In case the body have to stay in lower temperature for extended time period (more than 1 hour), how does the body regulate its response?

In case the body have to stay in lower temperature for extended time period (more than 1 hour), how does the body regulate its response?

Arterioles transporting blood to external capillaries beneath the surface of … Read More...
Faculty of Science Technology and Engineering Department of Physics Senior Laboratory Faraday rotation AIM To show that optical activity is induced in a certain type of glass when it is in a magnetic field. To investigate the degree of rotation of linearly polarised light as a function of the applied magnetic field and hence determine a parameter which is characteristic of each material and known as Verdet’s constant. BACKGROUND INFORMATION A brief description of the properties and production of polarised light is given in the section labelled: Notes on polarisation. This should be read before proceeding with this experiment. Additional details may be found in the references listed at the end of this experiment. Whereas some materials, such as quartz, are naturally optically active, optical activity can be induced in others by the application of a magnetic field. For such materials, the angle through which the plane of polarisation of a linearly polarised beam is rotated () depends on the thickness of the sample (L), the strength of the magnetic field (B) and on the properties of the particular material. The latter is described by means of a parameter introduced by Verdet, which is wavelength dependent. Thus:  = V B L Lamp Polariser Solenoid Polariser Glass rod A Solenoid power supply Viewing mirror EXPERIMENTAL PROCEDURE The experimental arrangement is shown in the diagram. Unpolarised white light is produced by a hot filament and viewed using a mirror. • The light from the globe passes through two polarisers as well as the specially doped glass rod. Select one of the colour filters provided and place in the light path. Each of these filters transmits a relatively narrow band of wavelengths centred around a dominant wavelength as listed in the table. Filter No. Dominant Wavelength 98 4350 Å 50 4500 75 4900 58 5300 72 B 6060 92 6700 With the power supply for the coil switched off, (do not simply turn the potentiometer to zero: this still allows some current to flow) adjust one of the polarisers until minimum light is transmitted to the mirror. Minimum transmission can be determined visually. • Decide which polariser you will work with and do not alter the other one during the measurements. • The magnetic field is generated by a current in a solenoid (coil) placed around the glass rod. As the current in the coil is increased, the magnitude of the magnetic field will increase as shown on the calibration curve below. The degree of optical activity will also increase, resulting in some angle of rotation of the plane of polarisation. Hence you will need to rotate your chosen polariser to regain a minimum setting. 0 1 2 3 4 5 0.00 0.02 0.04 0.06 0.08 I (amps) B (tesla) Magnetic field (B) produced by current (I) in solenoid • Record the rotation angle () for coil currents of 0,1,2,3,4 and 5 amps. Avoid having the current in the coil switched on except when measurements are actually being taken as it can easily overheat. If the coil becomes too hot to touch, switch it off and wait for it to cool before proceeding. • Plot  as a function of B and, given that the length of the glass rod is 30 cm, determine Verdet’s constant for this material at the wavelength () in use. • Repeat the experiment for each of the wavelengths available using the filter set provided. • Calculate the logarithm for each V and  and tabulate the results. By plotting log V against log , determine the relationship between V and . [Hint: m log(x) = log (xm) and log(xy) = log(x) + log(y)]. • Calculate the errors involved in your determination of V. The uncertainty in a value of B may be taken as the uncertainty in reading the scale of the calibration curve) • The magnetic field direction can be reversed by reversing the direction of current flow in the coil. Describe the effect of this reversal and provide an explanation. Reference Optics Hecht.

Faculty of Science Technology and Engineering Department of Physics Senior Laboratory Faraday rotation AIM To show that optical activity is induced in a certain type of glass when it is in a magnetic field. To investigate the degree of rotation of linearly polarised light as a function of the applied magnetic field and hence determine a parameter which is characteristic of each material and known as Verdet’s constant. BACKGROUND INFORMATION A brief description of the properties and production of polarised light is given in the section labelled: Notes on polarisation. This should be read before proceeding with this experiment. Additional details may be found in the references listed at the end of this experiment. Whereas some materials, such as quartz, are naturally optically active, optical activity can be induced in others by the application of a magnetic field. For such materials, the angle through which the plane of polarisation of a linearly polarised beam is rotated () depends on the thickness of the sample (L), the strength of the magnetic field (B) and on the properties of the particular material. The latter is described by means of a parameter introduced by Verdet, which is wavelength dependent. Thus:  = V B L Lamp Polariser Solenoid Polariser Glass rod A Solenoid power supply Viewing mirror EXPERIMENTAL PROCEDURE The experimental arrangement is shown in the diagram. Unpolarised white light is produced by a hot filament and viewed using a mirror. • The light from the globe passes through two polarisers as well as the specially doped glass rod. Select one of the colour filters provided and place in the light path. Each of these filters transmits a relatively narrow band of wavelengths centred around a dominant wavelength as listed in the table. Filter No. Dominant Wavelength 98 4350 Å 50 4500 75 4900 58 5300 72 B 6060 92 6700 With the power supply for the coil switched off, (do not simply turn the potentiometer to zero: this still allows some current to flow) adjust one of the polarisers until minimum light is transmitted to the mirror. Minimum transmission can be determined visually. • Decide which polariser you will work with and do not alter the other one during the measurements. • The magnetic field is generated by a current in a solenoid (coil) placed around the glass rod. As the current in the coil is increased, the magnitude of the magnetic field will increase as shown on the calibration curve below. The degree of optical activity will also increase, resulting in some angle of rotation of the plane of polarisation. Hence you will need to rotate your chosen polariser to regain a minimum setting. 0 1 2 3 4 5 0.00 0.02 0.04 0.06 0.08 I (amps) B (tesla) Magnetic field (B) produced by current (I) in solenoid • Record the rotation angle () for coil currents of 0,1,2,3,4 and 5 amps. Avoid having the current in the coil switched on except when measurements are actually being taken as it can easily overheat. If the coil becomes too hot to touch, switch it off and wait for it to cool before proceeding. • Plot  as a function of B and, given that the length of the glass rod is 30 cm, determine Verdet’s constant for this material at the wavelength () in use. • Repeat the experiment for each of the wavelengths available using the filter set provided. • Calculate the logarithm for each V and  and tabulate the results. By plotting log V against log , determine the relationship between V and . [Hint: m log(x) = log (xm) and log(xy) = log(x) + log(y)]. • Calculate the errors involved in your determination of V. The uncertainty in a value of B may be taken as the uncertainty in reading the scale of the calibration curve) • The magnetic field direction can be reversed by reversing the direction of current flow in the coil. Describe the effect of this reversal and provide an explanation. Reference Optics Hecht.

Top of Form Abstract.     Faraday Effect or Faraday … Read More...
Name: Date: Quiz IV Vignette 1. Johnny has just come in from recess and he is thirsty. He asks to go to the water fountain, but his teacher tells him that first he has to complete his math worksheet, and then he can have a drink of water. 1. Given that Johnny is thirsty, do you think he will be motivated to complete his math worksheet? 2. Write the correct notation of the 4 term contingency used in this example. Define which piece from the example matches each part of the contingency. 3. What is the MO – and what kind of MO is this? 4. If reinforcement is used in this example – is it positive or negative? Vignette 2. You feel a headache coming on – you see the bottle of advil in your desk drawer. You take the advil. The headache goes away. 5. Write and define the 4 term contingency. 6. What is the MO – and what kind of MO is this? 7. If reinforcement is used in this example – is it positive or negative? —- 8. Define positive reinforcement and give an example. 9. Define negative reinforcement and give an example. Vignette 3. Every time Johnny is given a math worksheet to complete, he kicks, hits, and spits on the teacher. This typically results in Johnny being sent to the principal’s office. 10. How would you label and define this target behavior? 11. What is the probable function of this behavior? 12. What adaptive alternative would you consider teaching Johnny to replace this target behavior? Vignette 4. When Bobby is denied access (told he cannot have) to a preferred toy, he throws himself on the ground, begins screaming and hitting the floor with his fists. This behavioral episode can go on anywhere from 5 to 20 minutes. 13. How would you label and define this target behavior? 14. What is the probable function of this behavior? 15. What type of data collection would you use for this target behavior? — Vignette 5. Johnny knows that when his grandmother watches him, she will try to soothe him with delicious treats if he begins tantrumming. However, he has learned that his mother does NOT give him tasty treats if he engages in problem behavior. Using the 3 term contingency – describe this situation when Grandma is present. (Hint: Does his grandmother function as an SD or an S∆ for tantrumming behavior?) Using the 3 term contingency – describe this situation when his mother is present. (Hint: does his mother function as an SD or an S∆ for tantrum behavior?)

Name: Date: Quiz IV Vignette 1. Johnny has just come in from recess and he is thirsty. He asks to go to the water fountain, but his teacher tells him that first he has to complete his math worksheet, and then he can have a drink of water. 1. Given that Johnny is thirsty, do you think he will be motivated to complete his math worksheet? 2. Write the correct notation of the 4 term contingency used in this example. Define which piece from the example matches each part of the contingency. 3. What is the MO – and what kind of MO is this? 4. If reinforcement is used in this example – is it positive or negative? Vignette 2. You feel a headache coming on – you see the bottle of advil in your desk drawer. You take the advil. The headache goes away. 5. Write and define the 4 term contingency. 6. What is the MO – and what kind of MO is this? 7. If reinforcement is used in this example – is it positive or negative? —- 8. Define positive reinforcement and give an example. 9. Define negative reinforcement and give an example. Vignette 3. Every time Johnny is given a math worksheet to complete, he kicks, hits, and spits on the teacher. This typically results in Johnny being sent to the principal’s office. 10. How would you label and define this target behavior? 11. What is the probable function of this behavior? 12. What adaptive alternative would you consider teaching Johnny to replace this target behavior? Vignette 4. When Bobby is denied access (told he cannot have) to a preferred toy, he throws himself on the ground, begins screaming and hitting the floor with his fists. This behavioral episode can go on anywhere from 5 to 20 minutes. 13. How would you label and define this target behavior? 14. What is the probable function of this behavior? 15. What type of data collection would you use for this target behavior? — Vignette 5. Johnny knows that when his grandmother watches him, she will try to soothe him with delicious treats if he begins tantrumming. However, he has learned that his mother does NOT give him tasty treats if he engages in problem behavior. Using the 3 term contingency – describe this situation when Grandma is present. (Hint: Does his grandmother function as an SD or an S∆ for tantrumming behavior?) Using the 3 term contingency – describe this situation when his mother is present. (Hint: does his mother function as an SD or an S∆ for tantrum behavior?)

Name:                                                                                                  Date: Quiz IV   Vignette 1.   Johnny … Read More...
What is a décimas? Using the article in the reader on the décima as a reference, provide an explanation of what this is, and make mention of some of its structural characteristics

What is a décimas? Using the article in the reader on the décima as a reference, provide an explanation of what this is, and make mention of some of its structural characteristics

The term décimas is a term indication to a lone … Read More...
Chapter 15 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Fluid Pressure in a U-Tube A U-tube is filled with water, and the two arms are capped. The tube is cylindrical, and the right arm has twice the radius of the left arm. The caps have negligible mass, are watertight, and can freely slide up and down the tube. Part A A one-inch depth of sand is poured onto the cap on each arm. After the caps have moved (if necessary) to reestablish equilibrium, is the right cap higher, lower, or the same height as the left cap? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Pressure in the Ocean The pressure at 10 below the surface of the ocean is about 2.00×105 . Part A higher lower the same height m Pa Which of the following statements is true? You did not open hints for this part. ANSWER: Part B Now consider the pressure 20 below the surface of the ocean. Which of the following statements is true? You did not open hints for this part. ANSWER: Relating Pressure and Height in a Container Learning Goal: To understand the derivation of the law relating height and pressure in a container. The weight of a column of seawater 1 in cross section and 10 high is about 2.00×105 . The weight of a column of seawater 1 in cross section and 10 high plus the weight of a column of air with the same cross section extending up to the top of the atmosphere is about 2.00×105 . The weight of 1 of seawater at 10 below the surface of the ocean is about 2.00×105 . The density of seawater is about 2.00×105 times the density of air at sea level. m2 m N m2 m N m3 m N m The pressure is twice that at a depth of 10 . The pressure is the same as that at a depth of 10 . The pressure is equal to that at a depth of 10 plus the weight per 1 cross sectional area of a column of seawater 10 high. The pressure is equal to the weight per 1 cross sectional area of a column of seawater 20 high. m m m m2 m m2 m In this problem, you will derive the law relating pressure to height in a container by analyzing a particular system. A container of uniform cross-sectional area is filled with liquid of uniform density . Consider a thin horizontal layer of liquid (thickness ) at a height as measured from the bottom of the container. Let the pressure exerted upward on the bottom of the layer be and the pressure exerted downward on the top be . Assume throughout the problem that the system is in equilibrium (the container has not been recently shaken or moved, etc.). Part A What is , the magnitude of the force exerted upward on the bottom of the liquid? You did not open hints for this part. ANSWER: Part B What is , the magnitude of the force exerted downward on the top of the liquid? A  dy y p p + dp Fup Fup = Fdown You did not open hints for this part. ANSWER: Part C What is the weight of the thin layer of liquid? Express your answer in terms of quantities given in the problem introduction and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Part D Since the liquid is in equilibrium, the net force on the thin layer of liquid is zero. Complete the force equation for the sum of the vertical forces acting on the liquid layer described in the problem introduction. Express your answer in terms of quantities given in the problem introduction and taking upward forces to be positive. You did not open hints for this part. ANSWER: Fdown = wlayer g wlayer = Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Submerged Ball A ball of mass and volume is lowered on a string into a fluid of density . Assume that the object would sink to the bottom if it were not supported by the string. Part A  = = i Fy,i mb V f What is the tension in the string when the ball is fully submerged but not touching the bottom, as shown in the figure? Express your answer in terms of any or all of the given quantities and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Archimedes’ Principle Learning Goal: To understand the applications of Archimedes’ principle. Archimedes’ principle is a powerful tool for solving many problems involving equilibrium in fluids. It states the following: When a body is partially or completely submerged in a fluid (either a liquid or a gas), the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body. As a result of the upward Archimedes force (often called the buoyant force), some objects may float in a fluid, and all of them appear to weigh less. This is the familiar phenomenon of buoyancy. Quantitatively, the buoyant force can be found as , where is the force, is the density of the fluid, is the magnitude of the acceleration due to gravity, and is the volume of the displaced fluid. In this problem, you will be asked several qualitative questions that should help you develop a feel for Archimedes’ principle. An object is placed in a fluid and then released. Assume that the object either floats to the surface (settling so that the object is partly above and partly below the fluid surface) or sinks to the bottom. (Note that for Parts A through D, you should assume that the object has settled in equilibrium.) Part A Consider the following statement: The magnitude of the buoyant force is equal to the weight of fluid displaced by the object. Under what circumstances is this statement true? T g T = Fbuoyant = fluidgV Fbuoyant fluid g V You did not open hints for this part. ANSWER: Part B Consider the following statement: The magnitude of the buoyant force is equal to the weight of the amount of fluid that has the same total volume as the object. Under what circumstances is this statement true? You did not open hints for this part. ANSWER: Part C Consider the following statement: The magnitude of the buoyant force equals the weight of the object. Under what circumstances is this statement true? for every object submerged partially or completely in a fluid only for an object that floats only for an object that sinks for no object submerged in a fluid for an object that is partially submerged in a fluid only for an object that floats for an object completely submerged in a fluid for no object partially or completely submerged in a fluid You did not open hints for this part. ANSWER: Part D Consider the following statement: The magnitude of the buoyant force is less than the weight of the object. Under what circumstances is this statement true? ANSWER: Now apply what you know to some more complicated situations. Part E An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a denser liquid. What would you observe? You did not open hints for this part. ANSWER: for every object submerged partially or completely in a fluid for an object that floats only for an object that sinks for no object submerged in a fluid for every object submerged partially or completely in a fluid for an object that floats for an object that sinks for no object submerged in a fluid Part F An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a less dense liquid. What would you observe? You did not open hints for this part. ANSWER: Part G Two objects, T and B, have identical size and shape and have uniform density. They are carefully placed in a container filled with a liquid. Both objects float in equilibrium. Less of object T is submerged than of object B, which floats, fully submerged, closer to the bottom of the container. Which of the following statements is true? ANSWER: The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. Object T has a greater density than object B. Object B has a greater density than object T. Both objects have the same density. ± Buoyant Force Conceptual Question A rectangular wooden block of weight floats with exactly one-half of its volume below the waterline. Part A What is the buoyant force acting on the block? You did not open hints for this part. ANSWER: Part B W The buoyant force cannot be determined. 2W W 1 W 2 The density of water is 1.00 . What is the density of the block? You did not open hints for this part. ANSWER: Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). g/cm3 2.00 between 1.00 and 2.00 1.00 between 0.50 and 1.00 0.50 The density cannot be determined. g/cm3 g/cm3 g/cm3 g/cm3 g/cm3 Flow Velocity of Blood Conceptual Question Arteriosclerotic plaques forming on the inner walls of arteries can decrease the effective cross-sectional area of an artery. Even small changes in the effective area of an artery can lead to very large changes in the blood pressure in the artery and possibly to the collapse of the blood vessel. Imagine a healthy artery, with blood flow velocity of and mass per unit volume of . The kinetic energy per unit volume of blood is given by Imagine that plaque has narrowed an artery to one-fifth of its normal cross-sectional area (an 80% blockage). Part A Compared to normal blood flow velocity, , what is the velocity of blood as it passes through this blockage? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C v0 = 0.14 m/s  = 1050 kg/m3 K0 =  . 1 2 v20 v0 80v0 20v0 5v0 v0/5 This question will be shown after you complete previous question(s). For parts D – F imagine that plaque has grown to a 90% blockage. Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). ± Playing with a Water Hose Two children, Ferdinand and Isabella, are playing with a water hose on a sunny summer day. Isabella is holding the hose in her hand 1.0 meters above the ground and is trying to spray Ferdinand, who is standing 10.0 meters away. Part A Will Isabella be able to spray Ferdinand if the water is flowing out of the hose at a constant speed of 3.5 meters per second? Assume that the hose is pointed parallel to the ground and take the magnitude of the acceleration due to gravity to be 9.81 meters per second, per second. You did not open hints for this part. v0 g ANSWER: Part B This question will be shown after you complete previous question(s). Tactics Box 15.2 Finding Whether an Object Floats or Sinks Learning Goal: To practice Tactics Box 15.2 Finding whether an object floats or sinks. If you hold an object underwater and then release it, it can float to the surface, sink, or remain “hanging” in the water, depending on whether the fluid density is larger than, smaller than, or equal to the object’s average density . These conditions are summarized in this Tactics Box. Yes No f avg TACTICS BOX 15.2 Finding whether an object floats or sinks Object sinks Object floats Object has neutral buoyancy An object sinks if it weighs more than the fluid it displaces, that is, if its average density is greater than the density of the fluid: . An object floats on the surface if it weighs less than the fluid it displaces, that is, if its average density is less than the density of the fluid: . An object hangs motionless in the fluid if it weighs exactly the same as the fluid it displaces. It has neutral buoyancy if its average density equals the density of the fluid: . Part A Ice at 0.0 has a density of 917 . A 3.00 ice cube is gently released inside a small container filled with oil and is observed to be neutrally buoyant. What is the density of the oil, ? Express your answer in kilograms per meter cubed to three significant figures. ANSWER: Part B Once the ice cube melts, what happens to the liquid water that it produces? You did not open hints for this part. ANSWER: avg > f avg < f avg = f 'C kg/m3 cm3 oil oil = kg/m3 Part C What happens if some ethyl alcohol of density 790 is poured into the container after the ice cube has melted? ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The liquid water sinks to the bottom of the container. The liquid water rises to the surface and floats on top of the oil. The liquid water is in static equilibrium at the location where the ice cube was originally placed. kg/m3 A layer of ethyl alcohol forms between the oil and the water. The layer of ethyl alcohol forms at the bottom of the container. The layer of ethyl alcohol forms on the surface.

Chapter 15 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Fluid Pressure in a U-Tube A U-tube is filled with water, and the two arms are capped. The tube is cylindrical, and the right arm has twice the radius of the left arm. The caps have negligible mass, are watertight, and can freely slide up and down the tube. Part A A one-inch depth of sand is poured onto the cap on each arm. After the caps have moved (if necessary) to reestablish equilibrium, is the right cap higher, lower, or the same height as the left cap? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Pressure in the Ocean The pressure at 10 below the surface of the ocean is about 2.00×105 . Part A higher lower the same height m Pa Which of the following statements is true? You did not open hints for this part. ANSWER: Part B Now consider the pressure 20 below the surface of the ocean. Which of the following statements is true? You did not open hints for this part. ANSWER: Relating Pressure and Height in a Container Learning Goal: To understand the derivation of the law relating height and pressure in a container. The weight of a column of seawater 1 in cross section and 10 high is about 2.00×105 . The weight of a column of seawater 1 in cross section and 10 high plus the weight of a column of air with the same cross section extending up to the top of the atmosphere is about 2.00×105 . The weight of 1 of seawater at 10 below the surface of the ocean is about 2.00×105 . The density of seawater is about 2.00×105 times the density of air at sea level. m2 m N m2 m N m3 m N m The pressure is twice that at a depth of 10 . The pressure is the same as that at a depth of 10 . The pressure is equal to that at a depth of 10 plus the weight per 1 cross sectional area of a column of seawater 10 high. The pressure is equal to the weight per 1 cross sectional area of a column of seawater 20 high. m m m m2 m m2 m In this problem, you will derive the law relating pressure to height in a container by analyzing a particular system. A container of uniform cross-sectional area is filled with liquid of uniform density . Consider a thin horizontal layer of liquid (thickness ) at a height as measured from the bottom of the container. Let the pressure exerted upward on the bottom of the layer be and the pressure exerted downward on the top be . Assume throughout the problem that the system is in equilibrium (the container has not been recently shaken or moved, etc.). Part A What is , the magnitude of the force exerted upward on the bottom of the liquid? You did not open hints for this part. ANSWER: Part B What is , the magnitude of the force exerted downward on the top of the liquid? A  dy y p p + dp Fup Fup = Fdown You did not open hints for this part. ANSWER: Part C What is the weight of the thin layer of liquid? Express your answer in terms of quantities given in the problem introduction and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Part D Since the liquid is in equilibrium, the net force on the thin layer of liquid is zero. Complete the force equation for the sum of the vertical forces acting on the liquid layer described in the problem introduction. Express your answer in terms of quantities given in the problem introduction and taking upward forces to be positive. You did not open hints for this part. ANSWER: Fdown = wlayer g wlayer = Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Submerged Ball A ball of mass and volume is lowered on a string into a fluid of density . Assume that the object would sink to the bottom if it were not supported by the string. Part A  = = i Fy,i mb V f What is the tension in the string when the ball is fully submerged but not touching the bottom, as shown in the figure? Express your answer in terms of any or all of the given quantities and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Archimedes’ Principle Learning Goal: To understand the applications of Archimedes’ principle. Archimedes’ principle is a powerful tool for solving many problems involving equilibrium in fluids. It states the following: When a body is partially or completely submerged in a fluid (either a liquid or a gas), the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body. As a result of the upward Archimedes force (often called the buoyant force), some objects may float in a fluid, and all of them appear to weigh less. This is the familiar phenomenon of buoyancy. Quantitatively, the buoyant force can be found as , where is the force, is the density of the fluid, is the magnitude of the acceleration due to gravity, and is the volume of the displaced fluid. In this problem, you will be asked several qualitative questions that should help you develop a feel for Archimedes’ principle. An object is placed in a fluid and then released. Assume that the object either floats to the surface (settling so that the object is partly above and partly below the fluid surface) or sinks to the bottom. (Note that for Parts A through D, you should assume that the object has settled in equilibrium.) Part A Consider the following statement: The magnitude of the buoyant force is equal to the weight of fluid displaced by the object. Under what circumstances is this statement true? T g T = Fbuoyant = fluidgV Fbuoyant fluid g V You did not open hints for this part. ANSWER: Part B Consider the following statement: The magnitude of the buoyant force is equal to the weight of the amount of fluid that has the same total volume as the object. Under what circumstances is this statement true? You did not open hints for this part. ANSWER: Part C Consider the following statement: The magnitude of the buoyant force equals the weight of the object. Under what circumstances is this statement true? for every object submerged partially or completely in a fluid only for an object that floats only for an object that sinks for no object submerged in a fluid for an object that is partially submerged in a fluid only for an object that floats for an object completely submerged in a fluid for no object partially or completely submerged in a fluid You did not open hints for this part. ANSWER: Part D Consider the following statement: The magnitude of the buoyant force is less than the weight of the object. Under what circumstances is this statement true? ANSWER: Now apply what you know to some more complicated situations. Part E An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a denser liquid. What would you observe? You did not open hints for this part. ANSWER: for every object submerged partially or completely in a fluid for an object that floats only for an object that sinks for no object submerged in a fluid for every object submerged partially or completely in a fluid for an object that floats for an object that sinks for no object submerged in a fluid Part F An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a less dense liquid. What would you observe? You did not open hints for this part. ANSWER: Part G Two objects, T and B, have identical size and shape and have uniform density. They are carefully placed in a container filled with a liquid. Both objects float in equilibrium. Less of object T is submerged than of object B, which floats, fully submerged, closer to the bottom of the container. Which of the following statements is true? ANSWER: The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. Object T has a greater density than object B. Object B has a greater density than object T. Both objects have the same density. ± Buoyant Force Conceptual Question A rectangular wooden block of weight floats with exactly one-half of its volume below the waterline. Part A What is the buoyant force acting on the block? You did not open hints for this part. ANSWER: Part B W The buoyant force cannot be determined. 2W W 1 W 2 The density of water is 1.00 . What is the density of the block? You did not open hints for this part. ANSWER: Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). g/cm3 2.00 between 1.00 and 2.00 1.00 between 0.50 and 1.00 0.50 The density cannot be determined. g/cm3 g/cm3 g/cm3 g/cm3 g/cm3 Flow Velocity of Blood Conceptual Question Arteriosclerotic plaques forming on the inner walls of arteries can decrease the effective cross-sectional area of an artery. Even small changes in the effective area of an artery can lead to very large changes in the blood pressure in the artery and possibly to the collapse of the blood vessel. Imagine a healthy artery, with blood flow velocity of and mass per unit volume of . The kinetic energy per unit volume of blood is given by Imagine that plaque has narrowed an artery to one-fifth of its normal cross-sectional area (an 80% blockage). Part A Compared to normal blood flow velocity, , what is the velocity of blood as it passes through this blockage? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C v0 = 0.14 m/s  = 1050 kg/m3 K0 =  . 1 2 v20 v0 80v0 20v0 5v0 v0/5 This question will be shown after you complete previous question(s). For parts D – F imagine that plaque has grown to a 90% blockage. Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). ± Playing with a Water Hose Two children, Ferdinand and Isabella, are playing with a water hose on a sunny summer day. Isabella is holding the hose in her hand 1.0 meters above the ground and is trying to spray Ferdinand, who is standing 10.0 meters away. Part A Will Isabella be able to spray Ferdinand if the water is flowing out of the hose at a constant speed of 3.5 meters per second? Assume that the hose is pointed parallel to the ground and take the magnitude of the acceleration due to gravity to be 9.81 meters per second, per second. You did not open hints for this part. v0 g ANSWER: Part B This question will be shown after you complete previous question(s). Tactics Box 15.2 Finding Whether an Object Floats or Sinks Learning Goal: To practice Tactics Box 15.2 Finding whether an object floats or sinks. If you hold an object underwater and then release it, it can float to the surface, sink, or remain “hanging” in the water, depending on whether the fluid density is larger than, smaller than, or equal to the object’s average density . These conditions are summarized in this Tactics Box. Yes No f avg TACTICS BOX 15.2 Finding whether an object floats or sinks Object sinks Object floats Object has neutral buoyancy An object sinks if it weighs more than the fluid it displaces, that is, if its average density is greater than the density of the fluid: . An object floats on the surface if it weighs less than the fluid it displaces, that is, if its average density is less than the density of the fluid: . An object hangs motionless in the fluid if it weighs exactly the same as the fluid it displaces. It has neutral buoyancy if its average density equals the density of the fluid: . Part A Ice at 0.0 has a density of 917 . A 3.00 ice cube is gently released inside a small container filled with oil and is observed to be neutrally buoyant. What is the density of the oil, ? Express your answer in kilograms per meter cubed to three significant figures. ANSWER: Part B Once the ice cube melts, what happens to the liquid water that it produces? You did not open hints for this part. ANSWER: avg > f avg < f avg = f 'C kg/m3 cm3 oil oil = kg/m3 Part C What happens if some ethyl alcohol of density 790 is poured into the container after the ice cube has melted? ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The liquid water sinks to the bottom of the container. The liquid water rises to the surface and floats on top of the oil. The liquid water is in static equilibrium at the location where the ice cube was originally placed. kg/m3 A layer of ethyl alcohol forms between the oil and the water. The layer of ethyl alcohol forms at the bottom of the container. The layer of ethyl alcohol forms on the surface.

please email info@checkyourstudy.com Chapter 15 Practice Problems (Practice – no … Read More...
About Me Introduction – About me This webfolio provides you with a template for the construction of your portfolio for the module. Construct this portfolio as you go along and it will provide the content for the assignment . There are resources at the end of the portfolio to help you. You can also find some of the material on WOLF. If you are unsure of anything please ASK your tutor. You must attend classes to ensure that you can work on the exercises that will form part of this portfolio. The purpose of this section is to help your tutors to understand the context of your answers and your understanding of strategic issues. Welcome to (put your name here) webfolio. I am currently a student at the University of Wolverhampton Business School, studying (put your degree course in here). I have chosen to come on this particular course because (reasons for joining here). Write a short piece about yourself and what you have studied before

About Me Introduction – About me This webfolio provides you with a template for the construction of your portfolio for the module. Construct this portfolio as you go along and it will provide the content for the assignment . There are resources at the end of the portfolio to help you. You can also find some of the material on WOLF. If you are unsure of anything please ASK your tutor. You must attend classes to ensure that you can work on the exercises that will form part of this portfolio. The purpose of this section is to help your tutors to understand the context of your answers and your understanding of strategic issues. Welcome to (put your name here) webfolio. I am currently a student at the University of Wolverhampton Business School, studying (put your degree course in here). I have chosen to come on this particular course because (reasons for joining here). Write a short piece about yourself and what you have studied before

info@checkyourstudy.com About Me Introduction – About me This webfolio provides … Read More...
2. When Protagoras said “Man is the measure of all things,” why was this a different and new way of seeing the world? To what degree does contemporary US culture agree with Protagoras?

2. When Protagoras said “Man is the measure of all things,” why was this a different and new way of seeing the world? To what degree does contemporary US culture agree with Protagoras?

  2.    When Protagoras said “Man is the measure of … Read More...
Essay – Athlete’s high salaries. Should they be paid that amount or not?

Essay – Athlete’s high salaries. Should they be paid that amount or not?

Athlete’s high salaries: Should they be paid that amount or … Read More...
Problems Marking scheme 1. Let A be a nonzero square matrix. Is it possible that a positive integer k exists such that ?? = 0 ? For example, find ?3 for the matrix [ 0 1 2 0 0 1 0 0 0 ] A square matrix A is nilpotent of index k when ? ≠ 0 , ?2 ≠ 0 , … . . , ??−1 ≠ 0, ??? ?? = 0. In this task you will explore nilpotent matrices. 1. The matrix in the example given above is nilpotent. What is its index? ( 2 marks ) 2. Use a software program to determine which of the following matrices are nilpotent and find their indices ( 12 marks ) A. [ 0 1 0 0 ] B. [ 0 1 1 0 ] C. [ 0 0 1 0 ] D. [ 1 0 1 0 ] E. [ 0 0 1 0 0 0 0 0 0 ] F. [ 0 0 0 1 0 0 1 1 0 ] 3. Find 3×3 nilpotent matrices of indices 2 and 3 ( 2 marks ) 4. Find 4×4 nilpotent matrices of indices 2, 3, and 4 ( 2 marks ) 5. Find nilpotent matrix of index 5 ( 2 marks ) 6. Are nilpotent matrices invertible? prove your answer ( 3 marks ) 7. When A is nilpotent, what can you say about ?? ? prove your answer ( 3 marks ) 8. Show that if ? is nilpotent , then ? − ? is invertible ( 4 marks ) 30% 2. A radio transmitter circuit contains a resisitance of 2.0 Ω, a variable inductor of 100 − ? ℎ?????? and a voltage source of 4.0 ? . find the current ? in the circuit as a function of the time t for 0 ≤ ? ≤ 100? if the intial curent is zero. Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 3. An object falling under the influence of gravity has a variable accelertaion given by 32 − ? , where ? represents the velocity. If the object starts from rest, find an expression for the velocity in terms of the time. Also, find the limiting value of the velocity. Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 4. When the angular displacement ? of a pendulum is small ( less than 60), the pendulum moves with simple harmonic motion closely approximated by ?′′ + ? ? ? = 0 . Here , ?′ = ?? ?? and ? is the accelertaion due to gravity , and ? is the length of the pendulum. Find ? as a function of time ( in s ) if ? = 9.8 ?/?2, ? = 1.0 ? ? = 0.1 and ?? ?? = 0 when ? = 0 . sketch the cuve using any graphical tool. Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 5. Find the equation relating the charge and the time in a electric circuit with the following elements: ? = 0.200 ? , ? = 8.00 Ω , ? = 1.00 ?? , ? = 0. In this circuit , ? = 0 and ? = 0.500 ? when ? = 0 Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 6. A spring is stretched 1 m by ? 20 − ? Weight. The spring is stretched 0.5 m below the equilibrium position with the weight attached and the then released. If it is a medium that resists the motion with a force equal to 12?, where v is the velocity, sketch and find the displacement y of the weight as a function of the time. Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 7. A 20?? inductor, a 40.0 Ω resistor, a 50.0 ?? capacitor, and voltage source of 100 ?−100?are connected in series in an electric circuit. Find the charge on the capacitor as a function of time t , if ? = 0 and ? = 0 ?ℎ?? ? = 0 Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 10% quality and neatness and using Math equations in MS word. –

Problems Marking scheme 1. Let A be a nonzero square matrix. Is it possible that a positive integer k exists such that ?? = 0 ? For example, find ?3 for the matrix [ 0 1 2 0 0 1 0 0 0 ] A square matrix A is nilpotent of index k when ? ≠ 0 , ?2 ≠ 0 , … . . , ??−1 ≠ 0, ??? ?? = 0. In this task you will explore nilpotent matrices. 1. The matrix in the example given above is nilpotent. What is its index? ( 2 marks ) 2. Use a software program to determine which of the following matrices are nilpotent and find their indices ( 12 marks ) A. [ 0 1 0 0 ] B. [ 0 1 1 0 ] C. [ 0 0 1 0 ] D. [ 1 0 1 0 ] E. [ 0 0 1 0 0 0 0 0 0 ] F. [ 0 0 0 1 0 0 1 1 0 ] 3. Find 3×3 nilpotent matrices of indices 2 and 3 ( 2 marks ) 4. Find 4×4 nilpotent matrices of indices 2, 3, and 4 ( 2 marks ) 5. Find nilpotent matrix of index 5 ( 2 marks ) 6. Are nilpotent matrices invertible? prove your answer ( 3 marks ) 7. When A is nilpotent, what can you say about ?? ? prove your answer ( 3 marks ) 8. Show that if ? is nilpotent , then ? − ? is invertible ( 4 marks ) 30% 2. A radio transmitter circuit contains a resisitance of 2.0 Ω, a variable inductor of 100 − ? ℎ?????? and a voltage source of 4.0 ? . find the current ? in the circuit as a function of the time t for 0 ≤ ? ≤ 100? if the intial curent is zero. Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 3. An object falling under the influence of gravity has a variable accelertaion given by 32 − ? , where ? represents the velocity. If the object starts from rest, find an expression for the velocity in terms of the time. Also, find the limiting value of the velocity. Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 4. When the angular displacement ? of a pendulum is small ( less than 60), the pendulum moves with simple harmonic motion closely approximated by ?′′ + ? ? ? = 0 . Here , ?′ = ?? ?? and ? is the accelertaion due to gravity , and ? is the length of the pendulum. Find ? as a function of time ( in s ) if ? = 9.8 ?/?2, ? = 1.0 ? ? = 0.1 and ?? ?? = 0 when ? = 0 . sketch the cuve using any graphical tool. Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 5. Find the equation relating the charge and the time in a electric circuit with the following elements: ? = 0.200 ? , ? = 8.00 Ω , ? = 1.00 ?? , ? = 0. In this circuit , ? = 0 and ? = 0.500 ? when ? = 0 Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 6. A spring is stretched 1 m by ? 20 − ? Weight. The spring is stretched 0.5 m below the equilibrium position with the weight attached and the then released. If it is a medium that resists the motion with a force equal to 12?, where v is the velocity, sketch and find the displacement y of the weight as a function of the time. Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 7. A 20?? inductor, a 40.0 Ω resistor, a 50.0 ?? capacitor, and voltage source of 100 ?−100?are connected in series in an electric circuit. Find the charge on the capacitor as a function of time t , if ? = 0 and ? = 0 ?ℎ?? ? = 0 Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 10% quality and neatness and using Math equations in MS word. –

Problems Marking scheme 1. Let A be a nonzero square … Read More...