard by 11:59 PM. Note: At least one draft (hardcopy, handed up in class) should be given to the instructor one week before due date (last date to give instructor draft is 1st December). If draft is not given, 20% will be taken off final grade for essay. Assignment Objective: This assignment is intended to provide you with the opportunity to reflect upon the course and material over the semester. Instructions: In this essay you will need think back prior to the semester and construct how you would have described ‘the self.’ Consider as your guide the many ways that the self has been studied over the course of the semester. For instance, you might consider the ways we have discussed: (1) the nature of the soul, (2) personal identity, (3) the relationship to others, (4) the ‘racial’ or ‘gendered’ self, (5) the self and freedom, (6) the social influences (economics, technology, and consumerism, for example) upon your self-development, etc. You should select one to two dimensions of the self and provide a description of what you thought about those prior to the course. Then, give a description of what you think about that or those dimension(s) of the self now. Be sure to reference the course material, either through the literature, or an author, or a driving concept from the course that you can explain in reference to the concept(s) you now hold. Within your discussion provide a comparison of what you thought prior to the course to what you now think of those dimension(s) of the self. In what ways has your conception of the ‘self’ changed, stayed the same, become enriched (or not). Be sure to give some explanation as to what has changed, or has not changed, and in what ways. Format: The paper should be in Times New Roman font, size 12, and double spaced. It should be about 1,200 words (approx. 4-5 pages). You will be required to have a bibliography and a cover page which includes the following: 1) The title of your paper. 2) Your name. 3) Your Student ID number. Citations: The recommended style of citation is Chicago (please see Blackboard for guidelines). You can use other styles if you like but the most important thing is to remain clear and consistent in the referencing style that you use. Please use at least 2-3 citations. Instruction for upload: Please upload it online onto Blackboard on the tab on the left hand side, entitled ‘Final Essay’ before midnight on December 6th. No hard copy is needed, but, as stated above, you will be required to give a hard copy of the draft at least one week before to the instructor. Grading: The final essay will be graded on: (1) how the instructions of the assignment were followed, (2) the accurateness and clarity in descriptions of course material (authors, core concepts, arguments, etc.), (3) the precision/correctness of writing, and (4) accuracy of referencing style.

No expert has answered this question yet. You can browse … Read More...
The ratio of product (hydrogen gas) to reactant (magnesium) is determined by the equation: Ratio (L/g) = ( Initial mL of acid – Final mL of acid ) / ( 1000 ml/L ) Mass of magnesium (g) Calculate the ratio for using the following data: Initial mL of acid = 200 mL Final mL of acid = 93 mL Mass of magnesium = 0.1081 g Note: Show your work and be sure to report the final result with the proper number of significant figures.

The ratio of product (hydrogen gas) to reactant (magnesium) is determined by the equation: Ratio (L/g) = ( Initial mL of acid – Final mL of acid ) / ( 1000 ml/L ) Mass of magnesium (g) Calculate the ratio for using the following data: Initial mL of acid = 200 mL Final mL of acid = 93 mL Mass of magnesium = 0.1081 g Note: Show your work and be sure to report the final result with the proper number of significant figures.

  Solution: Ratio (L/g)   =             (200 – 93 ) … Read More...
Lab Assignment 2 CECS 201, Instructor: Brian Lojeck Date Assigned: 9/11/2015 Date Due: 1. Lab report: 9/25/2015 at the start of lecture, UPLOADED TO BEACHBOARD 2. Demonstration on-board to be done in lab after lecture on 9/25/2015 File Needed: LabAssignment2.ucf is available on the beachboard. Download the correct version for your board (Nexys3, Nexys2_500K, or Nexys2_1200K) Task: Using the lab lectures and the examples in the lab lecture documents use the Xylinx ISE software to design a circuit with 4 inputs (named SW0, SW1, SW2, SW3) and one output (named LED0). The inputs are the first 4 switches on the Digilent board, the output is the first LED light on the board. Note that the input and output names must match EXACTLY as shown above. The circuit will be a “voting” circuit. The output will be high (the led will turn on) whenever more outputs have a value of 1 then a value of 0. The output will be low (the led will turn off) whenever more outputs have a value of 0 then 1. If equal numbers of 1 and 0 are entered, the light should turn off. Design a truth table for the circuit using the description above. Use Karnaugh Maps to find the simplified SOP equation based on the truth table. Implement the equation in a schematic file. Test the schematic using a Verilog testbench. Download the project to your Digilent board to make sure it works properly. Note that you will need to download the code to your board in lab to demonstrate the project and receive full credit for the lab. Hand In For Your Lab Report, as a PDF file, or as a series of screenshots in a word document 1. A cover sheet for the report 2. The truth table for the circuit 3. The K-maps you used to simplify the equations (scans or decent cell-phone photos of the page are acceptable) 4. A printout of your schematic file (printed in landscape mode) 5. A printout of your testbench file (printed in portrait mode) 6. A printout of the results of your simulation (the timing diagram). Remember to print in landscape mode, and to use the printing menu to ensure the printout is readable (not zoomed out too far) and that all data is shown (not zoomed in too far)

Lab Assignment 2 CECS 201, Instructor: Brian Lojeck Date Assigned: 9/11/2015 Date Due: 1. Lab report: 9/25/2015 at the start of lecture, UPLOADED TO BEACHBOARD 2. Demonstration on-board to be done in lab after lecture on 9/25/2015 File Needed: LabAssignment2.ucf is available on the beachboard. Download the correct version for your board (Nexys3, Nexys2_500K, or Nexys2_1200K) Task: Using the lab lectures and the examples in the lab lecture documents use the Xylinx ISE software to design a circuit with 4 inputs (named SW0, SW1, SW2, SW3) and one output (named LED0). The inputs are the first 4 switches on the Digilent board, the output is the first LED light on the board. Note that the input and output names must match EXACTLY as shown above. The circuit will be a “voting” circuit. The output will be high (the led will turn on) whenever more outputs have a value of 1 then a value of 0. The output will be low (the led will turn off) whenever more outputs have a value of 0 then 1. If equal numbers of 1 and 0 are entered, the light should turn off. Design a truth table for the circuit using the description above. Use Karnaugh Maps to find the simplified SOP equation based on the truth table. Implement the equation in a schematic file. Test the schematic using a Verilog testbench. Download the project to your Digilent board to make sure it works properly. Note that you will need to download the code to your board in lab to demonstrate the project and receive full credit for the lab. Hand In For Your Lab Report, as a PDF file, or as a series of screenshots in a word document 1. A cover sheet for the report 2. The truth table for the circuit 3. The K-maps you used to simplify the equations (scans or decent cell-phone photos of the page are acceptable) 4. A printout of your schematic file (printed in landscape mode) 5. A printout of your testbench file (printed in portrait mode) 6. A printout of the results of your simulation (the timing diagram). Remember to print in landscape mode, and to use the printing menu to ensure the printout is readable (not zoomed out too far) and that all data is shown (not zoomed in too far)

info@checkyourstudy.com
For the second problem of this assignment we’ll try out a fun and useful statistics software package. It’s called “R,” is professional quality, and is available for free on multiple platforms at http://www.r-project.org. Install it on your computer. Note, however, that I didn’t get everything to work right on Linux, so you might want to try Windows or Mac OS/X. We’ll now do linear regression and plotting in 3D using R and R-Commander, as follows: Here’s the really fun part with a rotating 3D graph! Install R-Commander using the menu system in R. Also install the Scatterplot3D package. Make a new dataset using the first 10 rows of Table of chip wirebond pull strength on page 13 in the book. Then ask for a 3D scatter plot of the new data, and include a multiple linear regression with the pull strength as the dependent variable. Submit a screen shot of the graph. Comment on the goodness of fit.

For the second problem of this assignment we’ll try out a fun and useful statistics software package. It’s called “R,” is professional quality, and is available for free on multiple platforms at http://www.r-project.org. Install it on your computer. Note, however, that I didn’t get everything to work right on Linux, so you might want to try Windows or Mac OS/X. We’ll now do linear regression and plotting in 3D using R and R-Commander, as follows: Here’s the really fun part with a rotating 3D graph! Install R-Commander using the menu system in R. Also install the Scatterplot3D package. Make a new dataset using the first 10 rows of Table of chip wirebond pull strength on page 13 in the book. Then ask for a 3D scatter plot of the new data, and include a multiple linear regression with the pull strength as the dependent variable. Submit a screen shot of the graph. Comment on the goodness of fit.

For solutions email info@checkyourstudy.com
Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = -60 % s t = 0 s cm cm/s 0 = -2.09 rad Correct Part B What is the phase at ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part C What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: t = 0.5 s  = 0 rad t = 1.0 s  = 2.09 rad t = 1.5 s  = 4.19 rad Correct Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct g cm s 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 0.628 s 5.00 Nm -0.785 rad Part E The initial coordinate of the mass. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part F The initial velocity. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part G The maximum speed. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 1.41 cm 14.1 cms 20.0 cms Part H The total energy. Express your answer to one decimal place and include the appropriate units. ANSWER: Correct Part I The velocity at . Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? 1.0 mJ t = 0.40 s 1.46 cms N/m cm s Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum m = 110 g vmax = 49 cms A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. m L T T L T = 2 Lg −−  g T/2 T ‘2T 2T g/6 ANSWER: Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. T/6 T/’6 ‘6T 6T It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. g % s L = 19 cm m lmoon = 0.35 m m g 1.0 MHz Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 94.2%. You received 135.71 out of a possible total of 144 points. N amax = 6.6 μm vmax = 41 ms

Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = -60 % s t = 0 s cm cm/s 0 = -2.09 rad Correct Part B What is the phase at ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part C What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: t = 0.5 s  = 0 rad t = 1.0 s  = 2.09 rad t = 1.5 s  = 4.19 rad Correct Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct g cm s 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 0.628 s 5.00 Nm -0.785 rad Part E The initial coordinate of the mass. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part F The initial velocity. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part G The maximum speed. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 1.41 cm 14.1 cms 20.0 cms Part H The total energy. Express your answer to one decimal place and include the appropriate units. ANSWER: Correct Part I The velocity at . Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? 1.0 mJ t = 0.40 s 1.46 cms N/m cm s Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum m = 110 g vmax = 49 cms A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. m L T T L T = 2 Lg −−  g T/2 T ‘2T 2T g/6 ANSWER: Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. T/6 T/’6 ‘6T 6T It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. g % s L = 19 cm m lmoon = 0.35 m m g 1.0 MHz Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 94.2%. You received 135.71 out of a possible total of 144 points. N amax = 6.6 μm vmax = 41 ms

please email info@checkyourstudy.com
INEN 415 Simulation Lab 6 Fall 2015 Due Date: November 24th, 2015 (Submit via Blackboard) Description A small pizza delivery outlet in a busy metro area opens only for the lunch and dinner hours; for lunch from 11AM to 4PM and for dinner from 6PM to 11PM. Orders for single pizzas (no other orders are accepted) arrive with an inter-arrival time that is exponentially distributed with a mean of 3.25 minutes. (Need to create a rate table, see lab 5) The inside operations are handled by an OrderTaker, two IronChef, and an OvenMeister named Cruz. The outlet has one oven with a capacity of five pizzas. Two drivers driving Mustangs handle the deliveries. Timmy takes orders (for order-taking assume a triangular distribution with parameters 1, 2, 3 minutes). The IronChefs make the pizza including adding of toppings (assume a triangular distribution with parameters 2, 2.5, 3 minutes). When the pizza is made (but not cooked), the IronChefs places it in a Load Area in front of the oven. Cruz picks up the pizza from the Load Area and places the pizza in the oven (assume a triangular distribution with parameters 10, 15, 20 seconds) (Cruz is a worker) The cook time in the oven requires 15 minutes (fixed), and does not require any supervision; a buzzer alerts Cruz whenever any pizza has completed its oven time. When the pizza has cooked in the oven, Cruz takes the pizzas out of the oven (assume a triangular distribution with parameters 10, 15, 20 seconds). He carries the pizza to the Box Area. Where Cruz boxes the pizza (assume a triangular distribution with parameters 30, 45, 60 seconds) and leaves it in an area for the delivery people, who can transport a maximum of 5 pizzas (Triangular 10,20,30). Note: Cruz moves between Load Area, Oven, and Box Area. Assume travel times are negligible. Drivers take the pizza to the sink. Run model for 16 hours to ensure all pizzas are made. Simulate operations for one day using two scenarios: 1. The data as given above. 2. Inter-arrival rate decreases to 3 minutes.   Deliverable(s) I. Objectives a. Clearly define the objective(s) of the project. II. System Description / Modeling Approach a. Describe the model (personnel, processes, etc.) III. Input Data Requirements a. Describe the data collected to be used in the model. IV. Simulation Model a. Simulation Model (Screen shot of SIMIO model) V. Results / Conclusions Compare the following statististics for the two scenarios in a table. 1. Number of pizzas delivered. 2. Utilization of the all three personnel types. 3. Time in System for an order. VI. Discussion a. Based on the data provided, will the system have issues? b. As the IE professional, suggest possible changes to the system and clearly explain why such changes may improve the process. Tutorials/Simbits 1. Workers using work schedule (Simbit) 2. Single Vehicle Usage (Simbit) 3. Check on YouTube, they have many videos that can help!

INEN 415 Simulation Lab 6 Fall 2015 Due Date: November 24th, 2015 (Submit via Blackboard) Description A small pizza delivery outlet in a busy metro area opens only for the lunch and dinner hours; for lunch from 11AM to 4PM and for dinner from 6PM to 11PM. Orders for single pizzas (no other orders are accepted) arrive with an inter-arrival time that is exponentially distributed with a mean of 3.25 minutes. (Need to create a rate table, see lab 5) The inside operations are handled by an OrderTaker, two IronChef, and an OvenMeister named Cruz. The outlet has one oven with a capacity of five pizzas. Two drivers driving Mustangs handle the deliveries. Timmy takes orders (for order-taking assume a triangular distribution with parameters 1, 2, 3 minutes). The IronChefs make the pizza including adding of toppings (assume a triangular distribution with parameters 2, 2.5, 3 minutes). When the pizza is made (but not cooked), the IronChefs places it in a Load Area in front of the oven. Cruz picks up the pizza from the Load Area and places the pizza in the oven (assume a triangular distribution with parameters 10, 15, 20 seconds) (Cruz is a worker) The cook time in the oven requires 15 minutes (fixed), and does not require any supervision; a buzzer alerts Cruz whenever any pizza has completed its oven time. When the pizza has cooked in the oven, Cruz takes the pizzas out of the oven (assume a triangular distribution with parameters 10, 15, 20 seconds). He carries the pizza to the Box Area. Where Cruz boxes the pizza (assume a triangular distribution with parameters 30, 45, 60 seconds) and leaves it in an area for the delivery people, who can transport a maximum of 5 pizzas (Triangular 10,20,30). Note: Cruz moves between Load Area, Oven, and Box Area. Assume travel times are negligible. Drivers take the pizza to the sink. Run model for 16 hours to ensure all pizzas are made. Simulate operations for one day using two scenarios: 1. The data as given above. 2. Inter-arrival rate decreases to 3 minutes.   Deliverable(s) I. Objectives a. Clearly define the objective(s) of the project. II. System Description / Modeling Approach a. Describe the model (personnel, processes, etc.) III. Input Data Requirements a. Describe the data collected to be used in the model. IV. Simulation Model a. Simulation Model (Screen shot of SIMIO model) V. Results / Conclusions Compare the following statististics for the two scenarios in a table. 1. Number of pizzas delivered. 2. Utilization of the all three personnel types. 3. Time in System for an order. VI. Discussion a. Based on the data provided, will the system have issues? b. As the IE professional, suggest possible changes to the system and clearly explain why such changes may improve the process. Tutorials/Simbits 1. Workers using work schedule (Simbit) 2. Single Vehicle Usage (Simbit) 3. Check on YouTube, they have many videos that can help!

No expert has answered this question yet. You can browse … Read More...
ISTC3015 Human Computer Interaction Spring 2014 Assignment You are to choose 2 websites, with different purposes, and review the websites based on the criteria listed below. This assignment is due Thursday, March 20th and is worth 70 points. 1. Starting Point a. Composition Matches Site Purpose b. Target Audience Apparent c. Composition Appropriate for Target Audience 2. Site design a. Consistency within site b. Consistency among pages 3. Visually Pleasing Composition 4. Visual Style in Web Design a. Consistency b. Distinctiveness 5. Focus and Emphasis a. What is emphasized? b. How is emphasis achieved? 6. Consistency a. Real World b. Internal 7. Navigation and Flow a. Home page identifiable throughout b. Location within site apparent c. Navigation consistent; rule-based; appropriate 8. Grouping a. Grouping with White Space b. Grouping with Borders c. Grouping with Backgrounds 9. Response time 10. Links a. Titled b. Incoming c. Outgoing d. Color 11. Detailed content a. Meaningful headings b. Plain language c. Page chunking d. Long blocks of text e. Scrolling f. Use of “within” page links 12. Articles a. Clear headings b. Plain language 13. Presenting Information Simply and Meaningfully a. Legibility b. Readability c. Information in Usable Form d. Visual Lines Clear 14. Legibility of content a. Font color b. Font size c. Font style d. Background color e. Background graphic 15. Documentation a. Included b. Searchable c. Links to difficult concepts/words 16. Multimedia a. Animation/Audio/Video/Still images b. Load time given c. Add-in required d. Quality e. Appropriateness of use 17. Scrolling and Paging a. Usage b. Appropriate? 18. Amount of Information Presented Appropriate 19. Other factors to note?

ISTC3015 Human Computer Interaction Spring 2014 Assignment You are to choose 2 websites, with different purposes, and review the websites based on the criteria listed below. This assignment is due Thursday, March 20th and is worth 70 points. 1. Starting Point a. Composition Matches Site Purpose b. Target Audience Apparent c. Composition Appropriate for Target Audience 2. Site design a. Consistency within site b. Consistency among pages 3. Visually Pleasing Composition 4. Visual Style in Web Design a. Consistency b. Distinctiveness 5. Focus and Emphasis a. What is emphasized? b. How is emphasis achieved? 6. Consistency a. Real World b. Internal 7. Navigation and Flow a. Home page identifiable throughout b. Location within site apparent c. Navigation consistent; rule-based; appropriate 8. Grouping a. Grouping with White Space b. Grouping with Borders c. Grouping with Backgrounds 9. Response time 10. Links a. Titled b. Incoming c. Outgoing d. Color 11. Detailed content a. Meaningful headings b. Plain language c. Page chunking d. Long blocks of text e. Scrolling f. Use of “within” page links 12. Articles a. Clear headings b. Plain language 13. Presenting Information Simply and Meaningfully a. Legibility b. Readability c. Information in Usable Form d. Visual Lines Clear 14. Legibility of content a. Font color b. Font size c. Font style d. Background color e. Background graphic 15. Documentation a. Included b. Searchable c. Links to difficult concepts/words 16. Multimedia a. Animation/Audio/Video/Still images b. Load time given c. Add-in required d. Quality e. Appropriateness of use 17. Scrolling and Paging a. Usage b. Appropriate? 18. Amount of Information Presented Appropriate 19. Other factors to note?

No expert has answered this question yet. You can browse … Read More...