1. Which of the following statements for electric field lines are true? (Give ALL correct answers, i.e., B, AC, BCD…) A) E-field lines point inward toward negative charges. B) E-field lines may cross. C) E-field lines do not begin or end in a charge-free region (except at infinity). D) Where the E-field lines are dense the E-field must be weak. E) E-field lines make circles around positive charges. F) A point charge q, released from rest will initially move along an E-field line. G) E-field lines point outward from positive charges. 2. Consider two uniformly charged parallel plates as shown above. The magnitudes of the charges are equal. (For each statement select T True, F False). A) If the plates are oppositely charged, there is no electric field at c. B) If both plates are negatively charged, the electric field at a points towards the top of the page. C) If both plates are positively charged, there is no electric field at b. 3. As shown in the figure above, a ball of mass 1.050 g and positive charge q =38.1microC is suspended on a string of negligible mass in a uniform electric field. We observe that the ball hangs at an angle of theta=15.0° from the vertical. What is the magnitude of the electric field?

1. Which of the following statements for electric field lines are true? (Give ALL correct answers, i.e., B, AC, BCD…) A) E-field lines point inward toward negative charges. B) E-field lines may cross. C) E-field lines do not begin or end in a charge-free region (except at infinity). D) Where the E-field lines are dense the E-field must be weak. E) E-field lines make circles around positive charges. F) A point charge q, released from rest will initially move along an E-field line. G) E-field lines point outward from positive charges. 2. Consider two uniformly charged parallel plates as shown above. The magnitudes of the charges are equal. (For each statement select T True, F False). A) If the plates are oppositely charged, there is no electric field at c. B) If both plates are negatively charged, the electric field at a points towards the top of the page. C) If both plates are positively charged, there is no electric field at b. 3. As shown in the figure above, a ball of mass 1.050 g and positive charge q =38.1microC is suspended on a string of negligible mass in a uniform electric field. We observe that the ball hangs at an angle of theta=15.0° from the vertical. What is the magnitude of the electric field?

info@checkyourstudy.com 1.  Which of the following statements for electric field … Read More...
History 108 Research Paper Assignment In order to fulfill the requirements for the course students will research and write on research paper Option 1: Research Paper You will write a 8-10 page research paper on a topic of your choosing based on the materials covered in class. The topic is of your choosing but must be approved by me in advance. The paper must be double spaced, Times New Roman with 12 Font, and have a proper introduction and conclusion. The paper must also incorporate at least 5 sources of academic quality, “Wikipedia does not count.” Sources include primary sources or books and articles, newspapers, video materials, or audio broadcasts etc. If you have a question, check with me. The paper will be due on November 23, 2015. The Paper will count for 20% of the final grade. The heading should be as follows in the upper left hand corner. Name Course Number, Title, and Section Number Professors Name Date Followed by the Title of the Paper Centered

History 108 Research Paper Assignment In order to fulfill the requirements for the course students will research and write on research paper Option 1: Research Paper You will write a 8-10 page research paper on a topic of your choosing based on the materials covered in class. The topic is of your choosing but must be approved by me in advance. The paper must be double spaced, Times New Roman with 12 Font, and have a proper introduction and conclusion. The paper must also incorporate at least 5 sources of academic quality, “Wikipedia does not count.” Sources include primary sources or books and articles, newspapers, video materials, or audio broadcasts etc. If you have a question, check with me. The paper will be due on November 23, 2015. The Paper will count for 20% of the final grade. The heading should be as follows in the upper left hand corner. Name Course Number, Title, and Section Number Professors Name Date Followed by the Title of the Paper Centered

info@checkyourstudy.com Whatsapp +919711743277
PHET ElectroMagnetism Key to this Document Instructions are in black. Experimental questions that you need to solve through experimentation with an online animation are in green highlighted. Important instructions are in red highlighted. Items that need a response from you are in yellow highlighted. Please put your answers to this activity in RED. Part I- Comparing Permanent Magnets and Electromagnets: 1. Select the simulation “Magnets and Electromagnets.” It is at this link: http://phet.colorado.edu/new/simulations/sims.php?sim=Magnets_and_Electromagnets 2. Move the compass slowly along a semicircular path above the bar magnet until you’ve put it on the opposite side of the bar magnet. Describe what happens to the compass needle. 3. Move the compass along a semicircular path below the bar magnet until you’ve put it on the opposite side of the bar magnet. Describe what happens to the compass needle. 4. What do you suppose the compass needles drawn all over the screen tell you? 5. Use page 10 in your book to look up what it looks like when scientists use a drawing to represent a magnetic field. Describe the field around a bar magnet here. 6. Put the compass to the left or right of the magnet. Click “flip polarity” and notice what happens to the compass. Using the compass needle as your observation tool, describe the effect that flipping the poles of the magnet has on the magnetic field. 7. Click on the electromagnet tab along the top of the simulation window. Place the compass on the left side of the coil so that the compass center lies along the axis of the coil. <--like this 8. Move the compass along a semicircular path above the coil until you’ve put it on the opposite side of the coil. Then do the same below the coil. Notice what happens to the compass needle. Compare this answer to the answer you got to Number 2 and 3. 9. Compare the shape of the magnetic field of a bar magnet to the magnetic field of an electromagnet. 10. Use the voltage slider to change the direction of the current and investigate the shape of the magnetic field the coil using the compass after you’ve let the compass stabilize. Summarize, the effect that the direction of current has on the shape of the magnetic field around an electrified coil of wires. 11. What happens to the current in the coil when you set the voltage of the battery to zero? 12. What happens to the magnetic field around the coil when you set the voltage of the battery to zero? Part II – Investigating relationships- No Answers are written on this document after this point. All three data tables, graphs and conclusion statements go on the Google Spreadsheet that you can download from Ms. Pogge’s website. Experimental Question #1: How does distance affect the strength of the magnetic field around an electromagnet? 1. Using the Electromagnet simulation, click on “Show Field Meter.” 2. Set the battery voltage to 10V where the positive is on the right of the battery (slide the switch all the way to the right). 3. Magnetic field strength (symbol B on the top line of the meter) is measured in gauss (G). You’ll only need to record the value on the top line of the Field Meter. 4. Position zero will be right on top of the coil. Negative number positions will be to the left and positive number positions to the right of the coil. 5. Move the field meter one compass needle to the right and record the value of B at position 1. 6. This data table below will be used to help you fill in the first spreadsheet you downloaded from Ms. Pogge’s website. You will end up with 3 data tables, 3 graphs and 3 conclusion statements in your document, one for each mini-experiment you are doing. a. NOTE: Be sure to take all of your values along the horizontal axis of the coil. You’ll know you’re on the axis because the B-y measurement of the magnetic field is zero along the axis. Compass position (no units) Magnetic Field Strength ( )<--Fill in units! -5 (5 needles to the left of coil) Don’t fill in the table here...do it on the Google Spreadsheet you downloaded -4 -3 -2 -1 0 (middle of coil) 1 2 3 4 5 (5 needles to right of coil) 7. In your Google Spreadsheet: Graph the compass position on the horizontal (x) axis and magnetic field magnitude on the vertical (y) axis. 8. Make sure to label the axes and title the graph. Share this spreadsheet with your teacher. 9. Analyze your graph to discover how the two variables are related, and report the relationship between magnetic field strength and position using 1-3 complete sentences. Experimental Question #2: How does the number of coils affect the strength of the magnetic field around an electromagnet? Design an experiment to test how field strength varies with the number of coils. Enter your data, graph your results and write your conclusion statement on the Google Spreadsheet. Experimental Question #3: How does the amount of current affect the strength of the magnetic field around an electromagnet? Design an experiment to test how field strength varies with the Current. (Recall that voltage is directly proportional to current….Ohm’s Law.) Enter your data, graph your results and write your conclusion statement on the Google Spreadsheet.

PHET ElectroMagnetism Key to this Document Instructions are in black. Experimental questions that you need to solve through experimentation with an online animation are in green highlighted. Important instructions are in red highlighted. Items that need a response from you are in yellow highlighted. Please put your answers to this activity in RED. Part I- Comparing Permanent Magnets and Electromagnets: 1. Select the simulation “Magnets and Electromagnets.” It is at this link: http://phet.colorado.edu/new/simulations/sims.php?sim=Magnets_and_Electromagnets 2. Move the compass slowly along a semicircular path above the bar magnet until you’ve put it on the opposite side of the bar magnet. Describe what happens to the compass needle. 3. Move the compass along a semicircular path below the bar magnet until you’ve put it on the opposite side of the bar magnet. Describe what happens to the compass needle. 4. What do you suppose the compass needles drawn all over the screen tell you? 5. Use page 10 in your book to look up what it looks like when scientists use a drawing to represent a magnetic field. Describe the field around a bar magnet here. 6. Put the compass to the left or right of the magnet. Click “flip polarity” and notice what happens to the compass. Using the compass needle as your observation tool, describe the effect that flipping the poles of the magnet has on the magnetic field. 7. Click on the electromagnet tab along the top of the simulation window. Place the compass on the left side of the coil so that the compass center lies along the axis of the coil. <--like this 8. Move the compass along a semicircular path above the coil until you’ve put it on the opposite side of the coil. Then do the same below the coil. Notice what happens to the compass needle. Compare this answer to the answer you got to Number 2 and 3. 9. Compare the shape of the magnetic field of a bar magnet to the magnetic field of an electromagnet. 10. Use the voltage slider to change the direction of the current and investigate the shape of the magnetic field the coil using the compass after you’ve let the compass stabilize. Summarize, the effect that the direction of current has on the shape of the magnetic field around an electrified coil of wires. 11. What happens to the current in the coil when you set the voltage of the battery to zero? 12. What happens to the magnetic field around the coil when you set the voltage of the battery to zero? Part II – Investigating relationships- No Answers are written on this document after this point. All three data tables, graphs and conclusion statements go on the Google Spreadsheet that you can download from Ms. Pogge’s website. Experimental Question #1: How does distance affect the strength of the magnetic field around an electromagnet? 1. Using the Electromagnet simulation, click on “Show Field Meter.” 2. Set the battery voltage to 10V where the positive is on the right of the battery (slide the switch all the way to the right). 3. Magnetic field strength (symbol B on the top line of the meter) is measured in gauss (G). You’ll only need to record the value on the top line of the Field Meter. 4. Position zero will be right on top of the coil. Negative number positions will be to the left and positive number positions to the right of the coil. 5. Move the field meter one compass needle to the right and record the value of B at position 1. 6. This data table below will be used to help you fill in the first spreadsheet you downloaded from Ms. Pogge’s website. You will end up with 3 data tables, 3 graphs and 3 conclusion statements in your document, one for each mini-experiment you are doing. a. NOTE: Be sure to take all of your values along the horizontal axis of the coil. You’ll know you’re on the axis because the B-y measurement of the magnetic field is zero along the axis. Compass position (no units) Magnetic Field Strength ( )<--Fill in units! -5 (5 needles to the left of coil) Don’t fill in the table here...do it on the Google Spreadsheet you downloaded -4 -3 -2 -1 0 (middle of coil) 1 2 3 4 5 (5 needles to right of coil) 7. In your Google Spreadsheet: Graph the compass position on the horizontal (x) axis and magnetic field magnitude on the vertical (y) axis. 8. Make sure to label the axes and title the graph. Share this spreadsheet with your teacher. 9. Analyze your graph to discover how the two variables are related, and report the relationship between magnetic field strength and position using 1-3 complete sentences. Experimental Question #2: How does the number of coils affect the strength of the magnetic field around an electromagnet? Design an experiment to test how field strength varies with the number of coils. Enter your data, graph your results and write your conclusion statement on the Google Spreadsheet. Experimental Question #3: How does the amount of current affect the strength of the magnetic field around an electromagnet? Design an experiment to test how field strength varies with the Current. (Recall that voltage is directly proportional to current….Ohm’s Law.) Enter your data, graph your results and write your conclusion statement on the Google Spreadsheet.

CAUSAL ANALYSIS GUIDELINES: According to John J. Ruskiewicz and Jay T. Dolmage, “We all analyze and explain things daily. Someone asks, ‘Why?’ We reply, ‘Because . . .’ and then offer reasons and rationales” (138). This type of thinking is at the core of the causal analysis. You will write a causal analysis which explores, through carefully examined research and logical analysis, certain causes or factors which contribute to an issue or problematic situation, based on the topic you choose to write on. Your causal analysis should explore more than one type of cause, such as necessary causes, sufficient causes, precipitating causes, proximate causes, remote causes, reciprocal causes, contributing factors, and chains of causes, as outlined in our course text in the chapter devoted to Causal Analyses. Your project should also reflect significant critical thinking skills. In addition to the actual causal analysis essay, you will be also create an annotated bibliography. These process elements will help you organize and focus your ideas and research in a beneficial way. The following is an organizational structure that outlines the chronology and content of your Causal Analysis: I. Introduction: In one (or at the most two) paragraph(s) introduce your topic. Give a brief overview of your topic and thesis in a few sentences. your evaluative claim and your causal claim. It should be specific, logical, and clear. II. History/Background to Current Situation: This section should take as much space as needed—a few to several paragraphs. Discuss the significant and relevant history of your topic up to the current situation and how it came to be. Use research as needed to give precise and accurate background for context in making your later causal argument. Comment on your research as well, so that you don’t lose your voice. As you explore other points of view, your own point of view will evolve in significant ways. III. Evaluative Claim: Once you have given a brief history/background of the current situation, evaluate the situation, the topic, as it is at present. Again, use research as appropriate to support your judgments. While this section of your essay could run anywhere from one to three paragraphs, typically one paragraph is the norm, as you are basically passing judgment on the situation, arguing evaluatively. This is an argument of pathos and logos, predominantly. IV. Causal Argument: This is the longest portion of your essay, the “meat,” the heart of your work. Once you have detailed the history/background to current situation and evaluated the current situation, you are ready to present your causal analysis. Demonstrate a link between the current situation and the causes for its negative condition. Of course, you will use current significant and relevant research to support your causal claim, and you will want to find the most dominant and pervasive logical causes, utilizing research, for the current situation as possible. These will connect forward as well to your proposal. Remember to use specific supporting detail/examples, and to analyze all of your research causally, thoroughly, and with clarity. NOTE: SECTIONS THREE AND FOUR ABOVE ARE INTERCHANGEABLE. IN OTHER WORDS, IF YOU FEEL YOU CAN PRESENT A BETTER ARGUMENT BY SHOWING CAUSES FIRST AND THEN EVALUATING THE CURRENT SITUATION, THAT CAN WORK JUST AS WELL AS THE ORDER OUTLINED ABOVE. I WILL LEAVE IT UP TO YOU AS THE WRITER TO ESTABLISH WHICH ORDER WORKS MOST EFFECTIVELY. V. Counterargument/Conditions of Rebuttal and Rebuttal: There will be those who disagree with you so you will want to acknowledge their points of view. What are their assumptions about this topic? What questions do they raise for consideration? Acknowledging other points of view gives your essay credibility and shows that you have been fair and broad in your inquiry and presentation. (You will need at least one credible source to represent at least one counterargument.) Then explain how you have considered this counterargument, but still find your own analysis to be more logical and accurate; this is your rebuttal. VI. Conclusion: Summarize the meaningful conclusions you have drawn clearly and precisely, remembering to resummarize your thesis. Give your specific proposal here as well. This will become your transition paragraph between the causal analysis and the proposal, so you must state your proposal precisely to pave the way for the proposal argument in full to come. Keep in mind these critical thinking outcomes: • Pursue the best information via reliable research (no Internet web sites should be used—Use the library electronic databases, such as ____, for academic research. • Engage in broad and deep inquiry • Analyze different points of view • Examine and challenge your own underlying assumptions as you undergo this exciting journey in scholarship. Please also reflect on these questions as you progress through your research and project work: About yourself: • What assumptions (beliefs) did you have about this topic coming into the project? • Have some of those assumptions been challenged? Have some been validated? • What questions do you still have about your issue? • What questions have you been able to answer through your research? About your audience: • What questions might your audience have about your topic? What points of view do they represent? • What information do you want to provide to help answer those questions? • How can you address a diverse audience so that its members will be moved to see your own point of view as significant and worth consideration? • How has pursuing the best information in a fair and honest, ethical, and logical manner allowed you to show respect for your audience as well as yourself as a thinker? Documentation Style: MLA format for paper format, in-text citations, works cited page, and annotated bibliography format. Paper Length: 6-8 double-spaced pages. Annotated Bibliography: At least 4 sources, formatted in MLA style. List of Sources Page: At least 5-8 sources used; formatted in MLA style. Warning: Plagiarism is punishable with an “F,” so be sure to document your research carefully. Causal Analysis Topics Choose one: • Causes of bullying • Causes of gun violence in schools • Causes of obesity in children • Causes of lying / Reasons why people lie • Causes of the fear of darkness Write in the 3rd-person point of view (using pronouns such as he, she, they, etc.). Do not write in the 1st- person (I, me, etc.) or 2nd-person (you, your) point of view.

CAUSAL ANALYSIS GUIDELINES: According to John J. Ruskiewicz and Jay T. Dolmage, “We all analyze and explain things daily. Someone asks, ‘Why?’ We reply, ‘Because . . .’ and then offer reasons and rationales” (138). This type of thinking is at the core of the causal analysis. You will write a causal analysis which explores, through carefully examined research and logical analysis, certain causes or factors which contribute to an issue or problematic situation, based on the topic you choose to write on. Your causal analysis should explore more than one type of cause, such as necessary causes, sufficient causes, precipitating causes, proximate causes, remote causes, reciprocal causes, contributing factors, and chains of causes, as outlined in our course text in the chapter devoted to Causal Analyses. Your project should also reflect significant critical thinking skills. In addition to the actual causal analysis essay, you will be also create an annotated bibliography. These process elements will help you organize and focus your ideas and research in a beneficial way. The following is an organizational structure that outlines the chronology and content of your Causal Analysis: I. Introduction: In one (or at the most two) paragraph(s) introduce your topic. Give a brief overview of your topic and thesis in a few sentences. your evaluative claim and your causal claim. It should be specific, logical, and clear. II. History/Background to Current Situation: This section should take as much space as needed—a few to several paragraphs. Discuss the significant and relevant history of your topic up to the current situation and how it came to be. Use research as needed to give precise and accurate background for context in making your later causal argument. Comment on your research as well, so that you don’t lose your voice. As you explore other points of view, your own point of view will evolve in significant ways. III. Evaluative Claim: Once you have given a brief history/background of the current situation, evaluate the situation, the topic, as it is at present. Again, use research as appropriate to support your judgments. While this section of your essay could run anywhere from one to three paragraphs, typically one paragraph is the norm, as you are basically passing judgment on the situation, arguing evaluatively. This is an argument of pathos and logos, predominantly. IV. Causal Argument: This is the longest portion of your essay, the “meat,” the heart of your work. Once you have detailed the history/background to current situation and evaluated the current situation, you are ready to present your causal analysis. Demonstrate a link between the current situation and the causes for its negative condition. Of course, you will use current significant and relevant research to support your causal claim, and you will want to find the most dominant and pervasive logical causes, utilizing research, for the current situation as possible. These will connect forward as well to your proposal. Remember to use specific supporting detail/examples, and to analyze all of your research causally, thoroughly, and with clarity. NOTE: SECTIONS THREE AND FOUR ABOVE ARE INTERCHANGEABLE. IN OTHER WORDS, IF YOU FEEL YOU CAN PRESENT A BETTER ARGUMENT BY SHOWING CAUSES FIRST AND THEN EVALUATING THE CURRENT SITUATION, THAT CAN WORK JUST AS WELL AS THE ORDER OUTLINED ABOVE. I WILL LEAVE IT UP TO YOU AS THE WRITER TO ESTABLISH WHICH ORDER WORKS MOST EFFECTIVELY. V. Counterargument/Conditions of Rebuttal and Rebuttal: There will be those who disagree with you so you will want to acknowledge their points of view. What are their assumptions about this topic? What questions do they raise for consideration? Acknowledging other points of view gives your essay credibility and shows that you have been fair and broad in your inquiry and presentation. (You will need at least one credible source to represent at least one counterargument.) Then explain how you have considered this counterargument, but still find your own analysis to be more logical and accurate; this is your rebuttal. VI. Conclusion: Summarize the meaningful conclusions you have drawn clearly and precisely, remembering to resummarize your thesis. Give your specific proposal here as well. This will become your transition paragraph between the causal analysis and the proposal, so you must state your proposal precisely to pave the way for the proposal argument in full to come. Keep in mind these critical thinking outcomes: • Pursue the best information via reliable research (no Internet web sites should be used—Use the library electronic databases, such as ____, for academic research. • Engage in broad and deep inquiry • Analyze different points of view • Examine and challenge your own underlying assumptions as you undergo this exciting journey in scholarship. Please also reflect on these questions as you progress through your research and project work: About yourself: • What assumptions (beliefs) did you have about this topic coming into the project? • Have some of those assumptions been challenged? Have some been validated? • What questions do you still have about your issue? • What questions have you been able to answer through your research? About your audience: • What questions might your audience have about your topic? What points of view do they represent? • What information do you want to provide to help answer those questions? • How can you address a diverse audience so that its members will be moved to see your own point of view as significant and worth consideration? • How has pursuing the best information in a fair and honest, ethical, and logical manner allowed you to show respect for your audience as well as yourself as a thinker? Documentation Style: MLA format for paper format, in-text citations, works cited page, and annotated bibliography format. Paper Length: 6-8 double-spaced pages. Annotated Bibliography: At least 4 sources, formatted in MLA style. List of Sources Page: At least 5-8 sources used; formatted in MLA style. Warning: Plagiarism is punishable with an “F,” so be sure to document your research carefully. Causal Analysis Topics Choose one: • Causes of bullying • Causes of gun violence in schools • Causes of obesity in children • Causes of lying / Reasons why people lie • Causes of the fear of darkness Write in the 3rd-person point of view (using pronouns such as he, she, they, etc.). Do not write in the 1st- person (I, me, etc.) or 2nd-person (you, your) point of view.

No expert has answered this question yet. You can browse … Read More...
BI 102 Lab 1 Writing Assignment How did the different concentrations of sucrose impact osmotic rate? This assignment requires you to evaluate a hypothesis and communicate the results of your experiment on the rate of osmosis into sucrose solutions of varying concentrations. The questions below are meant to guide you to reporting the key findings of your experiment and help you think through how to explain the findings and draw conclusions from them in a scientific manner. ASSIGNMENT: Please respond to the following questions to complete your laboratory write up. For this assignment you will only focus on the osmosis of water into sucrose concentrations of varying concentration. Make sure that your write up is accurate, and clearly written so that it is easily readable. A grading rubric is provided on the second page of this assignment. To earn full points on your write up, you must provide answers that align to the “meets” column of your grading rubric as well as meeting all “Quality of Writing and Mechanics” elements described in the rubric. There are also some tips on pages 3-4 of this assignment to help you succeed. FORMAT: • Type your responses, using 1.5 or double spacing. • Include the section headings (Hypothesis, Results, Analysis) and question number (example: 1, 2, 3, etc) in your answers but do not rewrite the question. • Graphs may be made with a computer program (example: Microsoft excel, Mac numbers, etc) or may be neatly produced with a ruler on graphing paper. • Print out the cover sheet on page 2 of this assignment, read and sign the academic honesty statement, and submit it with your write up. Your instructor WILL NOT accept a write up without the signed cover sheet. DUE DATE: Your write up is due at the beginning of class next week. Late assignments will have 1 point deducted per day up to 5 days, at which point the assignment will be assigned 0 points. Hypothesis and Prediction – Part 1 of Rubric 1. What did you think was going to happen in this experiment and why? You may find it helpful to state your answers to these questions as an “if-then” hypothesis-prediction. Be sure you have included a biological rationale that explains WHY you made this hypothesis/prediction. (You worked on this in question 2 on page 10 of this lab activity) Results – Part 2 of Rubric 2. How did the different concentrations of sucrose impact osmotic rate? Answer this question by creating a line graph that shows the results of your experiment. If you need assistance building a graph, there is a Guide to Graphing resource available on your Moodle lab course site. Analysis- Part 3 of Rubric 3. Explain why you think that the results shown in your graph support or refute your hypothesis (remember we never “prove” anything in science). Consider all your data and the overall data pattern as you answer this question. Don’t ignore unusual data that may not seem to fit into a specific patterns (“outliers”). Explain what you think might be behind these unusual data points. 4. What is the biological significance of your results? What biological concepts explain completely why these events happened in the experiment? How do these results help you understand the biology of the cell and how materials move back and forth across the cell membrane? (A hint: refer back to questions 1A-1F on page 10 of this lab activity). Think about giving a specific example. References- Mechanics Checklist 5. Provide at least one full citation (make sure you include an in-text citation that pinpoints where you used this resource) for a resource you made use of in performing the experiment, understanding the concepts and writing this assignment. (Perhaps your lab manual? Your textbook? A website?) If you used more than one resource, you need to cite each one! If you need help with citations, a Guide to Citing References is available on your Moodle lab course site. Please print out and submit this cover sheet with your lab writeup! Lab Writeup Assignment (1) Assessment Rubric-­‐ 10 points total Name: ________________________________________ Element Misses (1 point) Approaches (2 points) Meets (3 points) Hypothesis Clarity/Specificity Testability Rationale ___Hypothesis is unclear and hardto- understand ___Hypothesis is not testable ___No biological rationale for hypothesis or rationale is fully inaccurate ___Hypothesis included is clearly stated, but not specific or lacks specific details __Hypothesis is testable, but not in a feasible way in this lab ___Some foundation for hypothesis, but based in part on biological inaccuracy ___Hypothesis included is clearly stated and very specific ___Hypothesis is testable and could be tested within lab parameters ___Rationale for hypothesis is grounded in accurate biological information Graph Title Axes Variables Key Graph clarity Data accuracy ___Graph lacks a title ___Axes are not labeled ___Variables not addressed in graph ___No key or way to tell data points apart ___Graph is hard to read and comparisons cannot be made: Inappropriate graph type or use of scale ___Data graphed is inaccurate or does not relate to experiment ___Graph has a title that is not very descriptive ___Axes are either unlabeled, or units are unclear or wrong ___Variables addressed in graph, but not on correct axes ___Key included, but is hard to understand ___Graph is somewhat readable, comparisons can be made with difficulty: Appropriate graph type, but not scaled well ___Data graphed is partially accurate; some data is missing ___Graph has a concise, descriptive title ___Axes are labeled, including clarification of units used ___Variables on correct axes ___A clear, easy-to-use key to data points is included ___Graph is clearly readable and comparisons between treatments are easy to make: Graph type and scale are appropriate to data ___Data graphed is accurate and includes all relevant data, including controls (if needed) Analysis Hypothesis Scientific language Data addressed Explanation ___Hypothesis is not addressed ___Hypothesis is described using language like proven, true, or right ___No explanations for data patterns observed in graph or data does not support conclusions. ___No biological explanation for data trends or explanations are completely inaccurate ___Hypothesis is mentioned, but not linked well to data ___Hypothesis is not consistently described as supported or refuted ___Some data considered in conclusions but other data is ignored. Any unusual “outliers” are ignored ___Explanations include minimal or some inaccurate biological concepts ___Hypothesis is evaluated based upon data ___Hypothesis is consistently described as supported or refuted ___All data collected is considered and addressed by conclusions, including presence of outliers, ___Explanations include relevant and accurate biological concepts Quality of Writing and Mechanics: Worth 1 point. Writeup should meet all of the following criteria! Yes No ☐ ☐ Write up includes your name, the date, and your lab section ☐ ☐ Write up is free from spelling and grammatical errors (make sure you proofread!!) ☐ ☐ Write up is clear and easy-to-understand ☐ ☐ Write up includes full citation for at least one reference with corresponding in-text citation ☐ ☐ All portions of write up are clearly labeled, and question numbers are included Plagiarism refers to the use of original work, ideas, or text that are not your own. This includes cut-and-paste from websites, copying directly from texts, and copying the work of others, including fellow students. Telling someone your answers to the questions (including telling someone how to make their graph, question #2), or asking for the answers to any question, is cheating. (Asking someone how to make the graph for this assignment is NOT the same as asking for help learning excel or some other software). All forms of cheating, including plagiarism and copying of work will result in an immediate zero for the exam, quiz, or assignment. In the case of copying, all parties involved in the unethical behavior will earn zeros. Cheating students will be referred to the Student Conduct Committee for further action. You also have the right to appeal to the Student Conduct Committee. I have read and understand the plagiarism statement. ____________________________________________________ Signature Guidelines for Good Quality Scientific Reports Hypothesis and Prediction: The hypothesis is a tentative explanation for the phenomenon. Remember that: • A good hypothesis and prediction is testable (and should be testable under the conditions of our lab environment; For example, if your hypothesis requires shooting a rocket into space, then its not really testable under our laboratory conditions). • Your explanation can be ruled out through testing, or falsified. • A good hypothesis and prediction is detailed and specific in what it is testing. • A good hypothesis provides a rationale or explanation for why you think your prediction is reasonable and this rationale is based on what we know about biology. • A good prediction is specific and can be tested with a specific experiment. Examples*: I think that diet soda will float and regular soda will sink. {This hypothesis misses the goal. It is not specific as we don’t know where the sodas are floating and sinking, and it does not provide any explanation to explain why the hypothesis makes sense} Because diet soda does not contain sugar and regular soda does, the diet soda will float in a bucket of water, while regular soda will sink. {This hypothesis approaches the goal. It is more specific about the conditions, and it provides a partial explanation about why the hypothesis makes sense, but the connection between sugar and sinking is unclear} If diet soda does not contain sugar, then its density (mass/volume) is lower than that of regular soda which does contain sugar, and so diet soda will float in a bucket of water while regular soda sinks. {This hypothesis meets the goal. It is specific and the rationale- sugar affects density and density is what determines floating or sinking in water- is clearly articulated} *Note that these examples are for different experiments and investigations and NOT about your osmosis lab. They are provided only to help you think about what you need to include in your write up. Graph: The graph is a visual representation of the data you gathered while testing your hypothesis. Remember that: • A graph needs a concise title that clearly describes the data that it is showing. • Data must be put on the correct axes of the graph. In general, the data you collected (representing what you are trying to find out about) goes on the vertical (Y) axis. The supporting data that that describes how, when or under what conditions you collected your data goes on the horizontal (X) axis. (For this reason time nearly always goes on the X-axis). • Axes must be labeled, including the units in which data were recorded • Data points should be clearly marked and identified; a key is helpful if more than one group of data is included in the graph. • The scale of a graph is important. It should be consistent (there should be no change in the units or increments on a single axis) and appropriate to the data you collected Examples: {This graph misses the goal. There is no title, nor is there a key to help distinguish what the data points mean. The scale is too large- from 0 to 100 with an increment of 50, when the maximum number in the graph is 25- and makes it hard to interpret this graph. The x-axis is labeled, but without units (the months) and the y-axis has units, but the label is incomplete- number of what?} {This graph meets the goal. There is a descriptive title, and all of the axes are clearly labeled with units. There is a key so that we can distinguish what each set of data points represent. The dependent variable (number of individuals) is correctly placed on the y-axis with the independent variable of time placed on the x-axis. The scale of 0-30 is appropriate to the data, with each line on the x-axis representing an increment of 5.} 0 50 100 Number Month 0 5 10 15 20 25 30 March April May June July Number of individuals Month (2011) Population size of three different madtom catiCish in the Marais de Cygnes River in Spring/Summer 2011 Brindled madtom Neosho madtom Slender madtom Analysis: You need to evaluate your hypothesis based on the data patterns shown by your graph. Remember that: • You use data to determine support or refute your hypothesis. It is only possible to support a hypothesis, not to “prove” one (that would require testing every possible permutation and combination of factors). Your evaluation of your hypothesis should not be contradicted by the pattern shown by your data. • Refer back to the prediction you made as part of your hypothesis and use your data to justify your decision to support or refute your hypothesis. • In the “if” part of your hypothesis you should have provided a rationale, or explanation for the prediction you made in your hypothesis (“then” part of hypothesis”). Use this to help you explain why you think you observed the specific pattern of data revealed in your graph. • You should consider all of the data you collected in examining the support (or lack of support for your hypothesis). If there are unusual data points or “outliers” that don’t seem to fit the general pattern in your graph, explain what you think those mean. Examples: I was right. Diet Pepsi floated and so did Apricot Nectar. Regular Pepsi sank. Obviously the regular Pepsi was heavier. This helps us understand the concept of density, which is a really important one. {This analysis misses the goal. The hypothesis isn’t actually mentioned and the data is only briefly described. There is no explanation of the importance of the Apricot Nectar results. Finally, there is no connection to how these results help understand density or why it is biologically important} I hypothesized that diet soda would float, and all three cans of diet Pepsi did float while the regular Pepsi sank. This supports my hypothesis. Both types of Pepsi were 8.5 fluid ounces in volume, but the regular Pepsi also contained 16 grams of sugar. This means that the regular Pepsi had 16 more grams of mass provided by the sugar in the same amount of volume. This would lead to an increase in density, which explains why the regular soda cans sank. When we put in a can of Apricot Nectar, which had 19 grams of sugar, it floated. This was unexpected, but I think it is explained by the fact that an Apricot Nectar can had a volume of 7 fluid ounces, but the dimensions of the can are the same as that of a Pepsi can. A same-sized can with less liquid probably has an air space that helped it float. The results of this experiment help us understand how the air bladder of a fish, which creates an air space inside the fish, helps it float in the water and also how seaweeds and other living things with air spaces or other factors that decrease their density keep from sinking to the bottom of the water. {This analysis meets the goal. It clearly ties the hypothesis to the results and outlines what they mean. It describes how the results support the hypothesis, but also explains a possible reason behind the unusual results of the Apricot Nectar. Finally, there is a link to how this experiment helps us understand biology}

BI 102 Lab 1 Writing Assignment How did the different concentrations of sucrose impact osmotic rate? This assignment requires you to evaluate a hypothesis and communicate the results of your experiment on the rate of osmosis into sucrose solutions of varying concentrations. The questions below are meant to guide you to reporting the key findings of your experiment and help you think through how to explain the findings and draw conclusions from them in a scientific manner. ASSIGNMENT: Please respond to the following questions to complete your laboratory write up. For this assignment you will only focus on the osmosis of water into sucrose concentrations of varying concentration. Make sure that your write up is accurate, and clearly written so that it is easily readable. A grading rubric is provided on the second page of this assignment. To earn full points on your write up, you must provide answers that align to the “meets” column of your grading rubric as well as meeting all “Quality of Writing and Mechanics” elements described in the rubric. There are also some tips on pages 3-4 of this assignment to help you succeed. FORMAT: • Type your responses, using 1.5 or double spacing. • Include the section headings (Hypothesis, Results, Analysis) and question number (example: 1, 2, 3, etc) in your answers but do not rewrite the question. • Graphs may be made with a computer program (example: Microsoft excel, Mac numbers, etc) or may be neatly produced with a ruler on graphing paper. • Print out the cover sheet on page 2 of this assignment, read and sign the academic honesty statement, and submit it with your write up. Your instructor WILL NOT accept a write up without the signed cover sheet. DUE DATE: Your write up is due at the beginning of class next week. Late assignments will have 1 point deducted per day up to 5 days, at which point the assignment will be assigned 0 points. Hypothesis and Prediction – Part 1 of Rubric 1. What did you think was going to happen in this experiment and why? You may find it helpful to state your answers to these questions as an “if-then” hypothesis-prediction. Be sure you have included a biological rationale that explains WHY you made this hypothesis/prediction. (You worked on this in question 2 on page 10 of this lab activity) Results – Part 2 of Rubric 2. How did the different concentrations of sucrose impact osmotic rate? Answer this question by creating a line graph that shows the results of your experiment. If you need assistance building a graph, there is a Guide to Graphing resource available on your Moodle lab course site. Analysis- Part 3 of Rubric 3. Explain why you think that the results shown in your graph support or refute your hypothesis (remember we never “prove” anything in science). Consider all your data and the overall data pattern as you answer this question. Don’t ignore unusual data that may not seem to fit into a specific patterns (“outliers”). Explain what you think might be behind these unusual data points. 4. What is the biological significance of your results? What biological concepts explain completely why these events happened in the experiment? How do these results help you understand the biology of the cell and how materials move back and forth across the cell membrane? (A hint: refer back to questions 1A-1F on page 10 of this lab activity). Think about giving a specific example. References- Mechanics Checklist 5. Provide at least one full citation (make sure you include an in-text citation that pinpoints where you used this resource) for a resource you made use of in performing the experiment, understanding the concepts and writing this assignment. (Perhaps your lab manual? Your textbook? A website?) If you used more than one resource, you need to cite each one! If you need help with citations, a Guide to Citing References is available on your Moodle lab course site. Please print out and submit this cover sheet with your lab writeup! Lab Writeup Assignment (1) Assessment Rubric-­‐ 10 points total Name: ________________________________________ Element Misses (1 point) Approaches (2 points) Meets (3 points) Hypothesis Clarity/Specificity Testability Rationale ___Hypothesis is unclear and hardto- understand ___Hypothesis is not testable ___No biological rationale for hypothesis or rationale is fully inaccurate ___Hypothesis included is clearly stated, but not specific or lacks specific details __Hypothesis is testable, but not in a feasible way in this lab ___Some foundation for hypothesis, but based in part on biological inaccuracy ___Hypothesis included is clearly stated and very specific ___Hypothesis is testable and could be tested within lab parameters ___Rationale for hypothesis is grounded in accurate biological information Graph Title Axes Variables Key Graph clarity Data accuracy ___Graph lacks a title ___Axes are not labeled ___Variables not addressed in graph ___No key or way to tell data points apart ___Graph is hard to read and comparisons cannot be made: Inappropriate graph type or use of scale ___Data graphed is inaccurate or does not relate to experiment ___Graph has a title that is not very descriptive ___Axes are either unlabeled, or units are unclear or wrong ___Variables addressed in graph, but not on correct axes ___Key included, but is hard to understand ___Graph is somewhat readable, comparisons can be made with difficulty: Appropriate graph type, but not scaled well ___Data graphed is partially accurate; some data is missing ___Graph has a concise, descriptive title ___Axes are labeled, including clarification of units used ___Variables on correct axes ___A clear, easy-to-use key to data points is included ___Graph is clearly readable and comparisons between treatments are easy to make: Graph type and scale are appropriate to data ___Data graphed is accurate and includes all relevant data, including controls (if needed) Analysis Hypothesis Scientific language Data addressed Explanation ___Hypothesis is not addressed ___Hypothesis is described using language like proven, true, or right ___No explanations for data patterns observed in graph or data does not support conclusions. ___No biological explanation for data trends or explanations are completely inaccurate ___Hypothesis is mentioned, but not linked well to data ___Hypothesis is not consistently described as supported or refuted ___Some data considered in conclusions but other data is ignored. Any unusual “outliers” are ignored ___Explanations include minimal or some inaccurate biological concepts ___Hypothesis is evaluated based upon data ___Hypothesis is consistently described as supported or refuted ___All data collected is considered and addressed by conclusions, including presence of outliers, ___Explanations include relevant and accurate biological concepts Quality of Writing and Mechanics: Worth 1 point. Writeup should meet all of the following criteria! Yes No ☐ ☐ Write up includes your name, the date, and your lab section ☐ ☐ Write up is free from spelling and grammatical errors (make sure you proofread!!) ☐ ☐ Write up is clear and easy-to-understand ☐ ☐ Write up includes full citation for at least one reference with corresponding in-text citation ☐ ☐ All portions of write up are clearly labeled, and question numbers are included Plagiarism refers to the use of original work, ideas, or text that are not your own. This includes cut-and-paste from websites, copying directly from texts, and copying the work of others, including fellow students. Telling someone your answers to the questions (including telling someone how to make their graph, question #2), or asking for the answers to any question, is cheating. (Asking someone how to make the graph for this assignment is NOT the same as asking for help learning excel or some other software). All forms of cheating, including plagiarism and copying of work will result in an immediate zero for the exam, quiz, or assignment. In the case of copying, all parties involved in the unethical behavior will earn zeros. Cheating students will be referred to the Student Conduct Committee for further action. You also have the right to appeal to the Student Conduct Committee. I have read and understand the plagiarism statement. ____________________________________________________ Signature Guidelines for Good Quality Scientific Reports Hypothesis and Prediction: The hypothesis is a tentative explanation for the phenomenon. Remember that: • A good hypothesis and prediction is testable (and should be testable under the conditions of our lab environment; For example, if your hypothesis requires shooting a rocket into space, then its not really testable under our laboratory conditions). • Your explanation can be ruled out through testing, or falsified. • A good hypothesis and prediction is detailed and specific in what it is testing. • A good hypothesis provides a rationale or explanation for why you think your prediction is reasonable and this rationale is based on what we know about biology. • A good prediction is specific and can be tested with a specific experiment. Examples*: I think that diet soda will float and regular soda will sink. {This hypothesis misses the goal. It is not specific as we don’t know where the sodas are floating and sinking, and it does not provide any explanation to explain why the hypothesis makes sense} Because diet soda does not contain sugar and regular soda does, the diet soda will float in a bucket of water, while regular soda will sink. {This hypothesis approaches the goal. It is more specific about the conditions, and it provides a partial explanation about why the hypothesis makes sense, but the connection between sugar and sinking is unclear} If diet soda does not contain sugar, then its density (mass/volume) is lower than that of regular soda which does contain sugar, and so diet soda will float in a bucket of water while regular soda sinks. {This hypothesis meets the goal. It is specific and the rationale- sugar affects density and density is what determines floating or sinking in water- is clearly articulated} *Note that these examples are for different experiments and investigations and NOT about your osmosis lab. They are provided only to help you think about what you need to include in your write up. Graph: The graph is a visual representation of the data you gathered while testing your hypothesis. Remember that: • A graph needs a concise title that clearly describes the data that it is showing. • Data must be put on the correct axes of the graph. In general, the data you collected (representing what you are trying to find out about) goes on the vertical (Y) axis. The supporting data that that describes how, when or under what conditions you collected your data goes on the horizontal (X) axis. (For this reason time nearly always goes on the X-axis). • Axes must be labeled, including the units in which data were recorded • Data points should be clearly marked and identified; a key is helpful if more than one group of data is included in the graph. • The scale of a graph is important. It should be consistent (there should be no change in the units or increments on a single axis) and appropriate to the data you collected Examples: {This graph misses the goal. There is no title, nor is there a key to help distinguish what the data points mean. The scale is too large- from 0 to 100 with an increment of 50, when the maximum number in the graph is 25- and makes it hard to interpret this graph. The x-axis is labeled, but without units (the months) and the y-axis has units, but the label is incomplete- number of what?} {This graph meets the goal. There is a descriptive title, and all of the axes are clearly labeled with units. There is a key so that we can distinguish what each set of data points represent. The dependent variable (number of individuals) is correctly placed on the y-axis with the independent variable of time placed on the x-axis. The scale of 0-30 is appropriate to the data, with each line on the x-axis representing an increment of 5.} 0 50 100 Number Month 0 5 10 15 20 25 30 March April May June July Number of individuals Month (2011) Population size of three different madtom catiCish in the Marais de Cygnes River in Spring/Summer 2011 Brindled madtom Neosho madtom Slender madtom Analysis: You need to evaluate your hypothesis based on the data patterns shown by your graph. Remember that: • You use data to determine support or refute your hypothesis. It is only possible to support a hypothesis, not to “prove” one (that would require testing every possible permutation and combination of factors). Your evaluation of your hypothesis should not be contradicted by the pattern shown by your data. • Refer back to the prediction you made as part of your hypothesis and use your data to justify your decision to support or refute your hypothesis. • In the “if” part of your hypothesis you should have provided a rationale, or explanation for the prediction you made in your hypothesis (“then” part of hypothesis”). Use this to help you explain why you think you observed the specific pattern of data revealed in your graph. • You should consider all of the data you collected in examining the support (or lack of support for your hypothesis). If there are unusual data points or “outliers” that don’t seem to fit the general pattern in your graph, explain what you think those mean. Examples: I was right. Diet Pepsi floated and so did Apricot Nectar. Regular Pepsi sank. Obviously the regular Pepsi was heavier. This helps us understand the concept of density, which is a really important one. {This analysis misses the goal. The hypothesis isn’t actually mentioned and the data is only briefly described. There is no explanation of the importance of the Apricot Nectar results. Finally, there is no connection to how these results help understand density or why it is biologically important} I hypothesized that diet soda would float, and all three cans of diet Pepsi did float while the regular Pepsi sank. This supports my hypothesis. Both types of Pepsi were 8.5 fluid ounces in volume, but the regular Pepsi also contained 16 grams of sugar. This means that the regular Pepsi had 16 more grams of mass provided by the sugar in the same amount of volume. This would lead to an increase in density, which explains why the regular soda cans sank. When we put in a can of Apricot Nectar, which had 19 grams of sugar, it floated. This was unexpected, but I think it is explained by the fact that an Apricot Nectar can had a volume of 7 fluid ounces, but the dimensions of the can are the same as that of a Pepsi can. A same-sized can with less liquid probably has an air space that helped it float. The results of this experiment help us understand how the air bladder of a fish, which creates an air space inside the fish, helps it float in the water and also how seaweeds and other living things with air spaces or other factors that decrease their density keep from sinking to the bottom of the water. {This analysis meets the goal. It clearly ties the hypothesis to the results and outlines what they mean. It describes how the results support the hypothesis, but also explains a possible reason behind the unusual results of the Apricot Nectar. Finally, there is a link to how this experiment helps us understand biology}

info@checkyourstudy.com Whatsapp +919911743277
People v. Glover 233 Cal. App. 3d 1476 (1991) Deadline is 12 hours from posting time. There is no page minimum as long as every question in the following instructions is answered thoroughly and completely. Instructions: Complete a case brief on People v. Glover 233 Cal. App. 3d 1476 (1991) and answer the following 11 questions… 1. name of case 2. legal citation and year case decided 3. character of action (how the case was brought before the appellate court) 4. facts of the case 5. legal issues in the case 6. decision of the appellate court 7. majority opinion 8. concurring opinion(s) 9. dissenting opinion 10. comment by the student 11. principle of the case (what the case stands for)

People v. Glover 233 Cal. App. 3d 1476 (1991) Deadline is 12 hours from posting time. There is no page minimum as long as every question in the following instructions is answered thoroughly and completely. Instructions: Complete a case brief on People v. Glover 233 Cal. App. 3d 1476 (1991) and answer the following 11 questions… 1. name of case 2. legal citation and year case decided 3. character of action (how the case was brought before the appellate court) 4. facts of the case 5. legal issues in the case 6. decision of the appellate court 7. majority opinion 8. concurring opinion(s) 9. dissenting opinion 10. comment by the student 11. principle of the case (what the case stands for)

For any additional help, please contact: info@checkyourstudy.com Call / Whatsapp … Read More...
Week 8 Lessons: Fertility, Pregnancy, Childbirth, Contraception, Abortion and Sexuality Across the Life Span. After reading chapters 11, 12 and 13, focus on information presented in Boxes, Tables and Figures. Select a topic or information presented in Boxes, Tables or Figures in each of the three chapters. Identify at least one important topic from each chapter, use page citations, and make specific references to one of the additional teaching aids related to EACH chapter, giving each chapter and related teaching aid its own paragraph. (3 pts) In your 4th paragraph, briefly discuss one single piece of information from the readings and related teaching aids, that stood out for you and why. (1 pt) Capture the essence of your posting in a fifth paragraph, using ten words or less. Be sure to read classmate postings so you do not repeat topical information in your own posting.

Week 8 Lessons: Fertility, Pregnancy, Childbirth, Contraception, Abortion and Sexuality Across the Life Span. After reading chapters 11, 12 and 13, focus on information presented in Boxes, Tables and Figures. Select a topic or information presented in Boxes, Tables or Figures in each of the three chapters. Identify at least one important topic from each chapter, use page citations, and make specific references to one of the additional teaching aids related to EACH chapter, giving each chapter and related teaching aid its own paragraph. (3 pts) In your 4th paragraph, briefly discuss one single piece of information from the readings and related teaching aids, that stood out for you and why. (1 pt) Capture the essence of your posting in a fifth paragraph, using ten words or less. Be sure to read classmate postings so you do not repeat topical information in your own posting.

Chapter 11: Pregnancy is confirmed by Hormonal Tests: Page 320 … Read More...