1. Refresh yourself with chapter 6 on Nonverbal communication . More specifically , look at the various types o nonverbal communication , choose one or two of these concepts. 2. Choose a subject/person ( i.e. spouse , boy/girlfriend, roommate, children, co-worker, parent, etc. ) 3. Monitor / observe their nonverbal behavior for at least 1 hour. 3. write-up and submit your observation.

1. Refresh yourself with chapter 6 on Nonverbal communication . More specifically , look at the various types o nonverbal communication , choose one or two of these concepts. 2. Choose a subject/person ( i.e. spouse , boy/girlfriend, roommate, children, co-worker, parent, etc. ) 3. Monitor / observe their nonverbal behavior for at least 1 hour. 3. write-up and submit your observation.

Non –verbal communication is process wherein wordless message/s is sent … Read More...
1 | P a g e Lecture #2: Abortion (Warren) While studying this topic, we will ask whether it is morally permissible to intentionally terminate a pregnancy and, if so, whether certain restrictions should be placed upon such practices. Even though we will most often be speaking of terminating a fetus, biologists make further classifications: the zygote is the single cell resulting from the fusion of the egg and the sperm; the morula is the cluster of cells that travels through the fallopian tubes; the blastocyte exists once an outer shell of cells has formed around an inner group of cells; the embryo exists once the cells begin to take on specific functions (around the 15th day); the fetus comes into existence in the 8th week when the embryo gains a basic structural resemblance to the adult. Given these distinctions, there are certain kinds of non-fetal abortion—such as usage of RU-486 (the morning-after “abortion pill”)—though most of the writers we will study refer to fetal abortions. So now let us consider the “Classical Argument against Abortion”, which has been very influential: P1) It is wrong to kill innocent persons. P2) A fetus is an innocent person. C) It is wrong to kill a fetus. (Note that this argument has received various formulations, including those from Warren and Thomson which differ from the above. For this course, we will refer to the above formulation as the “Classical Argument”.) Before evaluating this argument, we should talk about terminology: A person is a member of the moral community; i.e., someone who has rights and/or duties. ‘Persons’ is the plural of ‘person’. ‘Person’ can be contrasted with ‘human being’; a human being is anyone who is genetically human (i.e., a member of Homo sapiens). ‘People’ (or ‘human beings’) is the plural of ‘human being’. Why does this matter? First, not all persons are human beings. For example, consider an alien from another planet who mentally resembled us. If he were to visit Earth, it would be morally reprehensible to kick him or to set him on fire because of the pain and suffering that these acts would cause. And, similarly, the alien would be morally condemnable if he were to propagate such acts on us; he has a moral duty not to act in those ways (again, assuming a certain mental resemblance to us). So, even though this alien is not a human being, he is nevertheless a person with the associative rights and/or duties. 2 | P a g e And, more controversially, maybe not all human beings are persons. For example, anencephalic infants—i.e., ones born without cerebral cortexes and therefore with severely limited cognitive abilities—certainly do not have duties since they are not capable of rational thought and autonomous action. Some philosophers have even argued that they do not have rights. Now let us return to the Classical Argument. It is valid insofar as, if the premises are true, then the conclusion has to be true. But maybe it commits equivocation, which is to say that it uses the same word in multiple senses; equivocation is an informal fallacy (i.e., attaches to arguments that are formally valid but otherwise fallacious). Consider the following: P1) I put my money in the bank. P2) The bank borders the river. C) I put my money somewhere that borders the river. This argument equivocates since ‘bank’ is being used in two different senses: in P1 it is used to represent a financial institution and, in P2, it is used to represent a geological feature. Returning to the classical argument, it could be argued that ‘person’ is being used in two different senses: in P1 it is used in its appropriate moral sense and, in P2, it is inappropriately used instead of ‘human being’. The critic might suggest that a more accurate way to represent the argument would be as follows: P1) It is wrong to kill innocent persons. P2) A fetus is a human being. C) It is wrong to kill a fetus. This argument is obviously invalid. So one way to criticize the Classical Argument is to say that it conflates two different concepts—viz., ‘person’ and ‘human being’—and therefore commits equivocation. However, the more straightforward way to attack the Classical Argument is just to deny its second premise and thus contend that the argument is unsound. This is the approach that Mary Anne Warren takes in “On the Moral and Legal Status of Abortion”. Why does Warren think that the second premise is false? Remember that we defined a person as “a member of the moral community.” And we said that an alien, for example, could be afforded moral status even though it is not a human being. Why do we think that this alien should not be tortured or set on fire? Warren thinks that, intuitively, we think that membership in the moral community is based upon possession of the following traits: 3 | P a g e 1. Consciousness of objects and events external and/or internal to the being and especially the capacity to feel pain; 2. Reasoning or rationality (i.e., the developed capacity to solve new and relatively complex problems); 3. Self-motivated activity (i.e., activity which is relatively independent of either genetic or direct external control); 4. Capacity to communicate (not necessarily verbal or linguistic); and 5. Possession of self-concepts and self-awareness. Warren then admits that, though all of the items on this list look promising, we need not require that a person have all of the items on this list. (4) is perhaps the most expendable: imagine someone who is fully paralyzed as well as deaf, these incapacities, which preclude communication, are not sufficient to justify torture. Similarly, we might be able to imagine certain psychological afflictions that negate (5) without compromising personhood. Warren suspects that (1) and (2) are might be sufficient to confer personhood, and thinks that (1)-(3) “quite probably” are sufficient. Note that, if she is right, we would not be able to torture chimps, let us say, but we could set plants on fire (and most likely ants as well). However, given Warren’s aims, she does not need to specify which of these traits are necessary or sufficient for personhood; all that she wants to observe is that the fetus has none of them! Therefore, regardless of which traits we want to require, Warren thinks that the fetus is not a person. Therefore she thinks that the Classical Argument is unsound and should be rejected. Even if we accept Warren’s refutation of the second premise, we might be inclined to say that, while the fetus is not (now) a person, it is a potential person: the fetus will hopefully mature into a being that possesses all five of the traits on Warren’s list. We might then propose the following adjustment to the Classical Argument: P1) It is wrong to kill all innocent persons. P2) A fetus is a potential person. C) It is wrong to kill a fetus. However, this argument is invalid. Warren grants that potentiality might serve as a prima facie reason (i.e., a reason that has some moral weight but which might be outweighed by other considerations) not to abort a fetus, but potentiality alone is insufficient to grant the fetus a moral right against being terminated. By analogy, consider the following argument: 4 | P a g e P1) The President has the right to declare war. P2) Mary is a potential President. C) Mary has the right to declare war. This argument is invalid since the premises are both true and the conclusion is false. By parity, the following argument is also invalid: P1) A person has a right to life. P2) A fetus is a potential person. C) A fetus has a right to life. Thus Warren thinks that considerations of potentiality are insufficient to undermine her argument that fetuses—which are potential persons but, she thinks, not persons—do not have a right to life.

1 | P a g e Lecture #2: Abortion (Warren) While studying this topic, we will ask whether it is morally permissible to intentionally terminate a pregnancy and, if so, whether certain restrictions should be placed upon such practices. Even though we will most often be speaking of terminating a fetus, biologists make further classifications: the zygote is the single cell resulting from the fusion of the egg and the sperm; the morula is the cluster of cells that travels through the fallopian tubes; the blastocyte exists once an outer shell of cells has formed around an inner group of cells; the embryo exists once the cells begin to take on specific functions (around the 15th day); the fetus comes into existence in the 8th week when the embryo gains a basic structural resemblance to the adult. Given these distinctions, there are certain kinds of non-fetal abortion—such as usage of RU-486 (the morning-after “abortion pill”)—though most of the writers we will study refer to fetal abortions. So now let us consider the “Classical Argument against Abortion”, which has been very influential: P1) It is wrong to kill innocent persons. P2) A fetus is an innocent person. C) It is wrong to kill a fetus. (Note that this argument has received various formulations, including those from Warren and Thomson which differ from the above. For this course, we will refer to the above formulation as the “Classical Argument”.) Before evaluating this argument, we should talk about terminology: A person is a member of the moral community; i.e., someone who has rights and/or duties. ‘Persons’ is the plural of ‘person’. ‘Person’ can be contrasted with ‘human being’; a human being is anyone who is genetically human (i.e., a member of Homo sapiens). ‘People’ (or ‘human beings’) is the plural of ‘human being’. Why does this matter? First, not all persons are human beings. For example, consider an alien from another planet who mentally resembled us. If he were to visit Earth, it would be morally reprehensible to kick him or to set him on fire because of the pain and suffering that these acts would cause. And, similarly, the alien would be morally condemnable if he were to propagate such acts on us; he has a moral duty not to act in those ways (again, assuming a certain mental resemblance to us). So, even though this alien is not a human being, he is nevertheless a person with the associative rights and/or duties. 2 | P a g e And, more controversially, maybe not all human beings are persons. For example, anencephalic infants—i.e., ones born without cerebral cortexes and therefore with severely limited cognitive abilities—certainly do not have duties since they are not capable of rational thought and autonomous action. Some philosophers have even argued that they do not have rights. Now let us return to the Classical Argument. It is valid insofar as, if the premises are true, then the conclusion has to be true. But maybe it commits equivocation, which is to say that it uses the same word in multiple senses; equivocation is an informal fallacy (i.e., attaches to arguments that are formally valid but otherwise fallacious). Consider the following: P1) I put my money in the bank. P2) The bank borders the river. C) I put my money somewhere that borders the river. This argument equivocates since ‘bank’ is being used in two different senses: in P1 it is used to represent a financial institution and, in P2, it is used to represent a geological feature. Returning to the classical argument, it could be argued that ‘person’ is being used in two different senses: in P1 it is used in its appropriate moral sense and, in P2, it is inappropriately used instead of ‘human being’. The critic might suggest that a more accurate way to represent the argument would be as follows: P1) It is wrong to kill innocent persons. P2) A fetus is a human being. C) It is wrong to kill a fetus. This argument is obviously invalid. So one way to criticize the Classical Argument is to say that it conflates two different concepts—viz., ‘person’ and ‘human being’—and therefore commits equivocation. However, the more straightforward way to attack the Classical Argument is just to deny its second premise and thus contend that the argument is unsound. This is the approach that Mary Anne Warren takes in “On the Moral and Legal Status of Abortion”. Why does Warren think that the second premise is false? Remember that we defined a person as “a member of the moral community.” And we said that an alien, for example, could be afforded moral status even though it is not a human being. Why do we think that this alien should not be tortured or set on fire? Warren thinks that, intuitively, we think that membership in the moral community is based upon possession of the following traits: 3 | P a g e 1. Consciousness of objects and events external and/or internal to the being and especially the capacity to feel pain; 2. Reasoning or rationality (i.e., the developed capacity to solve new and relatively complex problems); 3. Self-motivated activity (i.e., activity which is relatively independent of either genetic or direct external control); 4. Capacity to communicate (not necessarily verbal or linguistic); and 5. Possession of self-concepts and self-awareness. Warren then admits that, though all of the items on this list look promising, we need not require that a person have all of the items on this list. (4) is perhaps the most expendable: imagine someone who is fully paralyzed as well as deaf, these incapacities, which preclude communication, are not sufficient to justify torture. Similarly, we might be able to imagine certain psychological afflictions that negate (5) without compromising personhood. Warren suspects that (1) and (2) are might be sufficient to confer personhood, and thinks that (1)-(3) “quite probably” are sufficient. Note that, if she is right, we would not be able to torture chimps, let us say, but we could set plants on fire (and most likely ants as well). However, given Warren’s aims, she does not need to specify which of these traits are necessary or sufficient for personhood; all that she wants to observe is that the fetus has none of them! Therefore, regardless of which traits we want to require, Warren thinks that the fetus is not a person. Therefore she thinks that the Classical Argument is unsound and should be rejected. Even if we accept Warren’s refutation of the second premise, we might be inclined to say that, while the fetus is not (now) a person, it is a potential person: the fetus will hopefully mature into a being that possesses all five of the traits on Warren’s list. We might then propose the following adjustment to the Classical Argument: P1) It is wrong to kill all innocent persons. P2) A fetus is a potential person. C) It is wrong to kill a fetus. However, this argument is invalid. Warren grants that potentiality might serve as a prima facie reason (i.e., a reason that has some moral weight but which might be outweighed by other considerations) not to abort a fetus, but potentiality alone is insufficient to grant the fetus a moral right against being terminated. By analogy, consider the following argument: 4 | P a g e P1) The President has the right to declare war. P2) Mary is a potential President. C) Mary has the right to declare war. This argument is invalid since the premises are both true and the conclusion is false. By parity, the following argument is also invalid: P1) A person has a right to life. P2) A fetus is a potential person. C) A fetus has a right to life. Thus Warren thinks that considerations of potentiality are insufficient to undermine her argument that fetuses—which are potential persons but, she thinks, not persons—do not have a right to life.

Lab Description: Follow the instructions in the lab tasks below to complete Problems 1 through 4. These problems will guide you in observing signal delays and timing hazards of logic circuits (both Sum-of-Products (SOP) and Product-of-Sums (POS) circuits). These problems will also guide you in adding circuitry to eliminate a timing hazard. Use VHDL to design the circuits. Carefully follow the directions provided in the lab tasks below. Write your answers to the questions asked by the problems. Do not print out the VHDL code and waveforms as asked by the problems, instead include these on the cover sheet for this lab and print this out when you are done. Do not worry about annotating or putting arrows/notes on the waveforms–just make sure any signals or transitions of interest are shown in your screenshot. For each problem, use VHDL assignment statements for each gate of the Boolean expression. You must add delay for each gate and inverter as described by the problem. Do this by using the “after” statement: Z <= (A and B) after 1 ns; Refer to Digilent Real Digital Module 8 for more information about the "after" statement. Lab Tasks: 1. Complete Problem 1 of Project 8. Simulate all input combinations for this SOP (Sum-of-Products) expression. However, be aware that specific input sequences are required to observe a timing hazard. The problem states that you will need to observe the output when B and C are both high (logic 1) and A transitions from high to low to high (logic 1 to 0, then back to 1). 2. Complete Problem 4 of Project 8. Increase the delay of the OR gate as specified and re-simulate to answer the questions. 3. Complete Problem 2 of Project 8. Change the delay of the OR gate back to the 1 ns that you used for Problem 1. Add the new logic gate (with delay) to your VHDL for the SOP expression and re-simulate to answer the questions. 4. Complete Problem 3 of Project 8. You may create any POS (Product-of-Sums) expression for this problem, however, not all POS expressions will have a timing hazard (so spend some time thinking about how a timing hazard can be generated with a POS expression). Once again, simulate all input combinations for your POS expression but be aware that specific input sequences are required to observe a timing hazard. For this problem, you will also add the new logic gate (with delay) to your VHDL for your POS expression in order to eliminate the timing hazard; you will need to re-simulate with this additional logic gate in order to answer the questions. Problem 1. Implement the function Y = A’.B + A.C in the VHDL tool. Define the INV, OR and two AND operations separately, and give each operation a 1ns delay. Simulate the circuit with all possible combinations of inputs. Watch all circuit nets (inputs, outputs, and intermediate nets) during the simulation. Answer the questions below. Observe the outputs of the AND gates and the overall circuit output when B and C are both high, and A transitions from H to L and then from L to H (you may want to create another simulation to focus on this behavior). What output behavior do you notice when A transitions? What happens when A transitions and B or C are held a ‘0’? How long is the output glitch? _______ Is it positive ( ) or negative ( ) (circle one)? Change the delay through the inverter to 2ns, and resimulate. Now how long is output glitch? ______ What can you say about the relationship between the inverter gate delay and the length of the timing glitch? Based on this simple experiment, an SOP circuit can exhibit positive/negative glitches (circle one) when an input that arrives at one AND gate in a complemented form and another AND gate in uncomplemented form transitions from a _____ to a _____. Problem 2. Enter the logic equation from problem 1 in the K-map below, and loop the equation with redundant term included. Add the redundant term to the Xilinx circuit, re-simulate, and answer the questions. B C A 00 01 11 10 0 1 F Did adding the new gate to the circuit change the logical behavior of the circuit? What effect did the new gate have on the output, particularly when A changes and B and C are both held high? Problem 3. Create a three-input POS circuit to illustrate the formation of a glitch. Drive the simulator to illustrate a glitch in the POS circuit, and answer the questions below. A POS circuit can exhibit a positive/negative glitch (circle one) when an input that arrives at one OR gate in a complemented form and another OR gate in un-complemented form transitions from a _____ to a _____. Write the POS equation you used to show the glitch: Enter the equation in the K-map below, loop the original equation with the redundant term, add the redundant gate to your Xilinx circuit, and resimulate. How did adding the new gate to the circuit change the logical behavior of the circuit? What effect did the new gate have on the output, particularly when A changes and B and C are both held high? Print and submit the circuits and simulation output, label the output glitches in the simulation output, and draw arrows on the simulation output between the events that caused the glitches (i.e., a transition in an input signal) and the glitches themselves. Problem 4. Copy the SOP circuit above to a new VHDL file, and increase the delay of the output OR gate. Simulate the circuit and answer the questions below. How did adding delay to the output gate change the output transition? Does adding delay to the output gate change the circuit’s glitch behavior in any way? Name: Signal Delays Date: Designing with VHDL Grade Item Grade Five segments of VHDL Code for Problems 1-4: /10 Five simulation screenshots for Problems 1-4: /10 Questions from Problems 1-4: /16 Total Grade: /36 VHDL Code: Copy-paste your VHDL design code (just the code you wrote) for: • The SOP expression with the timing hazard (Problem 1, Project 8): • The SOP expression with increased OR gate delay (Problem 4, Project 8): • The SOP expression with the extra logic gate in order to eliminate the timing hazard (Problem 2, Project 8): • Your POS expression with the timing hazard (Problem 3, Project 8): • Your POS expression with the extra logic gate in order to eliminate the timing hazard (Problem 3, Project 8): Simulation Screenshots: Use the “Print Screen” button to capture your screenshot (it should show the entire screen, not just the window of the program). • The SOP expression with the timing hazard (Problem 1, Project 8): • The SOP expression with increased OR gate delay (Problem 4, Project 8): • The SOP expression with the extra logic gate in order to eliminate the timing hazard (Problem 2, Project 8): • Your POS expression with the timing hazard (Problem 3, Project 8): • Your POS expression with the extra logic gate in order to eliminate the timing hazard (Problem 3, Project 8): Simulation Screenshot Tips: (you can delete this once you capture your screenshot) 1. Make the “Wave” window large by clicking the “+” button near the upper-right of the window 2. Click the “Zoom Full” button (looks like a blue/green-filled magnifying glass) to enlarge your waveforms 3. In order to not print a lot of black, change the color scheme of the “Wave” window: 3.1. Click ToolsEdit Preferences… 3.2. The “By Window” tab should be selected, then click Wave Windows in the “Window List” to the left 3.3. Scroll to the bottom of the “Wave Windows Color Scheme” list and click waveBackground. Then click white in the color “Palette” at the right of the screen. 3.4. Now color the waveforms and text black: 3.4.1. Click LOGIC_0 in the “Wave Windows Color Scheme.” Then click black in the color “Palette” at the right of the screen. 3.4.2. Repeat this for LOGIC_1, timeColor, and cursorColor (if you have a cursor you want to print) 3.5. Once you have captured your screenshot, you can click the Reset Defaults button to restore the “Wave” window to its original color scheme Questions: (Please use this cover sheet to type and print your responses) 1. List the references you used for this lab assignment (e.g. sources/websites used or students with whom you discussed this assignment) 2. Do you have any comments or suggestions for this lab exercise?

Lab Description: Follow the instructions in the lab tasks below to complete Problems 1 through 4. These problems will guide you in observing signal delays and timing hazards of logic circuits (both Sum-of-Products (SOP) and Product-of-Sums (POS) circuits). These problems will also guide you in adding circuitry to eliminate a timing hazard. Use VHDL to design the circuits. Carefully follow the directions provided in the lab tasks below. Write your answers to the questions asked by the problems. Do not print out the VHDL code and waveforms as asked by the problems, instead include these on the cover sheet for this lab and print this out when you are done. Do not worry about annotating or putting arrows/notes on the waveforms–just make sure any signals or transitions of interest are shown in your screenshot. For each problem, use VHDL assignment statements for each gate of the Boolean expression. You must add delay for each gate and inverter as described by the problem. Do this by using the “after” statement: Z <= (A and B) after 1 ns; Refer to Digilent Real Digital Module 8 for more information about the "after" statement. Lab Tasks: 1. Complete Problem 1 of Project 8. Simulate all input combinations for this SOP (Sum-of-Products) expression. However, be aware that specific input sequences are required to observe a timing hazard. The problem states that you will need to observe the output when B and C are both high (logic 1) and A transitions from high to low to high (logic 1 to 0, then back to 1). 2. Complete Problem 4 of Project 8. Increase the delay of the OR gate as specified and re-simulate to answer the questions. 3. Complete Problem 2 of Project 8. Change the delay of the OR gate back to the 1 ns that you used for Problem 1. Add the new logic gate (with delay) to your VHDL for the SOP expression and re-simulate to answer the questions. 4. Complete Problem 3 of Project 8. You may create any POS (Product-of-Sums) expression for this problem, however, not all POS expressions will have a timing hazard (so spend some time thinking about how a timing hazard can be generated with a POS expression). Once again, simulate all input combinations for your POS expression but be aware that specific input sequences are required to observe a timing hazard. For this problem, you will also add the new logic gate (with delay) to your VHDL for your POS expression in order to eliminate the timing hazard; you will need to re-simulate with this additional logic gate in order to answer the questions. Problem 1. Implement the function Y = A’.B + A.C in the VHDL tool. Define the INV, OR and two AND operations separately, and give each operation a 1ns delay. Simulate the circuit with all possible combinations of inputs. Watch all circuit nets (inputs, outputs, and intermediate nets) during the simulation. Answer the questions below. Observe the outputs of the AND gates and the overall circuit output when B and C are both high, and A transitions from H to L and then from L to H (you may want to create another simulation to focus on this behavior). What output behavior do you notice when A transitions? What happens when A transitions and B or C are held a ‘0’? How long is the output glitch? _______ Is it positive ( ) or negative ( ) (circle one)? Change the delay through the inverter to 2ns, and resimulate. Now how long is output glitch? ______ What can you say about the relationship between the inverter gate delay and the length of the timing glitch? Based on this simple experiment, an SOP circuit can exhibit positive/negative glitches (circle one) when an input that arrives at one AND gate in a complemented form and another AND gate in uncomplemented form transitions from a _____ to a _____. Problem 2. Enter the logic equation from problem 1 in the K-map below, and loop the equation with redundant term included. Add the redundant term to the Xilinx circuit, re-simulate, and answer the questions. B C A 00 01 11 10 0 1 F Did adding the new gate to the circuit change the logical behavior of the circuit? What effect did the new gate have on the output, particularly when A changes and B and C are both held high? Problem 3. Create a three-input POS circuit to illustrate the formation of a glitch. Drive the simulator to illustrate a glitch in the POS circuit, and answer the questions below. A POS circuit can exhibit a positive/negative glitch (circle one) when an input that arrives at one OR gate in a complemented form and another OR gate in un-complemented form transitions from a _____ to a _____. Write the POS equation you used to show the glitch: Enter the equation in the K-map below, loop the original equation with the redundant term, add the redundant gate to your Xilinx circuit, and resimulate. How did adding the new gate to the circuit change the logical behavior of the circuit? What effect did the new gate have on the output, particularly when A changes and B and C are both held high? Print and submit the circuits and simulation output, label the output glitches in the simulation output, and draw arrows on the simulation output between the events that caused the glitches (i.e., a transition in an input signal) and the glitches themselves. Problem 4. Copy the SOP circuit above to a new VHDL file, and increase the delay of the output OR gate. Simulate the circuit and answer the questions below. How did adding delay to the output gate change the output transition? Does adding delay to the output gate change the circuit’s glitch behavior in any way? Name: Signal Delays Date: Designing with VHDL Grade Item Grade Five segments of VHDL Code for Problems 1-4: /10 Five simulation screenshots for Problems 1-4: /10 Questions from Problems 1-4: /16 Total Grade: /36 VHDL Code: Copy-paste your VHDL design code (just the code you wrote) for: • The SOP expression with the timing hazard (Problem 1, Project 8): • The SOP expression with increased OR gate delay (Problem 4, Project 8): • The SOP expression with the extra logic gate in order to eliminate the timing hazard (Problem 2, Project 8): • Your POS expression with the timing hazard (Problem 3, Project 8): • Your POS expression with the extra logic gate in order to eliminate the timing hazard (Problem 3, Project 8): Simulation Screenshots: Use the “Print Screen” button to capture your screenshot (it should show the entire screen, not just the window of the program). • The SOP expression with the timing hazard (Problem 1, Project 8): • The SOP expression with increased OR gate delay (Problem 4, Project 8): • The SOP expression with the extra logic gate in order to eliminate the timing hazard (Problem 2, Project 8): • Your POS expression with the timing hazard (Problem 3, Project 8): • Your POS expression with the extra logic gate in order to eliminate the timing hazard (Problem 3, Project 8): Simulation Screenshot Tips: (you can delete this once you capture your screenshot) 1. Make the “Wave” window large by clicking the “+” button near the upper-right of the window 2. Click the “Zoom Full” button (looks like a blue/green-filled magnifying glass) to enlarge your waveforms 3. In order to not print a lot of black, change the color scheme of the “Wave” window: 3.1. Click ToolsEdit Preferences… 3.2. The “By Window” tab should be selected, then click Wave Windows in the “Window List” to the left 3.3. Scroll to the bottom of the “Wave Windows Color Scheme” list and click waveBackground. Then click white in the color “Palette” at the right of the screen. 3.4. Now color the waveforms and text black: 3.4.1. Click LOGIC_0 in the “Wave Windows Color Scheme.” Then click black in the color “Palette” at the right of the screen. 3.4.2. Repeat this for LOGIC_1, timeColor, and cursorColor (if you have a cursor you want to print) 3.5. Once you have captured your screenshot, you can click the Reset Defaults button to restore the “Wave” window to its original color scheme Questions: (Please use this cover sheet to type and print your responses) 1. List the references you used for this lab assignment (e.g. sources/websites used or students with whom you discussed this assignment) 2. Do you have any comments or suggestions for this lab exercise?

checkyourstudy.com Whatsapp +919911743277
Discovery Civics: Describe the sustainability situation in your neighborhood or community. Observe and explain what are the inputs that people use and what are the outputs produced. Based on the observation, what specific steps would you take to improve the sustainability of your community? (Words: 500 ~ 750)

Discovery Civics: Describe the sustainability situation in your neighborhood or community. Observe and explain what are the inputs that people use and what are the outputs produced. Based on the observation, what specific steps would you take to improve the sustainability of your community? (Words: 500 ~ 750)

Read this article and answer this question in 2 pages : Answers should be from the below article only. What is the difference between “standards-based” and “standards-embedded” curriculum? what are the curricular implications of this difference? Article: In 2007, at the dawn of 21st century in education, it is impossible to talk about teaching, curriculum, schools, or education without discussing standards . standards-based v. standards-embedded curriculum We are in an age of accountability where our success as educators is determined by individual and group mastery of specific standards dem- onstrated by standardized test per- formance. Even before No Child Left Behind (NCLB), standards and measures were used to determine if schools and students were success- ful (McClure, 2005). But, NCLB has increased the pace, intensity, and high stakes of this trend. Gifted and talented students and their teach- ers are significantly impacted by these local or state proficiency stan- dards and grade-level assessments (VanTassel-Baska & Stambaugh, 2006). This article explores how to use these standards in the develop- ment of high-quality curriculum for gifted students. NCLB, High-Stakes State Testing, and Standards- Based Instruction There are a few potentially positive outcomes of this evolution to public accountability. All stakeholders have had to ask themselves, “Are students learning? If so, what are they learning and how do we know?” In cases where we have been allowed to thoughtfully evaluate curriculum and instruction, we have also asked, “What’s worth learning?” “When’s the best time to learn it?” and “Who needs to learn it?” Even though state achievement tests are only a single measure, citizens are now offered a yardstick, albeit a nar- row one, for comparing communities, schools, and in some cases, teachers. Some testing reports allow teachers to identify for parents what their chil- dren can do and what they can not do. Testing also has focused attention on the not-so-new observations that pov- erty, discrimination and prejudices, and language proficiency impacts learning. With enough ceiling (e.g., above-grade-level assessments), even gifted students’ actual achievement and readiness levels can be identi- fied and provide a starting point for appropriately differentiated instruc- tion (Tomlinson, 2001). Unfortunately, as a veteran teacher for more than three decades and as a teacher-educator, my recent observa- tions of and conversations with class- room and gifted teachers have usually revealed negative outcomes. For gifted children, their actual achievement level is often unrecognized by teachers because both the tests and the reporting of the results rarely reach above the student’s grade-level placement. Assessments also focus on a huge number of state stan- dards for a given school year that cre- ate “overload” (Tomlinson & McTighe, 2006) and have a devastating impact on the development and implementation of rich and relevant curriculum and instruction. In too many scenarios, I see teachers teach- ing directly to the test. And, in the worst cases, some teachers actually teach The Test. In those cases, The Test itself becomes the curriculum. Consistently I hear, “Oh, I used to teach a great unit on ________ but I can’t do it any- more because I have to teach the standards.” Or, “I have to teach my favorite units in April and May after testing.” If the outcomes can’t be boiled down to simple “I can . . .” state- ments that can be posted on a school’s walls, then teachers seem to omit poten- tially meaningful learning opportunities from the school year. In many cases, real education and learning are being trivial- ized. We seem to have lost sight of the more significant purpose of teaching and learning: individual growth and develop- ment. We also have surrendered much of the joy of learning, as the incidentals, the tangents, the “bird walks” are cut short or elimi- nated because teachers hear the con- stant ticking clock of the countdown to the state test and feel the pressure of the way-too-many standards that have to be covered in a mere 180 school days. The accountability movement has pushed us away from seeing the whole child: “Students are not machines, as the standards movement suggests; they are volatile, complicated, and paradoxical” (Cookson, 2001, p. 42). How does this impact gifted chil- dren? In many heterogeneous class- rooms, teachers have retreated to traditional subject delineations and traditional instruction in an effort to ensure direct standards-based instruc- tion even though “no solid basis exists in the research literature for the ways we currently develop, place, and align educational standards in school cur- ricula” (Zenger & Zenger, 2002, p. 212). Grade-level standards are often particularly inappropriate for the gifted and talented whose pace of learning, achievement levels, and depth of knowledge are significantly beyond their chronological peers. A broad-based, thematically rich, and challenging curriculum is the heart of education for the gifted. Virgil Ward, one of the earliest voices for a differen- tial education for the gifted, said, “It is insufficient to consider the curriculum for the gifted in terms of traditional subjects and instructional processes” (Ward, 1980, p. 5). VanTassel-Baska Standards-Based v. Standards-Embedded Curriculum gifted child today 45 Standards-Based v. Standards-Embedded Curriculum and Stambaugh (2006) described three dimensions of successful curriculum for gifted students: content mastery, pro- cess and product, and epistemological concept, “understanding and appre- ciating systems of knowledge rather than individual elements of those systems” (p. 9). Overemphasis on testing and grade-level standards limits all three and therefore limits learning for gifted students. Hirsch (2001) concluded that “broad gen- eral knowledge is the best entrée to deep knowledge” (p. 23) and that it is highly correlated with general ability to learn. He continued, “the best way to learn a subject is to learn its gen- eral principles and to study an ample number of diverse examples that illustrate those principles” (Hirsch, 2001, p. 23). Principle-based learn- ing applies to both gifted and general education children. In order to meet the needs of gifted and general education students, cur- riculum should be differentiated in ways that are relevant and engaging. Curriculum content, processes, and products should provide challenge, depth, and complexity, offering multiple opportunities for problem solving, creativity, and exploration. In specific content areas, the cur- riculum should reflect the elegance and sophistication unique to the discipline. Even with this expanded view of curriculum in mind, we still must find ways to address the current reality of state standards and assess- ments. Standards-Embedded Curriculum How can educators address this chal- lenge? As in most things, a change of perspective can be helpful. Standards- based curriculum as described above should be replaced with standards- embedded curriculum. Standards- embedded curriculum begins with broad questions and topics, either discipline specific or interdisciplinary. Once teachers have given thoughtful consideration to relevant, engaging, and important content and the con- nections that support meaning-making (Jensen, 1998), they next select stan- dards that are relevant to this content and to summative assessments. This process is supported by the backward planning advocated in Understanding by Design by Wiggins and McTighe (2005) and its predecessors, as well as current thinkers in other fields, such as Covey (Tomlinson & McTighe, 2006). It is a critical component of differenti- ating instruction for advanced learners (Tomlinson, 2001) and a significant factor in the Core Parallel in the Parallel Curriculum Model (Tomlinson et al., 2002). Teachers choose from standards in multiple disciplines at both above and below grade level depending on the needs of the students and the classroom or program structure. Preassessment data and the results of prior instruc- tion also inform this process of embed- ding appropriate standards. For gifted students, this formative assessment will result in “more advanced curricula available at younger ages, ensuring that all levels of the standards are traversed in the process” (VanTassel-Baska & Little, 2003, p. 3). Once the essential questions, key content, and relevant standards are selected and sequenced, they are embedded into a coherent unit design and instructional decisions (grouping, pacing, instructional methodology) can be made. For gifted students, this includes the identification of appropri- ate resources, often including advanced texts, mentors, and independent research, as appropriate to the child’s developmental level and interest. Applying Standards- Embedded Curriculum What does this look like in practice? In reading the possible class- room applications below, consider these three Ohio Academic Content Standards for third grade: 1. Math: “Read thermometers in both Fahrenheit and Celsius scales” (“Academic Content Standards: K–12 Mathematics,” n.d., p. 71). 2. Social Studies: “Compare some of the cultural practices and products of various groups of people who have lived in the local community including artistic expression, religion, language, and food. Compare the cultural practices and products of the local community with those of other communities in Ohio, the United States, and countries of the world” (Academic Content Standards: K–12 Social Studies, n.d., p. 122). 3. Life Science: “Observe and explore how fossils provide evidence about animals that lived long ago and the nature of the environment at that time” (Academic Content Standards: K–12 Science, n.d., p. 57). When students are fortunate to have a teacher who is dedicated to helping all of them make good use of their time, the gifted may have a preassessment opportunity where they can demonstrate their familiarity with the content and potential mastery of a standard at their grade level. Students who pass may get to read by them- selves for the brief period while the rest of the class works on the single outcome. Sometimes more experienced teachers will create opportunities for gifted and advanced students Standards-Based v. Standards-Embedded Curriculum to work on a standard in the same domain or strand at the next higher grade level (i.e., accelerate through the standards). For example, a stu- dent might be able to work on a Life Science standard for fourth grade that progresses to other communities such as ecosystems. These above-grade-level standards can provide rich material for differentiation, advanced problem solving, and more in-depth curriculum integration. In another classroom scenario, a teacher may focus on the math stan- dard above, identifying the standard number on his lesson plan. He creates or collects paper thermometers, some showing measurement in Celsius and some in Fahrenheit. He also has some real thermometers. He demonstrates thermometer use with boiling water and with freezing water and reads the different temperatures. Students complete a worksheet that has them read thermometers in Celsius and Fahrenheit. The more advanced students may learn how to convert between the two scales. Students then practice with several questions on the topic that are similar in structure and content to those that have been on past proficiency tests. They are coached in how to answer them so that the stan- dard, instruction, formative assess- ment, and summative assessment are all aligned. Then, each student writes a statement that says, “I can read a thermometer using either Celsius or Fahrenheit scales.” Both of these examples describe a standards-based environment, where the starting point is the standard. Direct instruction to that standard is followed by an observable student behavior that demonstrates specific mastery of that single standard. The standard becomes both the start- ing point and the ending point of the curriculum. Education, rather than opening up a student’s mind, becomes a series of closed links in a chain. Whereas the above lessons may be differentiated to some extent, they have no context; they may relate only to the next standard on the list, such as, “Telling time to the nearest minute and finding elapsed time using a cal- endar or a clock.” How would a “standards-embed- ded” model of curriculum design be different? It would begin with the development of an essential ques- tion such as, “Who or what lived here before me? How were they different from me? How were they the same? How do we know?” These questions might be more relevant to our con- temporary highly mobile students. It would involve place and time. Using this intriguing line of inquiry, students might work on the social studies stan- dard as part of the study of their home- town, their school, or even their house or apartment. Because where people live and what they do is influenced by the weather, students could look into weather patterns of their area and learn how to measure temperature using a Fahrenheit scale so they could see if it is similar now to what it was a century ago. Skipping ahead to consideration of the social studies standard, students could then choose another country, preferably one that uses Celsius, and do the same investigation of fossils, communities, and the like. Students could complete a weather comparison, looking at the temperature in Celsius as people in other parts of the world, such as those in Canada, do. Thus, learning is contextualized and connected, dem- onstrating both depth and complexity. This approach takes a lot more work and time. It is a sophisticated integrated view of curriculum devel- opment and involves in-depth knowl- edge of the content areas, as well as an understanding of the scope and sequence of the standards in each dis- cipline. Teachers who develop vital single-discipline units, as well as inter- disciplinary teaching units, begin with a central topic surrounded by subtopics and connections to other areas. Then they connect important terms, facts, or concepts to the subtopics. Next, the skilled teacher/curriculum devel- oper embeds relevant, multileveled standards and objectives appropriate to a given student or group of stu- dents into the unit. Finally, teachers select the instructional strategies and develop student assessments. These assessments include, but are not lim- ited to, the types of questions asked on standardized and state assessments. Comparing Standards- Based and Standards- Embedded Curriculum Design Following is an articulation of the differences between standards-based and standards-embedded curriculum design. (See Figure 1.) 1. The starting point. Standards- based curriculum begins with the grade-level standard and the underlying assumption that every student needs to master that stan- dard at that moment in time. In standards-embedded curriculum, the multifaceted essential ques- tion and students’ needs are the starting points. 2. Preassessment. In standards- based curriculum and teaching, if a preassessment is provided, it cov- ers a single standard or two. In a standards-embedded curriculum, preassessment includes a broader range of grade-level and advanced standards, as well as students’ knowledge of surrounding content such as background experiences with the subject, relevant skills (such as reading and writing), and continued on page ?? even learning style or interests. gifted child today 47 Standards-Based v. Standards-Embedded Curriculum Standards Based Standards Embedded Starting Points The grade-level standard. Whole class’ general skill level Essential questions and content relevant to individual students and groups. Preassessment Targeted to a single grade-level standard. Short-cycle assessments. Background knowledge. Multiple grade-level standards from multiple areas connected by the theme of the unit. Includes annual learning style and interest inventories. Acceleration/ Enrichment To next grade-level standard in the same strand. To above-grade-level standards, as well as into broader thematically connected content. Language Arts Divided into individual skills. Reading and writing skills often separated from real-world relevant contexts. The language arts are embedded in all units and themes and connected to differentiated processes and products across all content areas. Instruction Lesson planning begins with the standard as the objective. Sequential direct instruction progresses through the standards in each content area separately. Strategies are selected to introduce, practice, and demonstrate mastery of all grade-level standards in all content areas in one school year. Lesson planning begins with essential questions, topics, and significant themes. Integrated instruction is designed around connections among content areas and embeds all relevant standards. Assessment Format modeled after the state test. Variety of assessments including questions similar to the state test format. Teacher Role Monitor of standards mastery. Time manager. Facilitator of instructional design and student engagement with learning, as well as assessor of achievement. Student Self- Esteem “I can . . .” statements. Star Charts. Passing “the test.” Completed projects/products. Making personal connections to learning and the theme/topic. Figure 1. Standards based v. standards-embedded instruction and gifted students. and the potential political outcry of “stepping on the toes” of the next grade’s teacher. Few classroom teachers have been provided with the in-depth professional develop- ment and understanding of curric- ulum compacting that would allow them to implement this effectively. In standards-embedded curricu- lum, enrichment and extensions of learning are more possible and more interesting because ideas, top- ics, and questions lend themselves more easily to depth and complex- ity than isolated skills. 4. Language arts. In standards- based classrooms, the language arts have been redivided into sepa- rate skills, with reading separated from writing, and writing sepa- rated from grammar. To many concrete thinkers, whole-language approaches seem antithetical to teaching “to the standards.” In a standards-embedded classroom, integrated language arts skills (reading, writing, listening, speak- ing, presenting, and even pho- nics) are embedded into the study of every unit. Especially for the gifted, the communication and language arts are essential, regard- less of domain-specific talents (Ward, 1980) and should be com- ponents of all curriculum because they are the underpinnings of scholarship in all areas. 5. Instruction. A standards-based classroom lends itself to direct instruction and sequential pro- gression from one standard to the next. A standards-embedded class- room requires a variety of more open-ended instructional strate- gies and materials that extend and diversify learning rather than focus it narrowly. Creativity and differ- entiation in instruction and stu- dent performance are supported more effectively in a standards- embedded approach. 6. Assessment. A standards-based classroom uses targeted assess- ments focused on the structure and content of questions on the externally imposed standardized test (i.e., proficiency tests). A stan- dards-embedded classroom lends itself to greater use of authentic assessment and differentiated 3. Acceleration/Enrichment. In a standards-based curriculum, the narrow definition of the learning outcome (a test item) often makes acceleration or curriculum compact- ing the only path for differentiating instruction for gifted, talented, and/ or advanced learners. This rarely happens, however, because of lack of materials, knowledge, o

Read this article and answer this question in 2 pages : Answers should be from the below article only. What is the difference between “standards-based” and “standards-embedded” curriculum? what are the curricular implications of this difference? Article: In 2007, at the dawn of 21st century in education, it is impossible to talk about teaching, curriculum, schools, or education without discussing standards . standards-based v. standards-embedded curriculum We are in an age of accountability where our success as educators is determined by individual and group mastery of specific standards dem- onstrated by standardized test per- formance. Even before No Child Left Behind (NCLB), standards and measures were used to determine if schools and students were success- ful (McClure, 2005). But, NCLB has increased the pace, intensity, and high stakes of this trend. Gifted and talented students and their teach- ers are significantly impacted by these local or state proficiency stan- dards and grade-level assessments (VanTassel-Baska & Stambaugh, 2006). This article explores how to use these standards in the develop- ment of high-quality curriculum for gifted students. NCLB, High-Stakes State Testing, and Standards- Based Instruction There are a few potentially positive outcomes of this evolution to public accountability. All stakeholders have had to ask themselves, “Are students learning? If so, what are they learning and how do we know?” In cases where we have been allowed to thoughtfully evaluate curriculum and instruction, we have also asked, “What’s worth learning?” “When’s the best time to learn it?” and “Who needs to learn it?” Even though state achievement tests are only a single measure, citizens are now offered a yardstick, albeit a nar- row one, for comparing communities, schools, and in some cases, teachers. Some testing reports allow teachers to identify for parents what their chil- dren can do and what they can not do. Testing also has focused attention on the not-so-new observations that pov- erty, discrimination and prejudices, and language proficiency impacts learning. With enough ceiling (e.g., above-grade-level assessments), even gifted students’ actual achievement and readiness levels can be identi- fied and provide a starting point for appropriately differentiated instruc- tion (Tomlinson, 2001). Unfortunately, as a veteran teacher for more than three decades and as a teacher-educator, my recent observa- tions of and conversations with class- room and gifted teachers have usually revealed negative outcomes. For gifted children, their actual achievement level is often unrecognized by teachers because both the tests and the reporting of the results rarely reach above the student’s grade-level placement. Assessments also focus on a huge number of state stan- dards for a given school year that cre- ate “overload” (Tomlinson & McTighe, 2006) and have a devastating impact on the development and implementation of rich and relevant curriculum and instruction. In too many scenarios, I see teachers teach- ing directly to the test. And, in the worst cases, some teachers actually teach The Test. In those cases, The Test itself becomes the curriculum. Consistently I hear, “Oh, I used to teach a great unit on ________ but I can’t do it any- more because I have to teach the standards.” Or, “I have to teach my favorite units in April and May after testing.” If the outcomes can’t be boiled down to simple “I can . . .” state- ments that can be posted on a school’s walls, then teachers seem to omit poten- tially meaningful learning opportunities from the school year. In many cases, real education and learning are being trivial- ized. We seem to have lost sight of the more significant purpose of teaching and learning: individual growth and develop- ment. We also have surrendered much of the joy of learning, as the incidentals, the tangents, the “bird walks” are cut short or elimi- nated because teachers hear the con- stant ticking clock of the countdown to the state test and feel the pressure of the way-too-many standards that have to be covered in a mere 180 school days. The accountability movement has pushed us away from seeing the whole child: “Students are not machines, as the standards movement suggests; they are volatile, complicated, and paradoxical” (Cookson, 2001, p. 42). How does this impact gifted chil- dren? In many heterogeneous class- rooms, teachers have retreated to traditional subject delineations and traditional instruction in an effort to ensure direct standards-based instruc- tion even though “no solid basis exists in the research literature for the ways we currently develop, place, and align educational standards in school cur- ricula” (Zenger & Zenger, 2002, p. 212). Grade-level standards are often particularly inappropriate for the gifted and talented whose pace of learning, achievement levels, and depth of knowledge are significantly beyond their chronological peers. A broad-based, thematically rich, and challenging curriculum is the heart of education for the gifted. Virgil Ward, one of the earliest voices for a differen- tial education for the gifted, said, “It is insufficient to consider the curriculum for the gifted in terms of traditional subjects and instructional processes” (Ward, 1980, p. 5). VanTassel-Baska Standards-Based v. Standards-Embedded Curriculum gifted child today 45 Standards-Based v. Standards-Embedded Curriculum and Stambaugh (2006) described three dimensions of successful curriculum for gifted students: content mastery, pro- cess and product, and epistemological concept, “understanding and appre- ciating systems of knowledge rather than individual elements of those systems” (p. 9). Overemphasis on testing and grade-level standards limits all three and therefore limits learning for gifted students. Hirsch (2001) concluded that “broad gen- eral knowledge is the best entrée to deep knowledge” (p. 23) and that it is highly correlated with general ability to learn. He continued, “the best way to learn a subject is to learn its gen- eral principles and to study an ample number of diverse examples that illustrate those principles” (Hirsch, 2001, p. 23). Principle-based learn- ing applies to both gifted and general education children. In order to meet the needs of gifted and general education students, cur- riculum should be differentiated in ways that are relevant and engaging. Curriculum content, processes, and products should provide challenge, depth, and complexity, offering multiple opportunities for problem solving, creativity, and exploration. In specific content areas, the cur- riculum should reflect the elegance and sophistication unique to the discipline. Even with this expanded view of curriculum in mind, we still must find ways to address the current reality of state standards and assess- ments. Standards-Embedded Curriculum How can educators address this chal- lenge? As in most things, a change of perspective can be helpful. Standards- based curriculum as described above should be replaced with standards- embedded curriculum. Standards- embedded curriculum begins with broad questions and topics, either discipline specific or interdisciplinary. Once teachers have given thoughtful consideration to relevant, engaging, and important content and the con- nections that support meaning-making (Jensen, 1998), they next select stan- dards that are relevant to this content and to summative assessments. This process is supported by the backward planning advocated in Understanding by Design by Wiggins and McTighe (2005) and its predecessors, as well as current thinkers in other fields, such as Covey (Tomlinson & McTighe, 2006). It is a critical component of differenti- ating instruction for advanced learners (Tomlinson, 2001) and a significant factor in the Core Parallel in the Parallel Curriculum Model (Tomlinson et al., 2002). Teachers choose from standards in multiple disciplines at both above and below grade level depending on the needs of the students and the classroom or program structure. Preassessment data and the results of prior instruc- tion also inform this process of embed- ding appropriate standards. For gifted students, this formative assessment will result in “more advanced curricula available at younger ages, ensuring that all levels of the standards are traversed in the process” (VanTassel-Baska & Little, 2003, p. 3). Once the essential questions, key content, and relevant standards are selected and sequenced, they are embedded into a coherent unit design and instructional decisions (grouping, pacing, instructional methodology) can be made. For gifted students, this includes the identification of appropri- ate resources, often including advanced texts, mentors, and independent research, as appropriate to the child’s developmental level and interest. Applying Standards- Embedded Curriculum What does this look like in practice? In reading the possible class- room applications below, consider these three Ohio Academic Content Standards for third grade: 1. Math: “Read thermometers in both Fahrenheit and Celsius scales” (“Academic Content Standards: K–12 Mathematics,” n.d., p. 71). 2. Social Studies: “Compare some of the cultural practices and products of various groups of people who have lived in the local community including artistic expression, religion, language, and food. Compare the cultural practices and products of the local community with those of other communities in Ohio, the United States, and countries of the world” (Academic Content Standards: K–12 Social Studies, n.d., p. 122). 3. Life Science: “Observe and explore how fossils provide evidence about animals that lived long ago and the nature of the environment at that time” (Academic Content Standards: K–12 Science, n.d., p. 57). When students are fortunate to have a teacher who is dedicated to helping all of them make good use of their time, the gifted may have a preassessment opportunity where they can demonstrate their familiarity with the content and potential mastery of a standard at their grade level. Students who pass may get to read by them- selves for the brief period while the rest of the class works on the single outcome. Sometimes more experienced teachers will create opportunities for gifted and advanced students Standards-Based v. Standards-Embedded Curriculum to work on a standard in the same domain or strand at the next higher grade level (i.e., accelerate through the standards). For example, a stu- dent might be able to work on a Life Science standard for fourth grade that progresses to other communities such as ecosystems. These above-grade-level standards can provide rich material for differentiation, advanced problem solving, and more in-depth curriculum integration. In another classroom scenario, a teacher may focus on the math stan- dard above, identifying the standard number on his lesson plan. He creates or collects paper thermometers, some showing measurement in Celsius and some in Fahrenheit. He also has some real thermometers. He demonstrates thermometer use with boiling water and with freezing water and reads the different temperatures. Students complete a worksheet that has them read thermometers in Celsius and Fahrenheit. The more advanced students may learn how to convert between the two scales. Students then practice with several questions on the topic that are similar in structure and content to those that have been on past proficiency tests. They are coached in how to answer them so that the stan- dard, instruction, formative assess- ment, and summative assessment are all aligned. Then, each student writes a statement that says, “I can read a thermometer using either Celsius or Fahrenheit scales.” Both of these examples describe a standards-based environment, where the starting point is the standard. Direct instruction to that standard is followed by an observable student behavior that demonstrates specific mastery of that single standard. The standard becomes both the start- ing point and the ending point of the curriculum. Education, rather than opening up a student’s mind, becomes a series of closed links in a chain. Whereas the above lessons may be differentiated to some extent, they have no context; they may relate only to the next standard on the list, such as, “Telling time to the nearest minute and finding elapsed time using a cal- endar or a clock.” How would a “standards-embed- ded” model of curriculum design be different? It would begin with the development of an essential ques- tion such as, “Who or what lived here before me? How were they different from me? How were they the same? How do we know?” These questions might be more relevant to our con- temporary highly mobile students. It would involve place and time. Using this intriguing line of inquiry, students might work on the social studies stan- dard as part of the study of their home- town, their school, or even their house or apartment. Because where people live and what they do is influenced by the weather, students could look into weather patterns of their area and learn how to measure temperature using a Fahrenheit scale so they could see if it is similar now to what it was a century ago. Skipping ahead to consideration of the social studies standard, students could then choose another country, preferably one that uses Celsius, and do the same investigation of fossils, communities, and the like. Students could complete a weather comparison, looking at the temperature in Celsius as people in other parts of the world, such as those in Canada, do. Thus, learning is contextualized and connected, dem- onstrating both depth and complexity. This approach takes a lot more work and time. It is a sophisticated integrated view of curriculum devel- opment and involves in-depth knowl- edge of the content areas, as well as an understanding of the scope and sequence of the standards in each dis- cipline. Teachers who develop vital single-discipline units, as well as inter- disciplinary teaching units, begin with a central topic surrounded by subtopics and connections to other areas. Then they connect important terms, facts, or concepts to the subtopics. Next, the skilled teacher/curriculum devel- oper embeds relevant, multileveled standards and objectives appropriate to a given student or group of stu- dents into the unit. Finally, teachers select the instructional strategies and develop student assessments. These assessments include, but are not lim- ited to, the types of questions asked on standardized and state assessments. Comparing Standards- Based and Standards- Embedded Curriculum Design Following is an articulation of the differences between standards-based and standards-embedded curriculum design. (See Figure 1.) 1. The starting point. Standards- based curriculum begins with the grade-level standard and the underlying assumption that every student needs to master that stan- dard at that moment in time. In standards-embedded curriculum, the multifaceted essential ques- tion and students’ needs are the starting points. 2. Preassessment. In standards- based curriculum and teaching, if a preassessment is provided, it cov- ers a single standard or two. In a standards-embedded curriculum, preassessment includes a broader range of grade-level and advanced standards, as well as students’ knowledge of surrounding content such as background experiences with the subject, relevant skills (such as reading and writing), and continued on page ?? even learning style or interests. gifted child today 47 Standards-Based v. Standards-Embedded Curriculum Standards Based Standards Embedded Starting Points The grade-level standard. Whole class’ general skill level Essential questions and content relevant to individual students and groups. Preassessment Targeted to a single grade-level standard. Short-cycle assessments. Background knowledge. Multiple grade-level standards from multiple areas connected by the theme of the unit. Includes annual learning style and interest inventories. Acceleration/ Enrichment To next grade-level standard in the same strand. To above-grade-level standards, as well as into broader thematically connected content. Language Arts Divided into individual skills. Reading and writing skills often separated from real-world relevant contexts. The language arts are embedded in all units and themes and connected to differentiated processes and products across all content areas. Instruction Lesson planning begins with the standard as the objective. Sequential direct instruction progresses through the standards in each content area separately. Strategies are selected to introduce, practice, and demonstrate mastery of all grade-level standards in all content areas in one school year. Lesson planning begins with essential questions, topics, and significant themes. Integrated instruction is designed around connections among content areas and embeds all relevant standards. Assessment Format modeled after the state test. Variety of assessments including questions similar to the state test format. Teacher Role Monitor of standards mastery. Time manager. Facilitator of instructional design and student engagement with learning, as well as assessor of achievement. Student Self- Esteem “I can . . .” statements. Star Charts. Passing “the test.” Completed projects/products. Making personal connections to learning and the theme/topic. Figure 1. Standards based v. standards-embedded instruction and gifted students. and the potential political outcry of “stepping on the toes” of the next grade’s teacher. Few classroom teachers have been provided with the in-depth professional develop- ment and understanding of curric- ulum compacting that would allow them to implement this effectively. In standards-embedded curricu- lum, enrichment and extensions of learning are more possible and more interesting because ideas, top- ics, and questions lend themselves more easily to depth and complex- ity than isolated skills. 4. Language arts. In standards- based classrooms, the language arts have been redivided into sepa- rate skills, with reading separated from writing, and writing sepa- rated from grammar. To many concrete thinkers, whole-language approaches seem antithetical to teaching “to the standards.” In a standards-embedded classroom, integrated language arts skills (reading, writing, listening, speak- ing, presenting, and even pho- nics) are embedded into the study of every unit. Especially for the gifted, the communication and language arts are essential, regard- less of domain-specific talents (Ward, 1980) and should be com- ponents of all curriculum because they are the underpinnings of scholarship in all areas. 5. Instruction. A standards-based classroom lends itself to direct instruction and sequential pro- gression from one standard to the next. A standards-embedded class- room requires a variety of more open-ended instructional strate- gies and materials that extend and diversify learning rather than focus it narrowly. Creativity and differ- entiation in instruction and stu- dent performance are supported more effectively in a standards- embedded approach. 6. Assessment. A standards-based classroom uses targeted assess- ments focused on the structure and content of questions on the externally imposed standardized test (i.e., proficiency tests). A stan- dards-embedded classroom lends itself to greater use of authentic assessment and differentiated 3. Acceleration/Enrichment. In a standards-based curriculum, the narrow definition of the learning outcome (a test item) often makes acceleration or curriculum compact- ing the only path for differentiating instruction for gifted, talented, and/ or advanced learners. This rarely happens, however, because of lack of materials, knowledge, o

Standard based Curriculum In standard based curriculum, the initial point … Read More...
Red blood cells are put into a beaker of distilled water and left for several hours. A drop of the solution of water and red blood cells is examined under a microscope. Based upon this information what would you observe that occurred to the red blood cells? Have lost water and shrunk up Have burst, releasing their contents into the water Have lost water and pulled away from the cell wall Have taken in water and swelled up but not burst because of the cell wall Have remained unchanged

Red blood cells are put into a beaker of distilled water and left for several hours. A drop of the solution of water and red blood cells is examined under a microscope. Based upon this information what would you observe that occurred to the red blood cells? Have lost water and shrunk up Have burst, releasing their contents into the water Have lost water and pulled away from the cell wall Have taken in water and swelled up but not burst because of the cell wall Have remained unchanged

Red blood cells are put into a beaker of distilled … Read More...
Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

The objectification of women has been a very controversial topic … Read More...
Lab #03 Studying Beam Flexion Summary: Beams are fundamental structural elements used in a variety of engineering applications and have been studied for centuries. Beams can be assembled to create large structures that carry heavy loads, such as motor vehicle traffic. Beams are also used in micro- or nano-scale accelerometers to delicately measure and detect motions that trigger the deployment of an airbag. From a technical standpoint, a beam is a structure that supports transverse load. Transverse load is load that is perpendicular to the long axis of the beam. As a result, of transverse load, beams undergo bending, in which the beam develops a curvature. As the beam bends, material fibers along the beam’s long axis are forced to stretch or contract, which in turn causes a resistance to the bending. The fibers that are the farthest away from the center of the beam are forced to stretch or contract the most and thus, material at these extremities is the most important to resist bending and deflection. This topic is studied quantitatively in Strength of Materials (CE-303). Purpose: The purpose of this assignment is to accomplish the following goals: • Develop a simple experiment to achieve a goal. • Statistically and observationally analyze your data and interpret the results. • Summarize and present your data, results and interpretations. Procedure: 1. Working as a team, develop a procedure to carefully document the amount of bending a beam under-goes as loads are placed on it (this is your experimental protocol). You must select at least two different beam styles. 2. Collect the data points your experimental protocol calls for. You should conduct at least three trials and the order of data collection within those trials should be randomized. 3. Using the provided Excel deflection calculator, calculate the “predicted” deflection for each of the trials in your protocol. 4. Please observe the following MAXIMUM test torques to avoid damaging the beams. • Width Effect Beams: Small beam: 48 in-lbs, Medium beam: 80 in-lbs, Large beam: 120 in-lbs • Depth Effect Beams: Small beam: 8 in-lbs, Medium beam: 48 in-lbs, Large beam: 160 in-lbs Report and Presentation Requirements: 1. Title Page: Should include the title of the lab experiment, groups individual names (in alphabetical order by last name), data collection date, report due date, and course name and section. 2. Introduction: Briefly explain what you are trying to accomplish with this experiment. 3. Hypothesis Development: Should clearly state the three hypotheses, with respect to distance, beam size, and calculated versus actual deflection. Be sure to include logic to support your educated guess. 4. Method: Explain each activity performed during the data collection and analysis process. Provide a list of the equipment used and its purpose. 5. Analysis and Results: (1) Using the raw data, provide a table of descriptive statistics (mean, variance, and range) for each beam at each distance. (2) Provide a data table (average across 3 trials) showing the deflection for each beam at each distance. (3) Create one or more charts demonstrating the difference, if any, between the calculated and observed deflection for each beam. (4) Use the t-Test: Paired Two Sample for Means in Excel to determine if there is a statistically significant difference between predicted (calculated) deflection and actual (observed) deflection, assuming α = 0.05. Show the results for each beam. Note: To add in the Data Analysis package (under the data tab), go to Office Button -> Excel Options -> Add-Ins -> Manage Excel Add-Ins -> GO… -> check Analysis TookPak and click OK. For each table or chart, provide a description and explanation of what is being displayed. 6. Conclusions: Restate the hypotheses and explain whether or not the educated guess was correct. Include limitations of the experiment (in other words, describe other factors that would make the experiment better or possible errors associated with the experiment). Provide suggestions for future research. 7. Last Page: Include, at the end of the document, a summary of all the tasks required to complete the assignment, and which member or members of the group were principally responsible for completing those tasks. This should be in the form of a simple list. 8. Presentation: Summarize the report, excluding the last page. Due Date: This assignment is to be completed and turned in at the beginning of your laboratory meeting during the week of 11th March. Microsoft office package: Excel: Data tab functions, round, drag-drop, $-sign functions, Beginning of analysis toolpak-t-tests

Lab #03 Studying Beam Flexion Summary: Beams are fundamental structural elements used in a variety of engineering applications and have been studied for centuries. Beams can be assembled to create large structures that carry heavy loads, such as motor vehicle traffic. Beams are also used in micro- or nano-scale accelerometers to delicately measure and detect motions that trigger the deployment of an airbag. From a technical standpoint, a beam is a structure that supports transverse load. Transverse load is load that is perpendicular to the long axis of the beam. As a result, of transverse load, beams undergo bending, in which the beam develops a curvature. As the beam bends, material fibers along the beam’s long axis are forced to stretch or contract, which in turn causes a resistance to the bending. The fibers that are the farthest away from the center of the beam are forced to stretch or contract the most and thus, material at these extremities is the most important to resist bending and deflection. This topic is studied quantitatively in Strength of Materials (CE-303). Purpose: The purpose of this assignment is to accomplish the following goals: • Develop a simple experiment to achieve a goal. • Statistically and observationally analyze your data and interpret the results. • Summarize and present your data, results and interpretations. Procedure: 1. Working as a team, develop a procedure to carefully document the amount of bending a beam under-goes as loads are placed on it (this is your experimental protocol). You must select at least two different beam styles. 2. Collect the data points your experimental protocol calls for. You should conduct at least three trials and the order of data collection within those trials should be randomized. 3. Using the provided Excel deflection calculator, calculate the “predicted” deflection for each of the trials in your protocol. 4. Please observe the following MAXIMUM test torques to avoid damaging the beams. • Width Effect Beams: Small beam: 48 in-lbs, Medium beam: 80 in-lbs, Large beam: 120 in-lbs • Depth Effect Beams: Small beam: 8 in-lbs, Medium beam: 48 in-lbs, Large beam: 160 in-lbs Report and Presentation Requirements: 1. Title Page: Should include the title of the lab experiment, groups individual names (in alphabetical order by last name), data collection date, report due date, and course name and section. 2. Introduction: Briefly explain what you are trying to accomplish with this experiment. 3. Hypothesis Development: Should clearly state the three hypotheses, with respect to distance, beam size, and calculated versus actual deflection. Be sure to include logic to support your educated guess. 4. Method: Explain each activity performed during the data collection and analysis process. Provide a list of the equipment used and its purpose. 5. Analysis and Results: (1) Using the raw data, provide a table of descriptive statistics (mean, variance, and range) for each beam at each distance. (2) Provide a data table (average across 3 trials) showing the deflection for each beam at each distance. (3) Create one or more charts demonstrating the difference, if any, between the calculated and observed deflection for each beam. (4) Use the t-Test: Paired Two Sample for Means in Excel to determine if there is a statistically significant difference between predicted (calculated) deflection and actual (observed) deflection, assuming α = 0.05. Show the results for each beam. Note: To add in the Data Analysis package (under the data tab), go to Office Button -> Excel Options -> Add-Ins -> Manage Excel Add-Ins -> GO… -> check Analysis TookPak and click OK. For each table or chart, provide a description and explanation of what is being displayed. 6. Conclusions: Restate the hypotheses and explain whether or not the educated guess was correct. Include limitations of the experiment (in other words, describe other factors that would make the experiment better or possible errors associated with the experiment). Provide suggestions for future research. 7. Last Page: Include, at the end of the document, a summary of all the tasks required to complete the assignment, and which member or members of the group were principally responsible for completing those tasks. This should be in the form of a simple list. 8. Presentation: Summarize the report, excluding the last page. Due Date: This assignment is to be completed and turned in at the beginning of your laboratory meeting during the week of 11th March. Microsoft office package: Excel: Data tab functions, round, drag-drop, $-sign functions, Beginning of analysis toolpak-t-tests

info@checkyourstudy.com