Name: Date: Quiz IV Vignette 1. Johnny has just come in from recess and he is thirsty. He asks to go to the water fountain, but his teacher tells him that first he has to complete his math worksheet, and then he can have a drink of water. 1. Given that Johnny is thirsty, do you think he will be motivated to complete his math worksheet? 2. Write the correct notation of the 4 term contingency used in this example. Define which piece from the example matches each part of the contingency. 3. What is the MO – and what kind of MO is this? 4. If reinforcement is used in this example – is it positive or negative? Vignette 2. You feel a headache coming on – you see the bottle of advil in your desk drawer. You take the advil. The headache goes away. 5. Write and define the 4 term contingency. 6. What is the MO – and what kind of MO is this? 7. If reinforcement is used in this example – is it positive or negative? —- 8. Define positive reinforcement and give an example. 9. Define negative reinforcement and give an example. Vignette 3. Every time Johnny is given a math worksheet to complete, he kicks, hits, and spits on the teacher. This typically results in Johnny being sent to the principal’s office. 10. How would you label and define this target behavior? 11. What is the probable function of this behavior? 12. What adaptive alternative would you consider teaching Johnny to replace this target behavior? Vignette 4. When Bobby is denied access (told he cannot have) to a preferred toy, he throws himself on the ground, begins screaming and hitting the floor with his fists. This behavioral episode can go on anywhere from 5 to 20 minutes. 13. How would you label and define this target behavior? 14. What is the probable function of this behavior? 15. What type of data collection would you use for this target behavior? — Vignette 5. Johnny knows that when his grandmother watches him, she will try to soothe him with delicious treats if he begins tantrumming. However, he has learned that his mother does NOT give him tasty treats if he engages in problem behavior. Using the 3 term contingency – describe this situation when Grandma is present. (Hint: Does his grandmother function as an SD or an S∆ for tantrumming behavior?) Using the 3 term contingency – describe this situation when his mother is present. (Hint: does his mother function as an SD or an S∆ for tantrum behavior?)

Name: Date: Quiz IV Vignette 1. Johnny has just come in from recess and he is thirsty. He asks to go to the water fountain, but his teacher tells him that first he has to complete his math worksheet, and then he can have a drink of water. 1. Given that Johnny is thirsty, do you think he will be motivated to complete his math worksheet? 2. Write the correct notation of the 4 term contingency used in this example. Define which piece from the example matches each part of the contingency. 3. What is the MO – and what kind of MO is this? 4. If reinforcement is used in this example – is it positive or negative? Vignette 2. You feel a headache coming on – you see the bottle of advil in your desk drawer. You take the advil. The headache goes away. 5. Write and define the 4 term contingency. 6. What is the MO – and what kind of MO is this? 7. If reinforcement is used in this example – is it positive or negative? —- 8. Define positive reinforcement and give an example. 9. Define negative reinforcement and give an example. Vignette 3. Every time Johnny is given a math worksheet to complete, he kicks, hits, and spits on the teacher. This typically results in Johnny being sent to the principal’s office. 10. How would you label and define this target behavior? 11. What is the probable function of this behavior? 12. What adaptive alternative would you consider teaching Johnny to replace this target behavior? Vignette 4. When Bobby is denied access (told he cannot have) to a preferred toy, he throws himself on the ground, begins screaming and hitting the floor with his fists. This behavioral episode can go on anywhere from 5 to 20 minutes. 13. How would you label and define this target behavior? 14. What is the probable function of this behavior? 15. What type of data collection would you use for this target behavior? — Vignette 5. Johnny knows that when his grandmother watches him, she will try to soothe him with delicious treats if he begins tantrumming. However, he has learned that his mother does NOT give him tasty treats if he engages in problem behavior. Using the 3 term contingency – describe this situation when Grandma is present. (Hint: Does his grandmother function as an SD or an S∆ for tantrumming behavior?) Using the 3 term contingency – describe this situation when his mother is present. (Hint: does his mother function as an SD or an S∆ for tantrum behavior?)

Name:                                                                                                  Date: Quiz IV   Vignette 1.   Johnny … Read More...
A factory receives power at 480 Vrms @ 60 Hz. from the electric utility company. The factory’s electrical load can be simply represented by 2 loads. LOAD1 describes the manufacturing equipment on the assembly line. LOAD2 describes the power used in office rooms. From time to time, the assembly line shuts down thereby removing LOAD1 from the grid. SWITCH1 accounts for this effect in the equivalent circuit model shown above. Note that the 2 dependent sources represent a device called a “transformer” that steps the 480 Vrms down to 120 Vrms for use in the offices. (But don’t take my word for it; circuit analysis calculations will confirm this.) Given: Receiving End Voltage (with SWITCH1 closed): RV = 480 Vrms Wiring parameters: RW = 0.005 Ω, LW = 0.52052 mH Find: a) With SWITCH1 closed, find the value of C (in Farads) so that the total LOADt at the Receiving End has unity pf. Find the magnitude of the Sending End Voltage SV , and the magnitude of the “Office” load voltage, 2V. Note that RMS480VRV= for this case. b) With SWITCH1 open, using the value of C and SV found in part a), find the new values of the magnitudes of the Receiving End Voltage RV and Office Voltage 2V. Why will this be a problem for the office? How could you change the capacitor connection to avoid this problem? Hints: Note that no phase angles were given, and only magnitudes were asked for. You can choose one voltage or current to have 0 degree phase angle and then allow the calculations of any other voltages and currents be relative to that. In part b) RMS480VRV≠.

A factory receives power at 480 Vrms @ 60 Hz. from the electric utility company. The factory’s electrical load can be simply represented by 2 loads. LOAD1 describes the manufacturing equipment on the assembly line. LOAD2 describes the power used in office rooms. From time to time, the assembly line shuts down thereby removing LOAD1 from the grid. SWITCH1 accounts for this effect in the equivalent circuit model shown above. Note that the 2 dependent sources represent a device called a “transformer” that steps the 480 Vrms down to 120 Vrms for use in the offices. (But don’t take my word for it; circuit analysis calculations will confirm this.) Given: Receiving End Voltage (with SWITCH1 closed): RV = 480 Vrms Wiring parameters: RW = 0.005 Ω, LW = 0.52052 mH Find: a) With SWITCH1 closed, find the value of C (in Farads) so that the total LOADt at the Receiving End has unity pf. Find the magnitude of the Sending End Voltage SV , and the magnitude of the “Office” load voltage, 2V. Note that RMS480VRV= for this case. b) With SWITCH1 open, using the value of C and SV found in part a), find the new values of the magnitudes of the Receiving End Voltage RV and Office Voltage 2V. Why will this be a problem for the office? How could you change the capacitor connection to avoid this problem? Hints: Note that no phase angles were given, and only magnitudes were asked for. You can choose one voltage or current to have 0 degree phase angle and then allow the calculations of any other voltages and currents be relative to that. In part b) RMS480VRV≠.

A factory receives power at 480 Vrms @ 60 Hz. … Read More...
2/24/2015 Assignment 2 =3484333 1/22 Assignment 2 Due: 6:43pm on Saturday, February 28, 2015 You will receive no credit for items you complete after the assignment is due. Grading Policy Adding and Subtracting Vectors Conceptual Question Six vectors (A to F) have the magnitudes and directions indicated in the figure. Part A Which two vectors, when added, will have the largest (positive) x component? You did not open hints for this part. ANSWER: Part B Which two vectors, when added, will have the largest (positive) y component? You did not open hints for this part. ANSWER: C and E E and F A and F C and D B and D 2/24/2015 Assignment 2 =3484333 2/22 Part C Which two vectors, when subtracted (i.e., when one vector is subtracted from the other), will have the largest magnitude? You did not open hints for this part. ANSWER: Components of Vectors Shown is a 10 by 10 grid, with coordinate axes x and y . The grid runs from 5 to 5 on both axes. Drawn on this grid are four vectors, labeled through . This problem will ask you various questions about these vectors. All answers should be in decimal notation, unless otherwise specified. Part A C and D A and F E and F A and B E and D A and F A and E D and B C and D E and F _._ _._ ._ 2/24/2015 Assignment 2 =3484333 3/22 What is the x component of ? Express your answer to two significant figures. You did not open hints for this part. ANSWER: Part B What is the y component of ? Express your answer to the nearest integer. ANSWER: Part C What is the y component of ? Express your answer to the nearest integer. You did not open hints for this part. ANSWER: Part D What is the component of ? Express your answer to the nearest integer. You did not open hints for this part. ANSWER: _._ _4 = _._ _5 = _._ _5 = 4 _._ _4 = 2/24/2015 Assignment 2 =3484333 4/22 The following questions will ask you to give both components of vectors using the ordered pairs method. In this method, the x component is written first, followed by a comma, and then the y component. For example, the components of would be written 2.5,3 in ordered pair notation. The answers below are all integers, so estimate the components to the nearest whole number. Part E In ordered pair notation, write down the components of vector . Express your answers to the nearest integer. ANSWER: Part F In ordered pair notation, write down the components of vector . Express your answers to the nearest integer. ANSWER: Part G What is true about and ? Choose from the pulldown list below. ANSWER: Finding the Cross Product The figure shows two vectors and separated by an angle . You are given that , , and . _._ _._ _4, _5 = _._ _4 , _5 = _._ _._ They have different components and are not the same vectors. They have the same components but are not the same vectors. They are the same vectors. _ ._ _._ J56 _ .__ _ _ _ _.__ _ _ _ _ ._g_.__ _ ._ 2/24/2015 Assignment 2 =3484333 5/22 Part A Express as an ordered triplet of values, separated by commas. ANSWER: Part B Find the magnitude of . ANSWER: Part C Find the sine of the angle between and . ANSWER: Significant Figures Conceptual Question In the parts that follow select whether the number presented in statement A is greater than, less than, or equal to the number presented in statement B. Be sure to follow all of the rules concerning significant figures. _ ._ _ ._= _ ._ ]_ ]._ = _ ._ _._ TJO J__ = 2/24/2015 Assignment 2 =3484333 6/22 Part A Statement A: 2.567 , to two significant figures. Statement B: 2.567 , to three significant figures. Determine the correct relationship between the statements. You did not open hints for this part. ANSWER: Part B Statement A: (2.567 + 3.146 ), to two significant figures. Statement B: (2.567 , to two significant figures) + (3.146 , to two significant figures). Determine the correct relationship between the statements. ANSWER: Part C Statement A: Area of a rectangle with measured length = 2.536 and width = 1.4 . Statement B: Area of a rectangle with measured length = 2.536 and width = 1.41 . Since you are not told specific numbers of significant figures to round to, you must use the rules for multiplying numbers while respecting significant figures. If you need a reminder, consult the hint. Determine the correct relationship between the statements. You did not open hints for this part. ANSWER: LN LN Statement A is greater than less than equal to Statement B. LN LN LN LN Statement A is greater than less than equal to Statement B. N N N N 2/24/2015 Assignment 2 =3484333 7/22 ± Vector Dot Product Let vectors , , and . Calculate the following: Part A You did not open hints for this part. ANSWER: Part B What is the angle between and ? Express your answer using one significant figure. You did not open hints for this part. ANSWER: Part C ANSWER: Part D ANSWER: Statement A is greater than less than equal to Statement B. _.__ _ _Ã_ _.__ Ã_ _ _ _.__ Ã_Ã_ _ _._ø _._ = J”# _._ _._ J”# = SBEJBOT __._ø __._ = 2/24/2015 Assignment 2 =3484333 8/22 Part E Which of the following can be computed? You did not open hints for this part. ANSWER: and are different vectors with lengths and respectively. Find the following: Part F Express your answer in terms of You did not open hints for this part. ANSWER: Part G If and are perpendicular, You did not open hints for this part. ANSWER: _ _._ø __._ = _._ø _._ø _._ _._ø _._ø _._ _._ø _.___._ _ ø _._ _ .__ _ .__ __ __ __ = ø _ .__ _ .__ _ .__ _ .__ = ø _ .__ _ .__ 2/24/2015 Assignment 2 =3484333 9/22 Part H If and are parallel, Express your answer in terms of and . You did not open hints for this part. ANSWER: ± Resolving Vector Components with Trigonometry Often a vector is specified by a magnitude and a direction; for example, a rope with tension exerts a force of magnitude in a direction 35 north of east. This is a good way to think of vectors; however, to calculate results with vectors, it is best to select a coordinate system and manipulate the components of the vectors in that coordinate system. Part A Find the components of the vector with length = 1.00 and angle =20.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Part B _ .__ _ .__ __ __ = ø _ .__ _ .__ _ ._ _ È _._ _ C È _._ = ._ 2/24/2015 Assignment 2 =3484333 10/22 Find the components of the vector with length = 1.00 and angle =20.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Part C Find the components of the vector with length = 1.00 and angle 30.0 as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Exercise 1.28 Part A How many dollar bills would you have to stack to reach the moon? (Depending on age, dollar bills can be stacked with about 23 per millimeter.) Express your answer using one significant figure. ANSWER: Problem 1.80 A boulder of weight rests on a hillside that rises at a constant angle above the horizontal, as shown in the figure . Its weight is a force on the boulder that has direction vertically downward. _._ _ D È _._ = _._ _ ] _ È _._ = dollar bills 3 C 2/24/2015 Assignment 2 =3484333 11/22 Part A In terms of and , what is the component of the weight of the boulder in the direction parallel to the surface of the hill? Express your answer in terms of and . ANSWER: Part B What is the component of the weight in the direction perpendicular to the surface of the hill? Express your answer in terms of and . ANSWER: Part C An air conditioner unit is fastened to a roof that slopes upward at an angle of . In order that the unit not slide down the roof, the component of the unit’s weight parallel to the roof cannot exceed 550 N. What is the maximum allowed weight of the unit? ANSWER: Problem 1.84 You are camping with two friends, Joe and Karl. Since all three of you like your privacy, you don’t pitch your tents close together. Joe’s tent is 23.5 from yours, in the direction 19.0 north of east. Karl’s tent is 40.0 from yours, in the direction 36.0 south of east. C 3 C 3 ]3,_. ] = C 3 ]3,!., ] = ____È 3 = / N È N È 2/24/2015 Assignment 2 =3484333 12/22 Part A What is the distance between Karl’s tent and Joe’s tent? ANSWER: Multiple Choice Question 1.8 Part A The components of vectors and are given as follows: Ax = +5.7 Bx = 9.8 Ay = 3.6 By = 6.5 The magnitude of the vector difference , is closest to: ANSWER: OneDimensional Kinematics with Constant Acceleration Learning Goal: To understand the meaning of the variables that appear in the equations for onedimensional kinematics with constant acceleration. Motion with a constant, nonzero acceleration is not uncommon in the world around us. Falling (or thrown) objects and cars starting and stopping approximate this type of motion. It is also the type of motion most frequently involved in introductory kinematics problems. The kinematic equations for such motion can be written as , , where the symbols are defined as follows: is the position of the particle; _ = N _ ¥ _ ¥ à _ ¥ _ ¥ 5.0 11 5.0 16 250 4 0_ 4J_2J0_ _ __ 0_ 2 0 _ 2J __0 4 0 2/24/2015 Assignment 2 =3484333 13/22 is the initial position of the particle; is the velocity of the particle; is the initial velocity of the particle; is the acceleration of the particle. In anwering the following questions, assume that the acceleration is constant and nonzero: . Part A The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part B The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part C The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part D The quantity represented by is a function of time (i.e., is not constant). ANSWER: 4J 2 0 2J _ _ Ü _ 4 true false 4J true false 2J true false 2 true false 2/24/2015 Assignment 2 =3484333 14/22 Part E Which of the given equations is not an explicit function of and is therefore useful when you don’t know or don’t need the time? ANSWER: Part F A particle moves with constant acceleration . The expression represents the particle’s velocity at what instant in time? ANSWER: More generally, the equations of motion can be written as and . Here is the time that has elapsed since the beginning of the particle’s motion, that is, , where is the current time and is the time at which we start measuring the particle’s motion. The terms and are, respectively, the position and velocity at . As you can now see, the equations given at the beginning of this problem correspond to the case , which is a convenient choice if there is only one particle of interest. To illustrate the use of these more general equations, consider the motion of two particles, A and B. The position of particle A depends on time as . That is, particle A starts moving at time with velocity , from . At time , particle B has twice the acceleration, half the velocity, and the same position that particle A had at time . Part G What is the equation describing the position of particle B? You did not open hints for this part. ANSWER: 0 4_ 4J_2J0_ _ __ 0_ 2 _ 2J __0 _ ___ 4à 2_ 2_J 4J _ 2J __0 only at time only at the “initial” time when a time has passed since the particle’s velocity was 0 _ _ 0 2J 4 0_ 4J_2J 0_ _ 0 __ _ 2 0 _ 2J __ 0 0 0 _ 0Ã0J 0 0J 4J 2J 0 _ 0J 0J _ _ 4″ 0 _ 4J _2J0_ ____0_ 0 _ 0J” _ _ 2J” _ 2J 4J” _ 4J 0 _ 0_ 0 _ _ 2/24/2015 Assignment 2 =3484333 15/22 Part H At what time does the velocity of particle B equal that of particle A? You did not open hints for this part. ANSWER: Given Positions, Find Velocity and Acceleration Learning Goal: To understand how to graph position, velocity, and acceleration of an object starting with a table of positions vs. time. The table shows the x coordinate of a moving object. The position is tabulated at 1s intervals. The x coordinate is indicated below each time. You should make the simplification that the acceleration of the object is bounded and contains no spikes. time (s) 0 1 2 3 4 5 6 7 8 9 x (m) 0 1 4 9 16 24 32 40 46 48 Part A Which graph best represents the function , describing the object’s position vs. time? 4# 0_ 4J__2J0_ _ __ 0_ 4# 0 _ 4J ____2J0__0_ 4# 0_ 4J__2J 0_0__ _ 0_ __ 0__ 4# 0 _ 4J ____2J 0_0_ __ 0_0_ _ 4# 0_ 4J__2J 0Ã0__ _ 0à __ 0__ 4# 0 _ 4J ____2J 0Ã0_ __ 0Ã0_ _ The two particles never have the same velocity. 0_ 0__ 2J __ 0__0__ 2J __ 0__0__ 2J __ 4 0 2/24/2015 Assignment 2 =3484333 16/22 You did not open hints for this part. ANSWER: Part B Which of the following graphs best represents the function , describing the object’s velocity as a function of time? You did not open hints for this part. ANSWER: 1 2 3 4 2 0 2/24/2015 Assignment 2 =3484333 17/22 Part C Which of the following graphs best represents the function , describing the acceleration of this object? You did not open hints for this part. ANSWER: A Man Running to Catch a Bus A man is running at speed (much less than the speed of light) to catch a bus already at a stop. At , when he is a distance from the door to the bus, the bus starts moving with the positive acceleration . Use a coordinate system with at the door of the stopped bus. 1 2 3 4 _ 0 1 2 3 4 _ 0 _ _ _ _ 4 _ _ 2/24/2015 Assignment 2 =3484333 18/22 Part A What is , the position of the man as a function of time? Answer symbolically in terms of the variables , , and . You did not open hints for this part. ANSWER: Part B What is , the position of the bus as a function of time? Answer symbolically in terms of and . You did not open hints for this part. ANSWER: Part C What condition is necessary for the man to catch the bus? Assume he catches it at time . You did not open hints for this part. 4NBO 0 _ _ 0 4NBO 0 = 4CVT 0 _ 0 4CVT = 0DBUDI 2/24/2015 Assignment 2 =3484333 19/22 ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Stopping on Snow Light, dry snow is called powder. Skiing on a powder day is different than skiing on a day when the snow is wet and heavy. When you slow down on dry snow the maximum (negative) acceleration caused by the snow acting on your skis is about twofifths as much as that of stopping on wet snow. Part A For a given initial velocity, how does the time it takes to stop on dry snow differ from the time it takes to stop on wet snow? You did not open hints for this part. ANSWER: Part B For a given initial velocity, how does the stopping distance on dry snow differ from the stopping distance on wet snow? 4NBO 0DBUDI _ 4CVT 0DBUDI 4NBO 0DBUDI _ 4CVT 0DBUDI 4NBO 0DBUDI _ 4CVT 0DBUDI _ _ _ Ç 0DBUDI 0E 0X 0E _ ___0X 0E _ 0X 0E _ ___0X 4E 4X 2/24/2015 Assignment 2 =3484333 20/22 You did not open hints for this part. ANSWER: Exercise 2.34 A subway train starts from rest at a station and accelerates at a rate of for 14.0 . It runs at constant speed for 70.0 and slows down at a rate of until it stops at the next station. Part A Find the total distance covered. ANSWER: Problem 2.57 Dan gets on Interstate Highway I280 at Seward, Nebraska, and drives due west in a straight line and at an average velocity of magnitude 88.0 . After traveling 76 km, he reaches the Aurora exit . Realizing he has gone too far, he turns around and drives due east 34 back to the York exit at an average velocity of magnitude 75.0 . Part A For his whole trip from Seward to the York exit, what is his average speed? 4E _ ___4X 4E _ 4X 4E _ ___4X ____ N_T_ T T ____ N_T_ = LN LN_I LN LN_I 2/24/2015 Assignment 2 =3484333 21/22 ANSWER: Part B For his whole trip from Seward to the York exit, what is the magnitude of his average velocity? ANSWER: Multiple Choice Question 2.1 Part A A train starts from rest and accelerates uniformly, until it has traveled 5.9 km and acquired a velocity of 35 m/s. The train then moves at a constant velocity of 35 m/s for 400 s. The train then decelerates uniformly at 0.065 m/s2, until it is brought to a halt. The acceleration during the first 5.9 km of travel is closest to: ANSWER: Multiple Choice Question 2.8 Part A A racquetball strikes a wall with a speed of 30 m/s and rebounds with a speed of 26 m/s. The collision takes 20 ms. What is the average acceleration of the ball during collision? ANSWER: 2 = LN_I 2 = LN_I 0.13 m/s2 0.11 m/s2 0.12 m/s2 0.10 m/s2 0.093 m/s2 2/24/2015 Assignment 2 Score Summary: Your score on this assignment is 0.0%. You received 0 out of a possible total of 18 points. zero 200 m/s2 1500 m/s2 1300 m/s2 2800 m/s2

2/24/2015 Assignment 2 =3484333 1/22 Assignment 2 Due: 6:43pm on Saturday, February 28, 2015 You will receive no credit for items you complete after the assignment is due. Grading Policy Adding and Subtracting Vectors Conceptual Question Six vectors (A to F) have the magnitudes and directions indicated in the figure. Part A Which two vectors, when added, will have the largest (positive) x component? You did not open hints for this part. ANSWER: Part B Which two vectors, when added, will have the largest (positive) y component? You did not open hints for this part. ANSWER: C and E E and F A and F C and D B and D 2/24/2015 Assignment 2 =3484333 2/22 Part C Which two vectors, when subtracted (i.e., when one vector is subtracted from the other), will have the largest magnitude? You did not open hints for this part. ANSWER: Components of Vectors Shown is a 10 by 10 grid, with coordinate axes x and y . The grid runs from 5 to 5 on both axes. Drawn on this grid are four vectors, labeled through . This problem will ask you various questions about these vectors. All answers should be in decimal notation, unless otherwise specified. Part A C and D A and F E and F A and B E and D A and F A and E D and B C and D E and F _._ _._ ._ 2/24/2015 Assignment 2 =3484333 3/22 What is the x component of ? Express your answer to two significant figures. You did not open hints for this part. ANSWER: Part B What is the y component of ? Express your answer to the nearest integer. ANSWER: Part C What is the y component of ? Express your answer to the nearest integer. You did not open hints for this part. ANSWER: Part D What is the component of ? Express your answer to the nearest integer. You did not open hints for this part. ANSWER: _._ _4 = _._ _5 = _._ _5 = 4 _._ _4 = 2/24/2015 Assignment 2 =3484333 4/22 The following questions will ask you to give both components of vectors using the ordered pairs method. In this method, the x component is written first, followed by a comma, and then the y component. For example, the components of would be written 2.5,3 in ordered pair notation. The answers below are all integers, so estimate the components to the nearest whole number. Part E In ordered pair notation, write down the components of vector . Express your answers to the nearest integer. ANSWER: Part F In ordered pair notation, write down the components of vector . Express your answers to the nearest integer. ANSWER: Part G What is true about and ? Choose from the pulldown list below. ANSWER: Finding the Cross Product The figure shows two vectors and separated by an angle . You are given that , , and . _._ _._ _4, _5 = _._ _4 , _5 = _._ _._ They have different components and are not the same vectors. They have the same components but are not the same vectors. They are the same vectors. _ ._ _._ J56 _ .__ _ _ _ _.__ _ _ _ _ ._g_.__ _ ._ 2/24/2015 Assignment 2 =3484333 5/22 Part A Express as an ordered triplet of values, separated by commas. ANSWER: Part B Find the magnitude of . ANSWER: Part C Find the sine of the angle between and . ANSWER: Significant Figures Conceptual Question In the parts that follow select whether the number presented in statement A is greater than, less than, or equal to the number presented in statement B. Be sure to follow all of the rules concerning significant figures. _ ._ _ ._= _ ._ ]_ ]._ = _ ._ _._ TJO J__ = 2/24/2015 Assignment 2 =3484333 6/22 Part A Statement A: 2.567 , to two significant figures. Statement B: 2.567 , to three significant figures. Determine the correct relationship between the statements. You did not open hints for this part. ANSWER: Part B Statement A: (2.567 + 3.146 ), to two significant figures. Statement B: (2.567 , to two significant figures) + (3.146 , to two significant figures). Determine the correct relationship between the statements. ANSWER: Part C Statement A: Area of a rectangle with measured length = 2.536 and width = 1.4 . Statement B: Area of a rectangle with measured length = 2.536 and width = 1.41 . Since you are not told specific numbers of significant figures to round to, you must use the rules for multiplying numbers while respecting significant figures. If you need a reminder, consult the hint. Determine the correct relationship between the statements. You did not open hints for this part. ANSWER: LN LN Statement A is greater than less than equal to Statement B. LN LN LN LN Statement A is greater than less than equal to Statement B. N N N N 2/24/2015 Assignment 2 =3484333 7/22 ± Vector Dot Product Let vectors , , and . Calculate the following: Part A You did not open hints for this part. ANSWER: Part B What is the angle between and ? Express your answer using one significant figure. You did not open hints for this part. ANSWER: Part C ANSWER: Part D ANSWER: Statement A is greater than less than equal to Statement B. _.__ _ _Ã_ _.__ Ã_ _ _ _.__ Ã_Ã_ _ _._ø _._ = J”# _._ _._ J”# = SBEJBOT __._ø __._ = 2/24/2015 Assignment 2 =3484333 8/22 Part E Which of the following can be computed? You did not open hints for this part. ANSWER: and are different vectors with lengths and respectively. Find the following: Part F Express your answer in terms of You did not open hints for this part. ANSWER: Part G If and are perpendicular, You did not open hints for this part. ANSWER: _ _._ø __._ = _._ø _._ø _._ _._ø _._ø _._ _._ø _.___._ _ ø _._ _ .__ _ .__ __ __ __ = ø _ .__ _ .__ _ .__ _ .__ = ø _ .__ _ .__ 2/24/2015 Assignment 2 =3484333 9/22 Part H If and are parallel, Express your answer in terms of and . You did not open hints for this part. ANSWER: ± Resolving Vector Components with Trigonometry Often a vector is specified by a magnitude and a direction; for example, a rope with tension exerts a force of magnitude in a direction 35 north of east. This is a good way to think of vectors; however, to calculate results with vectors, it is best to select a coordinate system and manipulate the components of the vectors in that coordinate system. Part A Find the components of the vector with length = 1.00 and angle =20.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Part B _ .__ _ .__ __ __ = ø _ .__ _ .__ _ ._ _ È _._ _ C È _._ = ._ 2/24/2015 Assignment 2 =3484333 10/22 Find the components of the vector with length = 1.00 and angle =20.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Part C Find the components of the vector with length = 1.00 and angle 30.0 as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Exercise 1.28 Part A How many dollar bills would you have to stack to reach the moon? (Depending on age, dollar bills can be stacked with about 23 per millimeter.) Express your answer using one significant figure. ANSWER: Problem 1.80 A boulder of weight rests on a hillside that rises at a constant angle above the horizontal, as shown in the figure . Its weight is a force on the boulder that has direction vertically downward. _._ _ D È _._ = _._ _ ] _ È _._ = dollar bills 3 C 2/24/2015 Assignment 2 =3484333 11/22 Part A In terms of and , what is the component of the weight of the boulder in the direction parallel to the surface of the hill? Express your answer in terms of and . ANSWER: Part B What is the component of the weight in the direction perpendicular to the surface of the hill? Express your answer in terms of and . ANSWER: Part C An air conditioner unit is fastened to a roof that slopes upward at an angle of . In order that the unit not slide down the roof, the component of the unit’s weight parallel to the roof cannot exceed 550 N. What is the maximum allowed weight of the unit? ANSWER: Problem 1.84 You are camping with two friends, Joe and Karl. Since all three of you like your privacy, you don’t pitch your tents close together. Joe’s tent is 23.5 from yours, in the direction 19.0 north of east. Karl’s tent is 40.0 from yours, in the direction 36.0 south of east. C 3 C 3 ]3,_. ] = C 3 ]3,!., ] = ____È 3 = / N È N È 2/24/2015 Assignment 2 =3484333 12/22 Part A What is the distance between Karl’s tent and Joe’s tent? ANSWER: Multiple Choice Question 1.8 Part A The components of vectors and are given as follows: Ax = +5.7 Bx = 9.8 Ay = 3.6 By = 6.5 The magnitude of the vector difference , is closest to: ANSWER: OneDimensional Kinematics with Constant Acceleration Learning Goal: To understand the meaning of the variables that appear in the equations for onedimensional kinematics with constant acceleration. Motion with a constant, nonzero acceleration is not uncommon in the world around us. Falling (or thrown) objects and cars starting and stopping approximate this type of motion. It is also the type of motion most frequently involved in introductory kinematics problems. The kinematic equations for such motion can be written as , , where the symbols are defined as follows: is the position of the particle; _ = N _ ¥ _ ¥ à _ ¥ _ ¥ 5.0 11 5.0 16 250 4 0_ 4J_2J0_ _ __ 0_ 2 0 _ 2J __0 4 0 2/24/2015 Assignment 2 =3484333 13/22 is the initial position of the particle; is the velocity of the particle; is the initial velocity of the particle; is the acceleration of the particle. In anwering the following questions, assume that the acceleration is constant and nonzero: . Part A The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part B The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part C The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part D The quantity represented by is a function of time (i.e., is not constant). ANSWER: 4J 2 0 2J _ _ Ü _ 4 true false 4J true false 2J true false 2 true false 2/24/2015 Assignment 2 =3484333 14/22 Part E Which of the given equations is not an explicit function of and is therefore useful when you don’t know or don’t need the time? ANSWER: Part F A particle moves with constant acceleration . The expression represents the particle’s velocity at what instant in time? ANSWER: More generally, the equations of motion can be written as and . Here is the time that has elapsed since the beginning of the particle’s motion, that is, , where is the current time and is the time at which we start measuring the particle’s motion. The terms and are, respectively, the position and velocity at . As you can now see, the equations given at the beginning of this problem correspond to the case , which is a convenient choice if there is only one particle of interest. To illustrate the use of these more general equations, consider the motion of two particles, A and B. The position of particle A depends on time as . That is, particle A starts moving at time with velocity , from . At time , particle B has twice the acceleration, half the velocity, and the same position that particle A had at time . Part G What is the equation describing the position of particle B? You did not open hints for this part. ANSWER: 0 4_ 4J_2J0_ _ __ 0_ 2 _ 2J __0 _ ___ 4à 2_ 2_J 4J _ 2J __0 only at time only at the “initial” time when a time has passed since the particle’s velocity was 0 _ _ 0 2J 4 0_ 4J_2J 0_ _ 0 __ _ 2 0 _ 2J __ 0 0 0 _ 0Ã0J 0 0J 4J 2J 0 _ 0J 0J _ _ 4″ 0 _ 4J _2J0_ ____0_ 0 _ 0J” _ _ 2J” _ 2J 4J” _ 4J 0 _ 0_ 0 _ _ 2/24/2015 Assignment 2 =3484333 15/22 Part H At what time does the velocity of particle B equal that of particle A? You did not open hints for this part. ANSWER: Given Positions, Find Velocity and Acceleration Learning Goal: To understand how to graph position, velocity, and acceleration of an object starting with a table of positions vs. time. The table shows the x coordinate of a moving object. The position is tabulated at 1s intervals. The x coordinate is indicated below each time. You should make the simplification that the acceleration of the object is bounded and contains no spikes. time (s) 0 1 2 3 4 5 6 7 8 9 x (m) 0 1 4 9 16 24 32 40 46 48 Part A Which graph best represents the function , describing the object’s position vs. time? 4# 0_ 4J__2J0_ _ __ 0_ 4# 0 _ 4J ____2J0__0_ 4# 0_ 4J__2J 0_0__ _ 0_ __ 0__ 4# 0 _ 4J ____2J 0_0_ __ 0_0_ _ 4# 0_ 4J__2J 0Ã0__ _ 0à __ 0__ 4# 0 _ 4J ____2J 0Ã0_ __ 0Ã0_ _ The two particles never have the same velocity. 0_ 0__ 2J __ 0__0__ 2J __ 0__0__ 2J __ 4 0 2/24/2015 Assignment 2 =3484333 16/22 You did not open hints for this part. ANSWER: Part B Which of the following graphs best represents the function , describing the object’s velocity as a function of time? You did not open hints for this part. ANSWER: 1 2 3 4 2 0 2/24/2015 Assignment 2 =3484333 17/22 Part C Which of the following graphs best represents the function , describing the acceleration of this object? You did not open hints for this part. ANSWER: A Man Running to Catch a Bus A man is running at speed (much less than the speed of light) to catch a bus already at a stop. At , when he is a distance from the door to the bus, the bus starts moving with the positive acceleration . Use a coordinate system with at the door of the stopped bus. 1 2 3 4 _ 0 1 2 3 4 _ 0 _ _ _ _ 4 _ _ 2/24/2015 Assignment 2 =3484333 18/22 Part A What is , the position of the man as a function of time? Answer symbolically in terms of the variables , , and . You did not open hints for this part. ANSWER: Part B What is , the position of the bus as a function of time? Answer symbolically in terms of and . You did not open hints for this part. ANSWER: Part C What condition is necessary for the man to catch the bus? Assume he catches it at time . You did not open hints for this part. 4NBO 0 _ _ 0 4NBO 0 = 4CVT 0 _ 0 4CVT = 0DBUDI 2/24/2015 Assignment 2 =3484333 19/22 ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Stopping on Snow Light, dry snow is called powder. Skiing on a powder day is different than skiing on a day when the snow is wet and heavy. When you slow down on dry snow the maximum (negative) acceleration caused by the snow acting on your skis is about twofifths as much as that of stopping on wet snow. Part A For a given initial velocity, how does the time it takes to stop on dry snow differ from the time it takes to stop on wet snow? You did not open hints for this part. ANSWER: Part B For a given initial velocity, how does the stopping distance on dry snow differ from the stopping distance on wet snow? 4NBO 0DBUDI _ 4CVT 0DBUDI 4NBO 0DBUDI _ 4CVT 0DBUDI 4NBO 0DBUDI _ 4CVT 0DBUDI _ _ _ Ç 0DBUDI 0E 0X 0E _ ___0X 0E _ 0X 0E _ ___0X 4E 4X 2/24/2015 Assignment 2 =3484333 20/22 You did not open hints for this part. ANSWER: Exercise 2.34 A subway train starts from rest at a station and accelerates at a rate of for 14.0 . It runs at constant speed for 70.0 and slows down at a rate of until it stops at the next station. Part A Find the total distance covered. ANSWER: Problem 2.57 Dan gets on Interstate Highway I280 at Seward, Nebraska, and drives due west in a straight line and at an average velocity of magnitude 88.0 . After traveling 76 km, he reaches the Aurora exit . Realizing he has gone too far, he turns around and drives due east 34 back to the York exit at an average velocity of magnitude 75.0 . Part A For his whole trip from Seward to the York exit, what is his average speed? 4E _ ___4X 4E _ 4X 4E _ ___4X ____ N_T_ T T ____ N_T_ = LN LN_I LN LN_I 2/24/2015 Assignment 2 =3484333 21/22 ANSWER: Part B For his whole trip from Seward to the York exit, what is the magnitude of his average velocity? ANSWER: Multiple Choice Question 2.1 Part A A train starts from rest and accelerates uniformly, until it has traveled 5.9 km and acquired a velocity of 35 m/s. The train then moves at a constant velocity of 35 m/s for 400 s. The train then decelerates uniformly at 0.065 m/s2, until it is brought to a halt. The acceleration during the first 5.9 km of travel is closest to: ANSWER: Multiple Choice Question 2.8 Part A A racquetball strikes a wall with a speed of 30 m/s and rebounds with a speed of 26 m/s. The collision takes 20 ms. What is the average acceleration of the ball during collision? ANSWER: 2 = LN_I 2 = LN_I 0.13 m/s2 0.11 m/s2 0.12 m/s2 0.10 m/s2 0.093 m/s2 2/24/2015 Assignment 2 Score Summary: Your score on this assignment is 0.0%. You received 0 out of a possible total of 18 points. zero 200 m/s2 1500 m/s2 1300 m/s2 2800 m/s2

info@checkyourstudy.com 2/24/2015 Assignment 2 =3484333 1/22 Assignment 2 Due: 6:43pm … Read More...
Vermont Technical College Electronics I – Laboratory ELT-2051 Lab 07: Transistor Biasing Circuits and Q-point Stability Objectives: • To set an operating point for a transistor using three different bias techniques • To explore amplification of an AC signal • To use MultiSim to verify your experimental data General: In this laboratory, you will be supplied with two NPN transistors with varying ß’s. Prelab: Calculate values of Rb in Figures 1 and 2 assuming ß = 200, VCE = 6V . For Figure 3, calculate R1 and R2 so that their parallel resistance is about 20KΩ or 10% of (ß+1)RE. Also, calculate the critical frequency of the 1uF capacitor in Figure 4. Materials: • 2N3904, 2N4123 NPN TXs (1 high ß, 1 low ß) • (2) 1 k Ohm, 100 k Ohm, assorted resistors • 1uF, 10uF capacitors • Curve Tracer • DC Power Supply • Multimeter • Signal Generator • Oscilloscope • Breadboard Procedure: 1. Use the curve tracer to plot the curves for each of your transistors. From these curves, again using the curve tracer, determine the ßDC for each transistor at the IC currents of 1mA, 3mA, 6mA, and 10mA with VCE = 6V. Of course, be sure to keep track of which transistor goes with which curve. Verify that the ßDC values that you obtain are within the manufacturer’s specifications. Remember– ßDC = hFE ! 2. For each of the three circuits shown in Figures 1-3, using the R values calculated in your prelab, determine the operating points IC and VCE for each of the transistors. Be sure to table your data. In addition, plot ß vs IC for both transistors on a single graph so that the data is meaningful! What conclusions can be reached for the 3 biasing circuits? 3. Lastly – Build Figure 4 and determine the ratio (Gain) of Vout/Vin at 1KHz. Now vary the frequency of Vin to determine at what frequencies this ratio decreases to 0.707 of the value at 1KHz. 4. Use the Bode Plotter feature in MultiSim to verify your data of Part 3. Is the cut-off frequency the same as you measured in the lab? Base Bias: Parameter Calculated Value Simulated Value Measured Value VCE1 (high β) VCE2 (low β) n/a n/a |VCE1 – VCE2| 0 0 IC1 (high β) IC2 (low β) n/a n/a |IC1 – IC2| 0 0 Emitter Bias: Parameter Calculated Value Simulated Value Measured Value VCE1 (high β) VCE2 (low β) n/a n/a |VCE1 – VCE2| 0 0 IC1 (high β) IC2 (low β) n/a n/a |IC1 – IC2| 0 0 Voltage Divider Bias: Parameter Calculated Value Simulated Value Measured Value VCE1 (high β) VCE2 (low β) n/a n/a |VCE1 – VCE2| 0 0 IC1 (high β) IC2 (low β) n/a n/a |IC1 – IC2| 0 0 Laboratory Report: This lab is a semi-formal lab. Be sure to collect all data necessary to make observations and answer questions before you leave the lab. Also, you and your lab partner should discuss the results and outcomes prior to leaving. Take notes, fill in tables and include diagrams as needed. Your report should include: • Data Table • Beta Plot • MultiSim Frequency Response • Comparison of biasing schemes • Comparison of measurements vs. simulations and expectations.

Vermont Technical College Electronics I – Laboratory ELT-2051 Lab 07: Transistor Biasing Circuits and Q-point Stability Objectives: • To set an operating point for a transistor using three different bias techniques • To explore amplification of an AC signal • To use MultiSim to verify your experimental data General: In this laboratory, you will be supplied with two NPN transistors with varying ß’s. Prelab: Calculate values of Rb in Figures 1 and 2 assuming ß = 200, VCE = 6V . For Figure 3, calculate R1 and R2 so that their parallel resistance is about 20KΩ or 10% of (ß+1)RE. Also, calculate the critical frequency of the 1uF capacitor in Figure 4. Materials: • 2N3904, 2N4123 NPN TXs (1 high ß, 1 low ß) • (2) 1 k Ohm, 100 k Ohm, assorted resistors • 1uF, 10uF capacitors • Curve Tracer • DC Power Supply • Multimeter • Signal Generator • Oscilloscope • Breadboard Procedure: 1. Use the curve tracer to plot the curves for each of your transistors. From these curves, again using the curve tracer, determine the ßDC for each transistor at the IC currents of 1mA, 3mA, 6mA, and 10mA with VCE = 6V. Of course, be sure to keep track of which transistor goes with which curve. Verify that the ßDC values that you obtain are within the manufacturer’s specifications. Remember– ßDC = hFE ! 2. For each of the three circuits shown in Figures 1-3, using the R values calculated in your prelab, determine the operating points IC and VCE for each of the transistors. Be sure to table your data. In addition, plot ß vs IC for both transistors on a single graph so that the data is meaningful! What conclusions can be reached for the 3 biasing circuits? 3. Lastly – Build Figure 4 and determine the ratio (Gain) of Vout/Vin at 1KHz. Now vary the frequency of Vin to determine at what frequencies this ratio decreases to 0.707 of the value at 1KHz. 4. Use the Bode Plotter feature in MultiSim to verify your data of Part 3. Is the cut-off frequency the same as you measured in the lab? Base Bias: Parameter Calculated Value Simulated Value Measured Value VCE1 (high β) VCE2 (low β) n/a n/a |VCE1 – VCE2| 0 0 IC1 (high β) IC2 (low β) n/a n/a |IC1 – IC2| 0 0 Emitter Bias: Parameter Calculated Value Simulated Value Measured Value VCE1 (high β) VCE2 (low β) n/a n/a |VCE1 – VCE2| 0 0 IC1 (high β) IC2 (low β) n/a n/a |IC1 – IC2| 0 0 Voltage Divider Bias: Parameter Calculated Value Simulated Value Measured Value VCE1 (high β) VCE2 (low β) n/a n/a |VCE1 – VCE2| 0 0 IC1 (high β) IC2 (low β) n/a n/a |IC1 – IC2| 0 0 Laboratory Report: This lab is a semi-formal lab. Be sure to collect all data necessary to make observations and answer questions before you leave the lab. Also, you and your lab partner should discuss the results and outcomes prior to leaving. Take notes, fill in tables and include diagrams as needed. Your report should include: • Data Table • Beta Plot • MultiSim Frequency Response • Comparison of biasing schemes • Comparison of measurements vs. simulations and expectations.

info@checkyourstudy.com
Chapter 5 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, March 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Tactics Box 5.1 Drawing Force Vectors Learning Goal: To practice Tactics Box 5.1 Drawing Force Vectors. To visualize how forces are exerted on objects, we can use simple diagrams such as vectors. This Tactics Box illustrates the process of drawing a force vector by using the particle model, in which objects are treated as points. TACTICS BOX 5.1 Drawing force vectors Represent the object 1. as a particle. 2. Place the tail of the force vector on the particle. 3. Draw the force vector as an arrow pointing in the proper direction and with a length proportional to the size of the force. 4. Give the vector an appropriate label. The resulting diagram for a force exerted on an object is shown in the drawing. Note that the object is represented as a black dot. Part A A book lies on a table. A pushing force parallel to the table top and directed to the right is exerted on the book. Follow the steps above to draw the force vector . Use the black dot as the particle representing the book. F  F push F push Draw the vector starting at the black dot. The location and orientation of the vector will be graded. The length of the vector will not be graded. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Tactics Box 5.2 Identifying Forces Learning Goal: To practice Tactics Box 5.2 Identifying Forces. The first basic step in solving force and motion problems generally involves identifying all of the forces acting on an object. This tactics box provides a step-by-step method for identifying each force in a problem. TACTICS BOX 5.2 Identifying forces Identify the object of interest. This is the object whose motion 1. you wish to study. 2. Draw a picture of the situation. Show the object of interest and all other objects—such as ropes, springs, or surfaces—that touch it. 3. Draw a closed curve around the object. Only the object of interest is inside the curve; everything else is outside. 4. Locate every point on the boundary of this curve where other objects touch the object of interest. These are the points where contact forces are exerted on the object. Name and label each contact force acting on the object. There is at least one force at each point of contact; there may be more than one. When necessary, use subscripts to distinguish forces of the same type. 5. 6. Name and label each long-range force acting on the object. For now, the only long-range force is the gravitational force. Apply these steps to the following problem: A crate is pulled up a rough inclined wood board by a tow rope. Identify the forces on the crate. Part A Which of the following objects are of interest? Check all that apply. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Conceptual Questions on Newton’s 1st and 2nd Laws Learning Goal: To understand the meaning and the basic applications of Newton’s 1st and 2nd laws. In this problem, you are given a diagram representing the motion of an object–a motion diagram. The dots represent the object’s position at moments separated by equal intervals of time. The dots are connected by arrows representing the object’s average velocity during the corresponding time interval. Your goal is to use this motion diagram to determine the direction of the net force acting on the object. You will then determine which force diagrams and which situations may correspond to such a motion. crate earth rope wood board Part A What is the direction of the net force acting on the object at position A? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D upward downward to the left to the right The net force is zero. This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Understanding Newton’s Laws Part A An object cannot remain at rest unless which of the following holds? You did not open hints for this part. ANSWER: Part B If a block is moving to the left at a constant velocity, what can one conclude? You did not open hints for this part. ANSWER: The net force acting on it is zero. The net force acting on it is constant and nonzero. There are no forces at all acting on it. There is only one force acting on it. Part C A block of mass is acted upon by two forces: (directed to the left) and (directed to the right). What can you say about the block’s motion? You did not open hints for this part. ANSWER: Part D A massive block is being pulled along a horizontal frictionless surface by a constant horizontal force. The block must be __________. You did not open hints for this part. ANSWER: There is exactly one force applied to the block. The net force applied to the block is directed to the left. The net force applied to the block is zero. There must be no forces at all applied to the block. 2 kg 3 N 4 N It must be moving to the left. It must be moving to the right. It must be at rest. It could be moving to the left, moving to the right, or be instantaneously at rest. Part E Two forces, of magnitude and , are applied to an object. The relative direction of the forces is unknown. The net force acting on the object __________. Check all that apply. You did not open hints for this part. ANSWER: Tactics Box 5.3 Drawing a Free-Body Diagram Learning Goal: To practice Tactics Box 5.3 Drawing a Free-Body Diagram. A free-body diagram is a diagram that represents the object as a particle and shows all of the forces acting on the object. Learning how to draw such a diagram is a very important skill in solving physics problems. This tactics box explains the essential steps to construct a correct free-body diagram. TACTICS BOX 5.3 Drawing a free-body diagram Identify all forces acting on the object. This step was described 1. in Tactics Box 5.2. continuously changing direction moving at constant velocity moving with a constant nonzero acceleration moving with continuously increasing acceleration 4 N 10 N cannot have a magnitude equal to cannot have a magnitude equal to cannot have the same direction as the force with magnitude must have a magnitude greater than 5 N 10 N 10 N 10 N Draw a coordinate system. Use the axes defined in your pictorial representation. If those axes are tilted, for motion along an incline, then the axes of the free-body diagram should be similarly tilted. 2. Represent the object as a dot at the origin of the coordinate axes. This is 3. the particle model. 4. Draw vectors representing each of the identified forces. This was described in Tactics Box 5.1. Be sure to label each force vector. Draw and label the net force vector . Draw this vector beside the diagram, not on the particle. Or, if appropriate, write . Then, check that points in the same direction as the acceleration vector on your motion diagram. 5. Apply these steps to the following problem: Your physics book is sliding on the carpet. Draw a free-body diagram. Part A Which forces are acting on the book? Check all that apply. You did not open hints for this part. ANSWER: F  net F =  net 0 F  net a Part B Draw the most appropriate set of coordinate axes for this problem. The orientation of your vectors will be graded. ANSWER: gravity normal force drag static friction tension kinetic friction spring force Part C This question will be shown after you complete previous question(s). Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points.

Chapter 5 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, March 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Tactics Box 5.1 Drawing Force Vectors Learning Goal: To practice Tactics Box 5.1 Drawing Force Vectors. To visualize how forces are exerted on objects, we can use simple diagrams such as vectors. This Tactics Box illustrates the process of drawing a force vector by using the particle model, in which objects are treated as points. TACTICS BOX 5.1 Drawing force vectors Represent the object 1. as a particle. 2. Place the tail of the force vector on the particle. 3. Draw the force vector as an arrow pointing in the proper direction and with a length proportional to the size of the force. 4. Give the vector an appropriate label. The resulting diagram for a force exerted on an object is shown in the drawing. Note that the object is represented as a black dot. Part A A book lies on a table. A pushing force parallel to the table top and directed to the right is exerted on the book. Follow the steps above to draw the force vector . Use the black dot as the particle representing the book. F  F push F push Draw the vector starting at the black dot. The location and orientation of the vector will be graded. The length of the vector will not be graded. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Tactics Box 5.2 Identifying Forces Learning Goal: To practice Tactics Box 5.2 Identifying Forces. The first basic step in solving force and motion problems generally involves identifying all of the forces acting on an object. This tactics box provides a step-by-step method for identifying each force in a problem. TACTICS BOX 5.2 Identifying forces Identify the object of interest. This is the object whose motion 1. you wish to study. 2. Draw a picture of the situation. Show the object of interest and all other objects—such as ropes, springs, or surfaces—that touch it. 3. Draw a closed curve around the object. Only the object of interest is inside the curve; everything else is outside. 4. Locate every point on the boundary of this curve where other objects touch the object of interest. These are the points where contact forces are exerted on the object. Name and label each contact force acting on the object. There is at least one force at each point of contact; there may be more than one. When necessary, use subscripts to distinguish forces of the same type. 5. 6. Name and label each long-range force acting on the object. For now, the only long-range force is the gravitational force. Apply these steps to the following problem: A crate is pulled up a rough inclined wood board by a tow rope. Identify the forces on the crate. Part A Which of the following objects are of interest? Check all that apply. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Conceptual Questions on Newton’s 1st and 2nd Laws Learning Goal: To understand the meaning and the basic applications of Newton’s 1st and 2nd laws. In this problem, you are given a diagram representing the motion of an object–a motion diagram. The dots represent the object’s position at moments separated by equal intervals of time. The dots are connected by arrows representing the object’s average velocity during the corresponding time interval. Your goal is to use this motion diagram to determine the direction of the net force acting on the object. You will then determine which force diagrams and which situations may correspond to such a motion. crate earth rope wood board Part A What is the direction of the net force acting on the object at position A? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D upward downward to the left to the right The net force is zero. This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Understanding Newton’s Laws Part A An object cannot remain at rest unless which of the following holds? You did not open hints for this part. ANSWER: Part B If a block is moving to the left at a constant velocity, what can one conclude? You did not open hints for this part. ANSWER: The net force acting on it is zero. The net force acting on it is constant and nonzero. There are no forces at all acting on it. There is only one force acting on it. Part C A block of mass is acted upon by two forces: (directed to the left) and (directed to the right). What can you say about the block’s motion? You did not open hints for this part. ANSWER: Part D A massive block is being pulled along a horizontal frictionless surface by a constant horizontal force. The block must be __________. You did not open hints for this part. ANSWER: There is exactly one force applied to the block. The net force applied to the block is directed to the left. The net force applied to the block is zero. There must be no forces at all applied to the block. 2 kg 3 N 4 N It must be moving to the left. It must be moving to the right. It must be at rest. It could be moving to the left, moving to the right, or be instantaneously at rest. Part E Two forces, of magnitude and , are applied to an object. The relative direction of the forces is unknown. The net force acting on the object __________. Check all that apply. You did not open hints for this part. ANSWER: Tactics Box 5.3 Drawing a Free-Body Diagram Learning Goal: To practice Tactics Box 5.3 Drawing a Free-Body Diagram. A free-body diagram is a diagram that represents the object as a particle and shows all of the forces acting on the object. Learning how to draw such a diagram is a very important skill in solving physics problems. This tactics box explains the essential steps to construct a correct free-body diagram. TACTICS BOX 5.3 Drawing a free-body diagram Identify all forces acting on the object. This step was described 1. in Tactics Box 5.2. continuously changing direction moving at constant velocity moving with a constant nonzero acceleration moving with continuously increasing acceleration 4 N 10 N cannot have a magnitude equal to cannot have a magnitude equal to cannot have the same direction as the force with magnitude must have a magnitude greater than 5 N 10 N 10 N 10 N Draw a coordinate system. Use the axes defined in your pictorial representation. If those axes are tilted, for motion along an incline, then the axes of the free-body diagram should be similarly tilted. 2. Represent the object as a dot at the origin of the coordinate axes. This is 3. the particle model. 4. Draw vectors representing each of the identified forces. This was described in Tactics Box 5.1. Be sure to label each force vector. Draw and label the net force vector . Draw this vector beside the diagram, not on the particle. Or, if appropriate, write . Then, check that points in the same direction as the acceleration vector on your motion diagram. 5. Apply these steps to the following problem: Your physics book is sliding on the carpet. Draw a free-body diagram. Part A Which forces are acting on the book? Check all that apply. You did not open hints for this part. ANSWER: F  net F =  net 0 F  net a Part B Draw the most appropriate set of coordinate axes for this problem. The orientation of your vectors will be graded. ANSWER: gravity normal force drag static friction tension kinetic friction spring force Part C This question will be shown after you complete previous question(s). Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points.

please email info@checkyourstudy.com
Discuss the following questions and topics. Interact with at least two other students and do more than just agree with their comments. Provide expanded ideas or other informative comments related to their posts. What is the difference betweenqualitative and quantitative research? Given the topic you havechosen to study and assuming you were going to use a qualitative approach,which of the five designs (case, ethnography, phenomenological, grounded theoryor content analysis) would be best suited to answer your research questions?Explain your decision. Review the approachesdiscussed in your text for collecting quantitative data and determine which(sampling, observation, or interview) might be best suited for your study.Explain your decision. When conducting interviewswhy is it critical to develop specific interview questions? Is it useful to includescaled questions (e.g., Likert scale such as 1 to 5) as part of your structuredinterview questions? Why or why not? Should open-ended questionsbe included? Why or why not? What are useful data sourcesfor conducting historical research?

Discuss the following questions and topics. Interact with at least two other students and do more than just agree with their comments. Provide expanded ideas or other informative comments related to their posts. What is the difference betweenqualitative and quantitative research? Given the topic you havechosen to study and assuming you were going to use a qualitative approach,which of the five designs (case, ethnography, phenomenological, grounded theoryor content analysis) would be best suited to answer your research questions?Explain your decision. Review the approachesdiscussed in your text for collecting quantitative data and determine which(sampling, observation, or interview) might be best suited for your study.Explain your decision. When conducting interviewswhy is it critical to develop specific interview questions? Is it useful to includescaled questions (e.g., Likert scale such as 1 to 5) as part of your structuredinterview questions? Why or why not? Should open-ended questionsbe included? Why or why not? What are useful data sourcesfor conducting historical research?

info@checkyourstudy.com
Watch the videos, and then answer the questions below. http://www.youtube.com/watch?v=kt6SYhX_Ymo http://www.youtube.com/watch?v=ka3yTfmyjAw Building Justice Which of the following is true of the International Criminal Court (ICC)? A. It was the first court to try individuals for crimes against humanity. B. It was founded to prosecute Nazi war criminals. C. It is a permanent court with universal jurisdiction. D. It was created by a treaty that has been signed by all of the world’s nations. E. none of these options What distinguishes a “crime against humanity” from other kinds of crimes? A. Crimes against humanity involve government officials as perpetrators. B. Crimes against humanity target particular ethnic groups. C. Crimes against humanity are punishable by the death penalty. D. Crimes against humanity involve attacks on civilians. E. all of these options An important goal of the ICC is to eliminate “impunity” for crimes, which means eliminating which of the following? A. the ability of perpetrators to obtain the weapons they need to commit the crimes B. the expectation of perpetrators that they can commit crimes without being punished C. the expectation of perpetrators that they can evade arrest by national authorities D. the ability of perpetrators to get a court-appointed lawyer if they are arrested and tried E. the ability of perpetrators to cross national boundaries and escape extradition Supporting a Strong International Justice System Which of the following is NOT a part of the emerging international justice system? A. local courts B. national courts C. regional courts D. international Courts E. United Nations tribunals Which of the following represents one of the major challenges faced by the ICC? A. increasing awareness of its cause B. obtaining more funding from the United Nations C. securing greater state cooperation with its activities D. apprehending and prosecuting Germain Katanga E. getting the United States to join

Watch the videos, and then answer the questions below. http://www.youtube.com/watch?v=kt6SYhX_Ymo http://www.youtube.com/watch?v=ka3yTfmyjAw Building Justice Which of the following is true of the International Criminal Court (ICC)? A. It was the first court to try individuals for crimes against humanity. B. It was founded to prosecute Nazi war criminals. C. It is a permanent court with universal jurisdiction. D. It was created by a treaty that has been signed by all of the world’s nations. E. none of these options What distinguishes a “crime against humanity” from other kinds of crimes? A. Crimes against humanity involve government officials as perpetrators. B. Crimes against humanity target particular ethnic groups. C. Crimes against humanity are punishable by the death penalty. D. Crimes against humanity involve attacks on civilians. E. all of these options An important goal of the ICC is to eliminate “impunity” for crimes, which means eliminating which of the following? A. the ability of perpetrators to obtain the weapons they need to commit the crimes B. the expectation of perpetrators that they can commit crimes without being punished C. the expectation of perpetrators that they can evade arrest by national authorities D. the ability of perpetrators to get a court-appointed lawyer if they are arrested and tried E. the ability of perpetrators to cross national boundaries and escape extradition Supporting a Strong International Justice System Which of the following is NOT a part of the emerging international justice system? A. local courts B. national courts C. regional courts D. international Courts E. United Nations tribunals Which of the following represents one of the major challenges faced by the ICC? A. increasing awareness of its cause B. obtaining more funding from the United Nations C. securing greater state cooperation with its activities D. apprehending and prosecuting Germain Katanga E. getting the United States to join

Watch the videos, and then answer the questions below. http://www.youtube.com/watch?v=kt6SYhX_Ymo … Read More...