Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic<br />21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic</br

Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic
21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic

Ignorant- A person is said to be ignorant if he … Read More...
1. Develop a thought experiment that attempts to uncover hidden assumptions about human freedom. 2. Find a paragraph from a book, magazine, ect. First, tell whether there are claims in the paragraph. If there are, identify the types of claims (descriptive, normative, a priori, a posteriori) in the paragraph

1. Develop a thought experiment that attempts to uncover hidden assumptions about human freedom. 2. Find a paragraph from a book, magazine, ect. First, tell whether there are claims in the paragraph. If there are, identify the types of claims (descriptive, normative, a priori, a posteriori) in the paragraph

Let us think of a thought experiment that wants to … Read More...
Book review The Shareholder Value Myth: How Putting Shareholders First Harms Investors, Corporations, and the Public by Lynn Stout Provide 1) a 900 word review of this book (word range 900-1,200) and 2) a 350 word reflection where you force yourself to relate the message of the book . As per the format of the review, I like the ones done by the folks of the WSJ. This is an example: http://forums.delphiforums.com/diversecity/messages?msg=17531.1264 or http://www.wsj.com/articles/book-review-how-adam-smith-can-change-your-life-by-russ-roberts-1413846808?KEYWORDS=book+reviews

Book review The Shareholder Value Myth: How Putting Shareholders First Harms Investors, Corporations, and the Public by Lynn Stout Provide 1) a 900 word review of this book (word range 900-1,200) and 2) a 350 word reflection where you force yourself to relate the message of the book . As per the format of the review, I like the ones done by the folks of the WSJ. This is an example: http://forums.delphiforums.com/diversecity/messages?msg=17531.1264 or http://www.wsj.com/articles/book-review-how-adam-smith-can-change-your-life-by-russ-roberts-1413846808?KEYWORDS=book+reviews

The Shareholder Value Myth: How Putting Shareholders First Harms Investors, … Read More...
Many people believe that choosing a job and choosing a career are the same. You know my position; I believe a JOB is Just over Broke. What is your position? Explain the differences between a job and a career.

Many people believe that choosing a job and choosing a career are the same. You know my position; I believe a JOB is Just over Broke. What is your position? Explain the differences between a job and a career.

A job is essentially one thing an individual do to … Read More...
Lab Report Name Simple Harmonic motion Date: Objective or purpose: The main objective of this lab is to find the value of the spring constant (k) according to Hooke’s law. This lab also teaches us curve fitting and its application here in this lab.

Lab Report Name Simple Harmonic motion Date: Objective or purpose: The main objective of this lab is to find the value of the spring constant (k) according to Hooke’s law. This lab also teaches us curve fitting and its application here in this lab.

Name Simple Harmonic motion Date:           … Read More...
Question 3 An electric dipole moment, consists of two equal but opposite charges, + q and -q, separated by a distance, d. The magnitude of the dipole moment is p = qd and the electric dipole moment vector points from the negative towards the positive charge of the configuration. Consider a water molecule. The measured value of the electrical dipole moment of the water molecule is about . An ionized hydrogen atom happens to be 3.5 nanometers away from the center of the water molecule on the side away from its two hydrogen atoms and along the line defined by the molecule’s dipole moment. (Take the center of the water molecule to be the center of its oxygen atom. Also consider the water molecule to be essentially a small, nearly a point object). How large is the force on the ionized hydrogen atom and what is its direction? A. , attractive B. , repulsive C. , attractive D. , repulsive + E. , attractive

Question 3 An electric dipole moment, consists of two equal but opposite charges, + q and -q, separated by a distance, d. The magnitude of the dipole moment is p = qd and the electric dipole moment vector points from the negative towards the positive charge of the configuration. Consider a water molecule. The measured value of the electrical dipole moment of the water molecule is about . An ionized hydrogen atom happens to be 3.5 nanometers away from the center of the water molecule on the side away from its two hydrogen atoms and along the line defined by the molecule’s dipole moment. (Take the center of the water molecule to be the center of its oxygen atom. Also consider the water molecule to be essentially a small, nearly a point object). How large is the force on the ionized hydrogen atom and what is its direction? A. , attractive B. , repulsive C. , attractive D. , repulsive + E. , attractive

  Question 3 An electric dipole moment, consists of two … Read More...
Which statement about DNA replication is FALSE? The lagging strand is made of a series of pieces that must be joined together to make a continuous strand. The two strands of parental DNA are separated during DNA replication. DNA polymerase builds a new strand by adding DNA nucleotides one at a time. Because the two strands of parental DNA run in opposite directions, the new strands must be made in different ways. DNA ligase adds nucleotides to the lagging strand.

Which statement about DNA replication is FALSE? The lagging strand is made of a series of pieces that must be joined together to make a continuous strand. The two strands of parental DNA are separated during DNA replication. DNA polymerase builds a new strand by adding DNA nucleotides one at a time. Because the two strands of parental DNA run in opposite directions, the new strands must be made in different ways. DNA ligase adds nucleotides to the lagging strand.

DNA ligase adds nucleotides to the lagging strand.   Which … Read More...
Name ____________________________________ Motion in 2D Simulation Go to http://phet.colorado.edu/simulations/sims.php?sim=Motion_in_2D and click on Run Now. 1) Once the simulation opens, click on ‘Show Both’ for Velocity and Acceleration at the top of the page. Now click and drag the red ball around the screen. Make 3 observations about the blue and green arrows (also called vectors) as you drag the ball around. 2) Which color vector (arrow) represents velocity and which one represents acceleration? How can you tell? 3) Try dragging the ball around and around in a circular path. What do you notice about the lengths and directions of the blue and green vectors? Describe their behavior in detail below. 4) Now move the ball at a slow constant speed across the screen. What do you notice now about the vectors? Explain why this happens. 5) What happens to the vectors when you jerk the ball rapidly back and forth across the screen? Explain why this happens. 6) Now click on ‘Circular’ on the bottom. Describe the motion of the ball and the behavior of the two vectors. Is there a force on the ball? How can you tell? Be detailed in your explanations. 7) Click on ‘Simple Harmonic’ on the bottom. Based on the behavior of the ball and the vectors, write a definition of Simple Harmonic Motion.

Name ____________________________________ Motion in 2D Simulation Go to http://phet.colorado.edu/simulations/sims.php?sim=Motion_in_2D and click on Run Now. 1) Once the simulation opens, click on ‘Show Both’ for Velocity and Acceleration at the top of the page. Now click and drag the red ball around the screen. Make 3 observations about the blue and green arrows (also called vectors) as you drag the ball around. 2) Which color vector (arrow) represents velocity and which one represents acceleration? How can you tell? 3) Try dragging the ball around and around in a circular path. What do you notice about the lengths and directions of the blue and green vectors? Describe their behavior in detail below. 4) Now move the ball at a slow constant speed across the screen. What do you notice now about the vectors? Explain why this happens. 5) What happens to the vectors when you jerk the ball rapidly back and forth across the screen? Explain why this happens. 6) Now click on ‘Circular’ on the bottom. Describe the motion of the ball and the behavior of the two vectors. Is there a force on the ball? How can you tell? Be detailed in your explanations. 7) Click on ‘Simple Harmonic’ on the bottom. Based on the behavior of the ball and the vectors, write a definition of Simple Harmonic Motion.

Name ____________________________________                                      Motion in 2D Simulation   Go to http://phet.colorado.edu/simulations/sims.php?sim=Motion_in_2D … Read More...