Question 1 1. The ________________________ presents the movement in cash and bank balances over a period. 1 points Question 2 1. Which of the following departments is not a support center? marketing telecommunications guest transportation human resources 1 points Question 3 1. The distinction between operating and nonoperating income relates to: Continuity of income. Primary activities of the reporting entity. Consistency of income stream. Reliability of measurements. 1 points Question 4 1. Change statements include a: Retained earnings statement, balance sheet, and cash flow statement. Balance sheet, cash flow statement, and income statement. Cash flow statement, income statement, and retained earnings statement. Retained earnings statement, balance sheet, and income statement. 1 points Question 5 1. Pro forma earnings: Could be considered management’s view of permanent earnings. Are needed for the correction of errors. Are standardized under generally accepted accounting principles Are useful to compare two different firms’ performance. 1 points Question 6 1. The purpose of the statement of retained earnings is to show: the lifetime earnings retained by the corporation. the lifetime cash flow. the lifetime sales. all of the above. 1 points Question 7 1. The study of an individual financial statement item over several accounting periods is called: Ratio analysis. Vertical analysis. Horizontal analysis. Time and motion analysis. 1 points Question 8 1. Which of the following is not an example of an internal user of a company’s financial statements? member of the board of directors department head stockholder top-level manager 1 points Question 9 1. The accounting principle that requires revenue to be reported when earned is the: Matching principle Revenue recognition principle Time period principle Accrual reporting principle Going-concern principle 1 points Question 10 1. Which of the following questions can not be answered by analyzing information presented on a monthly income statement? How profitable was the hospitality operation at the end of the month? How much was spent last month to market the operation’s services? How much cash was on hand at the end of the month? What was the cost of sales for the month? 1 points Question 11 1. The sources of hotel revenue might be: profits and sales. sales, interest income, and dividend income. net income. all of the above. 1 points Question 12 1. Vertical analysis is a tool to evaluate individual financial statement items or groups of items in terms of a specific base amount. True False 1 points Question 13 1. The following is a portion of a comparative analysis: This Year Change Cost of Sales $400,000 (30,000) The cost of sales last year was: $370,000. $430,000. $30,000. $60,000. 1 points Question 14 1. Since everyone knows what an income statement is, there is no need to put a heading on this report. True False 1 points Question 15 1. An analytical procedure in which each income statement amount is stated as a percentage of a base amount, in this case, net sales. 1 points Question 16 1. Groups outside the business who require accounting and financial information. This includes suppliers, bankers, stockholders, and investors. 1 points Question 17 1. Interpretation of data shown on a common-size income statement can be simplified by: zeroing out the income statement bookkeeping accounts. classifying dividends as a business expense. restating the percentages as a component of the sales dollar. redesigning the statement. 1 points Question 18 1. The following information is provided: Dividends paid this year $ 30,000 Dividends declared this year 40,000 Net income this year 100,000 Retained earnings, start of year 150,000 The retained earnings at the end of this year are: $180,000. $220,000. $210,000. $260,000. 1 points Question 19 1. Horizontal analysis is also known as: Liquidity analysis. Absolute analysis. Revenue analysis. Trend analysis. 1 points Question 20 1. At the end of Year 1, the income statement for the Roadside Inn showed net income at $50,000. At the end of Year 2, the income statement showed $100,000 in net income. A horizontal analysis of the income statements would show the relative difference between the two years as: $50,000. $20,000. 100%. 50%. 1 points Question 21 1. Financial statement analysis is the application of analytical tools to general-purpose financial statements and related data for making business decisions. True False 1 points Question 22 1. Following is a portion of an income statement: 20X8 20X7 Sales $180,000 $190,000 In a comparative analysis, the percentage change from 20X7 to 20X8 is: A 105% decrease. A 94.7% Decrease A 5.6% Decrease A 5.3% Decrease 1 points Question 23 1. A fiscal year consists of any twelve consecutive months. True False 1 points Question 24 1. Financial statements intended for internal users. These statements present detailed information on each responsibility area ant the hotel as a whole. 1 points Question 25 1. Financial statements are usually prepared at the end of each fiscal period. True False

Question 1 1. The ________________________ presents the movement in cash and bank balances over a period. 1 points Question 2 1. Which of the following departments is not a support center? marketing telecommunications guest transportation human resources 1 points Question 3 1. The distinction between operating and nonoperating income relates to: Continuity of income. Primary activities of the reporting entity. Consistency of income stream. Reliability of measurements. 1 points Question 4 1. Change statements include a: Retained earnings statement, balance sheet, and cash flow statement. Balance sheet, cash flow statement, and income statement. Cash flow statement, income statement, and retained earnings statement. Retained earnings statement, balance sheet, and income statement. 1 points Question 5 1. Pro forma earnings: Could be considered management’s view of permanent earnings. Are needed for the correction of errors. Are standardized under generally accepted accounting principles Are useful to compare two different firms’ performance. 1 points Question 6 1. The purpose of the statement of retained earnings is to show: the lifetime earnings retained by the corporation. the lifetime cash flow. the lifetime sales. all of the above. 1 points Question 7 1. The study of an individual financial statement item over several accounting periods is called: Ratio analysis. Vertical analysis. Horizontal analysis. Time and motion analysis. 1 points Question 8 1. Which of the following is not an example of an internal user of a company’s financial statements? member of the board of directors department head stockholder top-level manager 1 points Question 9 1. The accounting principle that requires revenue to be reported when earned is the: Matching principle Revenue recognition principle Time period principle Accrual reporting principle Going-concern principle 1 points Question 10 1. Which of the following questions can not be answered by analyzing information presented on a monthly income statement? How profitable was the hospitality operation at the end of the month? How much was spent last month to market the operation’s services? How much cash was on hand at the end of the month? What was the cost of sales for the month? 1 points Question 11 1. The sources of hotel revenue might be: profits and sales. sales, interest income, and dividend income. net income. all of the above. 1 points Question 12 1. Vertical analysis is a tool to evaluate individual financial statement items or groups of items in terms of a specific base amount. True False 1 points Question 13 1. The following is a portion of a comparative analysis: This Year Change Cost of Sales $400,000 (30,000) The cost of sales last year was: $370,000. $430,000. $30,000. $60,000. 1 points Question 14 1. Since everyone knows what an income statement is, there is no need to put a heading on this report. True False 1 points Question 15 1. An analytical procedure in which each income statement amount is stated as a percentage of a base amount, in this case, net sales. 1 points Question 16 1. Groups outside the business who require accounting and financial information. This includes suppliers, bankers, stockholders, and investors. 1 points Question 17 1. Interpretation of data shown on a common-size income statement can be simplified by: zeroing out the income statement bookkeeping accounts. classifying dividends as a business expense. restating the percentages as a component of the sales dollar. redesigning the statement. 1 points Question 18 1. The following information is provided: Dividends paid this year $ 30,000 Dividends declared this year 40,000 Net income this year 100,000 Retained earnings, start of year 150,000 The retained earnings at the end of this year are: $180,000. $220,000. $210,000. $260,000. 1 points Question 19 1. Horizontal analysis is also known as: Liquidity analysis. Absolute analysis. Revenue analysis. Trend analysis. 1 points Question 20 1. At the end of Year 1, the income statement for the Roadside Inn showed net income at $50,000. At the end of Year 2, the income statement showed $100,000 in net income. A horizontal analysis of the income statements would show the relative difference between the two years as: $50,000. $20,000. 100%. 50%. 1 points Question 21 1. Financial statement analysis is the application of analytical tools to general-purpose financial statements and related data for making business decisions. True False 1 points Question 22 1. Following is a portion of an income statement: 20X8 20X7 Sales $180,000 $190,000 In a comparative analysis, the percentage change from 20X7 to 20X8 is: A 105% decrease. A 94.7% Decrease A 5.6% Decrease A 5.3% Decrease 1 points Question 23 1. A fiscal year consists of any twelve consecutive months. True False 1 points Question 24 1. Financial statements intended for internal users. These statements present detailed information on each responsibility area ant the hotel as a whole. 1 points Question 25 1. Financial statements are usually prepared at the end of each fiscal period. True False

info@checkyourstudy.com Whatsapp +919911743277
Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Typesetting math: 100% Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Typesetting math: 100% Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Typesetting math: 100% Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Typesetting math: 100% Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms Typesetting math: 100% What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Typesetting math: 100% Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Typesetting math: 100% Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s Typesetting math: 100% ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s Typesetting math: 100% ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 Typesetting math: 100% block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Typesetting math: 100% Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Typesetting math: 100% Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Typesetting math: 100% Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a Typesetting math: 100% period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Typesetting math: 100% Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Typesetting math: 100% Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = s t = 0 s cm cm/s Typesetting math: 100% Incorrect; Try Again Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: 0 = g cm s Typesetting math: 100% Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm 0.628 s Typesetting math: 100% The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G Typesetting math: 100% This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? N/m cm s Typesetting math: 100% ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by m = 110 g vmax = 49 cms m L T Typesetting math: 10T0% L , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. ANSWER: T = 2 Lg −−  g T/2 T &2T 2T g/6 T/6 T/&6 &6T 6T Typesetting math: 100% Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. g ( s Typesetting math: 100% ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: L = 19 cm m lmoon = 0.35 m m g 1.0 MHz N amax = 6.6 μm Typesetting math: 100% Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 81.4%. You received 117.25 out of a possible total of 144 points. vmax = 41 ms

Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Typesetting math: 100% Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Typesetting math: 100% Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Typesetting math: 100% Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Typesetting math: 100% Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms Typesetting math: 100% What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Typesetting math: 100% Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Typesetting math: 100% Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s Typesetting math: 100% ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s Typesetting math: 100% ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 Typesetting math: 100% block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Typesetting math: 100% Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Typesetting math: 100% Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Typesetting math: 100% Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a Typesetting math: 100% period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Typesetting math: 100% Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Typesetting math: 100% Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = s t = 0 s cm cm/s Typesetting math: 100% Incorrect; Try Again Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: 0 = g cm s Typesetting math: 100% Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm 0.628 s Typesetting math: 100% The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G Typesetting math: 100% This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? N/m cm s Typesetting math: 100% ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by m = 110 g vmax = 49 cms m L T Typesetting math: 10T0% L , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. ANSWER: T = 2 Lg −−  g T/2 T &2T 2T g/6 T/6 T/&6 &6T 6T Typesetting math: 100% Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. g ( s Typesetting math: 100% ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: L = 19 cm m lmoon = 0.35 m m g 1.0 MHz N amax = 6.6 μm Typesetting math: 100% Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 81.4%. You received 117.25 out of a possible total of 144 points. vmax = 41 ms

info@checkyourstudy.com
MAE 318: System Dynamics and Control Dr. Panagiotis K. Artemiadis MAE 318: System Dynamics and Control Homework 4 Problem 1: (Points: 25) The circuit shown in Fig. 1 is excited by an impulse of 0.015V. Assuming the capacitor is initially discharged, obtain an analytic expression of vO (t), and make a Matlab program that plots the system response to the impulse. Figure 1 Problem 2: Extra Credit (Points: 25) A winding oscillator consists of two steel spheres on each end of a long slender rod, as shown in Fig. 2. The rod is hung on a thin wire that can be twisted many revolutions without breaking. The device will be wound up 4000 degrees. Make a Matlab script that computes the system response and determine how long will it take until the motion decays to a swing of only 10 degrees? Assume that the thin wire has a rotational spring constant of 2  10?4Nm/rad and that the viscous friction coecient for the sphere in air is 2  10?4Nms/rad. Each sphere has a mass of 1Kg. Figure 2: Winding oscillator. Problem 3: (Points: 25) Find the equivalent transfer function T (s) = C(s) R(s) for the system shown in Fig. 3. Arizona State University. Fall 2015. Class # 73024. MAE 318. Homework 4: Page 1 of 4 MAE 318: System Dynamics and Control Dr. Panagiotis K. Artemiadis Figure 3 Problem 4: (Points: 25) Reduce the block diagram shown in Fig. 4 to a single transfer function T (s) = C(s) R(s) . Figure 4 Problem 5: (Points: 25) Consider the rotational mechanical system shown in Fig. 5. Represent the system as a block diagram. Arizona State University. Fall 2015. Class # 73024. MAE 318. Homework 4: Page 2 of 4 MAE 318: System Dynamics and Control Dr. Panagiotis K. Artemiadis Figure 5 Problem 6: (Points: 25) During ascent the space shuttle is steered by commands generated by the computer’s guidance calcu- lations. These commands are in the form of vehicle attitude, attitude rates, and attitude accelerations obtained through measurements made by the vehicle’s inertial measuring unit, rate gyro assembly, and accelerometer assembly, respectively. The ascent digital autopilot uses the errors between the actual and commanded attitude, rates, and accelerations to gimbal the space shuttle main engines (called thrust vectoring) and the solid rocket boosters to a ect the desired vehicle attitude. The space shut- tle’s attitude control system employs the same method in the pitch, roll, and yaw control systems. A simpli ed model of the pitch control system is shown in Fig. 6.  a) Find the closed-loop transfer function relating the actual pitch to commanded pitch. Assume all other inputs are zero.  b) Find the closed-loop transfer function relating the actual pitch rate to commanded pitch rate. Assume all other inputs are zero.  c) Find the closed-loop transfer function relating the actual pitch acceleration to commanded pitch acceleration. Assume all other inputs are zero. Figure 6: Space shuttle pitch control system (simpli ed). Arizona State University. Fall 2015. Class # 73024. MAE 318. Homework 4: Page 3 of 4 MAE 318: System Dynamics and Control Dr. Panagiotis K. Artemiadis Problem 7: (Extra Credit Points: 25) Extenders are robot manipulators that extend (i.e. increase) the strength of the human arm in load- maneuvering tasks (see Fig. 7). The system is represented by the transfer function Y (s) U(s) = G(s) = 30 s2+4s+3 where U (s) is the force of the human hand applied to the robot manipulator, and Y (s) is the force of the robot manipulator applied to the load. Assuming that the force of the human hand that is applied is given by u (t) = 5 sin (!t), create a MATLAB code that will compute and plot the di erence in magnitude and phase between the applied human force and the force of the robot manipulator applied to the load, as a function of the frequency !. Use 100 values for ! in the range ! 2 [0:01; 100] rad s for your two plots. See Fig. 8 on how to de ne di erence in magnitude and phase between two signals. You need to include your code and the two resulted plots in your solution. Figure 7: Human extender. A B dt T: signal period magnitude difference phase difference B A Figure 8: Magnitude and phase di erence (deg) between two sinusoidal signals.

MAE 318: System Dynamics and Control Dr. Panagiotis K. Artemiadis MAE 318: System Dynamics and Control Homework 4 Problem 1: (Points: 25) The circuit shown in Fig. 1 is excited by an impulse of 0.015V. Assuming the capacitor is initially discharged, obtain an analytic expression of vO (t), and make a Matlab program that plots the system response to the impulse. Figure 1 Problem 2: Extra Credit (Points: 25) A winding oscillator consists of two steel spheres on each end of a long slender rod, as shown in Fig. 2. The rod is hung on a thin wire that can be twisted many revolutions without breaking. The device will be wound up 4000 degrees. Make a Matlab script that computes the system response and determine how long will it take until the motion decays to a swing of only 10 degrees? Assume that the thin wire has a rotational spring constant of 2  10?4Nm/rad and that the viscous friction coecient for the sphere in air is 2  10?4Nms/rad. Each sphere has a mass of 1Kg. Figure 2: Winding oscillator. Problem 3: (Points: 25) Find the equivalent transfer function T (s) = C(s) R(s) for the system shown in Fig. 3. Arizona State University. Fall 2015. Class # 73024. MAE 318. Homework 4: Page 1 of 4 MAE 318: System Dynamics and Control Dr. Panagiotis K. Artemiadis Figure 3 Problem 4: (Points: 25) Reduce the block diagram shown in Fig. 4 to a single transfer function T (s) = C(s) R(s) . Figure 4 Problem 5: (Points: 25) Consider the rotational mechanical system shown in Fig. 5. Represent the system as a block diagram. Arizona State University. Fall 2015. Class # 73024. MAE 318. Homework 4: Page 2 of 4 MAE 318: System Dynamics and Control Dr. Panagiotis K. Artemiadis Figure 5 Problem 6: (Points: 25) During ascent the space shuttle is steered by commands generated by the computer’s guidance calcu- lations. These commands are in the form of vehicle attitude, attitude rates, and attitude accelerations obtained through measurements made by the vehicle’s inertial measuring unit, rate gyro assembly, and accelerometer assembly, respectively. The ascent digital autopilot uses the errors between the actual and commanded attitude, rates, and accelerations to gimbal the space shuttle main engines (called thrust vectoring) and the solid rocket boosters to a ect the desired vehicle attitude. The space shut- tle’s attitude control system employs the same method in the pitch, roll, and yaw control systems. A simpli ed model of the pitch control system is shown in Fig. 6.  a) Find the closed-loop transfer function relating the actual pitch to commanded pitch. Assume all other inputs are zero.  b) Find the closed-loop transfer function relating the actual pitch rate to commanded pitch rate. Assume all other inputs are zero.  c) Find the closed-loop transfer function relating the actual pitch acceleration to commanded pitch acceleration. Assume all other inputs are zero. Figure 6: Space shuttle pitch control system (simpli ed). Arizona State University. Fall 2015. Class # 73024. MAE 318. Homework 4: Page 3 of 4 MAE 318: System Dynamics and Control Dr. Panagiotis K. Artemiadis Problem 7: (Extra Credit Points: 25) Extenders are robot manipulators that extend (i.e. increase) the strength of the human arm in load- maneuvering tasks (see Fig. 7). The system is represented by the transfer function Y (s) U(s) = G(s) = 30 s2+4s+3 where U (s) is the force of the human hand applied to the robot manipulator, and Y (s) is the force of the robot manipulator applied to the load. Assuming that the force of the human hand that is applied is given by u (t) = 5 sin (!t), create a MATLAB code that will compute and plot the di erence in magnitude and phase between the applied human force and the force of the robot manipulator applied to the load, as a function of the frequency !. Use 100 values for ! in the range ! 2 [0:01; 100] rad s for your two plots. See Fig. 8 on how to de ne di erence in magnitude and phase between two signals. You need to include your code and the two resulted plots in your solution. Figure 7: Human extender. A B dt T: signal period magnitude difference phase difference B A Figure 8: Magnitude and phase di erence (deg) between two sinusoidal signals.

info@checkyourstudy.com
Watch this video and answer the multi choices: https://www.youtube.com/watch?v=D4lB4SowAQA PART 1 _______1. Sociologists obtained their knowledge of human behavior through _______, which is this process of systematically collecting information for the purpose of testing an existing theory or generating a new one. a. Common sense ideas b. Research c. Myths d. scientific laws _______2. With ____Research, the goal is scientific objectivity, and the focus is on data that can be measured numerically a. qualitative b. observational c. c. quantitative d. d. explanatory _______3. With _______research, interpretative description (words) rather than statistics (numbers) are used to analyze underlying meaning and patterns of social relationships. a. qualitative b. observational c. quantitative d. explanatory _______4. Researchers in one study systematically analyzed the contents of the notes of suicide victims to determine recurring themes, such as feeling of despair or failure. They hoped to determine if any patterns could be found that would help in understating why people might kill themselves. This is an example of __________. a. Qualitative research b. Explanatory research c. Quantitative research d. Descriptive research ______5. the first step in the research process is to: a. select and define the research problem b. review previous research. c. develop a research design d. formulate the hypothesis ______6. A_____sample is a selection from a larger population and has the essential characteristics of the total population. a. selective b. random c. representative d. longitudinal _______7. _________is the extent to which a study or research instrument accurately measures what it is supposed to measure;_________is the extent to which a study or research instrument yields consistent results. a. Validity; replication b. Replication; validity c. Validity; reliability d. Reliability; validity _______8. Researchers who use existing material and analyze data that originally was collected by others are engaged in: a. unethical conduct b. primary analysis. c. secondary analysis d. survey analysis _______9. In an experiment, the subjects in the control group a. are exposed to the independent variable. b. are not exposed to the independent variable. c. are exposed to the dependent variable. d. are not exposed to the dependent variable. _______10. A tentative statement that predicts the relationship between variable is called a. a hypothesis b. a research model. c. a probability sample. d. a generalization. ______11. John wants to test this idea: “people who attend church regularly are less likely to express prejudice toward other races than people who do not attend church regularly.’ This idea is John’s a. hypothesis. b. research model. c. conclusion. d. operational definition _______12. In a research project, which of the following steps would come after the other three? a. choosing a research design b. reviewing the literature c. formulating a hypothesis d. collecting the data ________13. The variable hypothesized to cause or influence another is called the a. dependent variable. b. hypothetical variable c. correlation variable d. independent variable ________14. An explanation of an abstract concept that is specific enough to allow a research to measure the concept is a a. Hypothesis b. correlation. c. operatonal definition. d. variable _____15. Observation, ethnography, and case studies are examples of: a. survey research b. experiments. c. Secondary analysis of existing data. d. Field research. ______16. Theory and research are interrelated because a. theory always precedes research. b. research always precedes theory c. both put limits on each other. d. they are parts of a constant cycle. ______17. A dependent variable is one that a. always occurs first. b. is influenced by another variable. c. Causes another variable to change. d. is the most important ______18. In a study designed to test the relationship between gender and voting behavior, the independent variable would be a. the age of the candidates b. voting behavior. c. The political party of the candidates. d. Gender ______19. Differences in age, sex, race, and social class are treated as ____________in sociological research. a. variables b. references c. causes d. controls ______20. Researchers in agriculture decided to test the effects of a new fertilizer on crop growth. In this study, crop growth is the a. independent variable b. dependent variable c. control variable d. correlation e. _____21. The ______is appropriate for studying the relationships among variables under carefully controlled conditions. a. experiment b. survey c. observational study d. in-depth study _____22. In every experiment, some subjects are exposed to an independent variable, and are then watched closely for their reactions. These subjects are known as the a. reference group b. experimental group c. control group d. survey group. ______23. A usual research method for learning the attitudes of a population would be a. an experiment. b. A survey. c. An observational study. d. Content analysis ______24. In survey research, the total group of people the researcher is interested in is called a. the population b. the sample, c. the control group d. the random sample ______25. In the experiment method, the subjects who are exposed to all the experimental conditions except the independent variable are referred to as the_________________group. a. peer b. alternate c. control d. experimental ______26. A__________Sample is one in which every member of the population in The population has an equal chance of being selected. a. defined b. random c. purposive d. convenience ______27. A sociologist is following the research model outlined in the text. After reviewing the literature, the next step will be to a. find a suitable subject b. formulate a hypothesis c. collect the data. d. Choose a research design. ______28. Sociologists use two approaches when answering important questions. a. Explanatory and descriptive Approaches b. Direct and systematic Approaches c. Normative and systematic Approaches d. Normative and Empirical Approaches ______29. Sociologists use types of empirical studies a. Research and Theoretical Studies b. Descriptive and Explanatory Studies c. Hypothesis and Correlations Studies d. Longitudinal and Cross-sectional Studies ______30. The deductive approach begin with the a. Collecting data b. Theory and uses research to test the theory. c. Hypothesis d. Observation ______31. The inductive approach begin with a a. Theory b. Data Collection c. Reviewing the Literature d. The Problem State ______32. Quantitative Research deals with a. Words b. Numbers c. Interpretive descriptive d. Use number to analyze underlying meanings and patterns of social relationships. ______33. ________is the study of social life in its natural setting: observing and interviewing people where they live, work, and play. a. The survey b. Secondary analysis c. Field research d. The experiment ______34. ________refers to the process of collecting data while being part of the activities of the group that the researcher is studying a. The experiment b. Survey research c. Participant observation d. Secondary analysis _______35. A/an________is a detailed study of the life and activities of a group of people by researchers who may live with that group over a period of years. a. Correlational study b. ethnography c. experiment d. content analysis _______36. A/an _________is a carefully designed situation in which the researcher studies the impact of certain variables on subjects’ attitudes or behavior. a. case study b. correlational study c. experiment d. Participant observation _______37. In an experiment, the_______contains the subjects who are exposed to an independent variable to study its effect on them. a. Experiment group b. Dependent group c. Control group d. Independent group _______38. In an experiment, the_________contains the subjects who are not exposed to the independent variable. a. Experimental group b. Independent group c. Dependent group d. Control group _______39. ________is the extent to which a study or research instrument accurately measures what it is supposed to measure a. Validity b. Reliability c. Predictability d. Variability ______40. ________is the extent to which a study or research instrument yields consistent results when applied to different individual at one time or to same individuals over time. a. Validity b. Reliability c. Predictability d. Variability TRUE/FALSE ______41. In social science research, individuals are the most typical units of analysis. ______42. With qualitative research, statistics are used to analyze patterns of social relationship. ______43. Reliability is when a study gives consistent results to different research over time.

Watch this video and answer the multi choices: https://www.youtube.com/watch?v=D4lB4SowAQA PART 1 _______1. Sociologists obtained their knowledge of human behavior through _______, which is this process of systematically collecting information for the purpose of testing an existing theory or generating a new one. a. Common sense ideas b. Research c. Myths d. scientific laws _______2. With ____Research, the goal is scientific objectivity, and the focus is on data that can be measured numerically a. qualitative b. observational c. c. quantitative d. d. explanatory _______3. With _______research, interpretative description (words) rather than statistics (numbers) are used to analyze underlying meaning and patterns of social relationships. a. qualitative b. observational c. quantitative d. explanatory _______4. Researchers in one study systematically analyzed the contents of the notes of suicide victims to determine recurring themes, such as feeling of despair or failure. They hoped to determine if any patterns could be found that would help in understating why people might kill themselves. This is an example of __________. a. Qualitative research b. Explanatory research c. Quantitative research d. Descriptive research ______5. the first step in the research process is to: a. select and define the research problem b. review previous research. c. develop a research design d. formulate the hypothesis ______6. A_____sample is a selection from a larger population and has the essential characteristics of the total population. a. selective b. random c. representative d. longitudinal _______7. _________is the extent to which a study or research instrument accurately measures what it is supposed to measure;_________is the extent to which a study or research instrument yields consistent results. a. Validity; replication b. Replication; validity c. Validity; reliability d. Reliability; validity _______8. Researchers who use existing material and analyze data that originally was collected by others are engaged in: a. unethical conduct b. primary analysis. c. secondary analysis d. survey analysis _______9. In an experiment, the subjects in the control group a. are exposed to the independent variable. b. are not exposed to the independent variable. c. are exposed to the dependent variable. d. are not exposed to the dependent variable. _______10. A tentative statement that predicts the relationship between variable is called a. a hypothesis b. a research model. c. a probability sample. d. a generalization. ______11. John wants to test this idea: “people who attend church regularly are less likely to express prejudice toward other races than people who do not attend church regularly.’ This idea is John’s a. hypothesis. b. research model. c. conclusion. d. operational definition _______12. In a research project, which of the following steps would come after the other three? a. choosing a research design b. reviewing the literature c. formulating a hypothesis d. collecting the data ________13. The variable hypothesized to cause or influence another is called the a. dependent variable. b. hypothetical variable c. correlation variable d. independent variable ________14. An explanation of an abstract concept that is specific enough to allow a research to measure the concept is a a. Hypothesis b. correlation. c. operatonal definition. d. variable _____15. Observation, ethnography, and case studies are examples of: a. survey research b. experiments. c. Secondary analysis of existing data. d. Field research. ______16. Theory and research are interrelated because a. theory always precedes research. b. research always precedes theory c. both put limits on each other. d. they are parts of a constant cycle. ______17. A dependent variable is one that a. always occurs first. b. is influenced by another variable. c. Causes another variable to change. d. is the most important ______18. In a study designed to test the relationship between gender and voting behavior, the independent variable would be a. the age of the candidates b. voting behavior. c. The political party of the candidates. d. Gender ______19. Differences in age, sex, race, and social class are treated as ____________in sociological research. a. variables b. references c. causes d. controls ______20. Researchers in agriculture decided to test the effects of a new fertilizer on crop growth. In this study, crop growth is the a. independent variable b. dependent variable c. control variable d. correlation e. _____21. The ______is appropriate for studying the relationships among variables under carefully controlled conditions. a. experiment b. survey c. observational study d. in-depth study _____22. In every experiment, some subjects are exposed to an independent variable, and are then watched closely for their reactions. These subjects are known as the a. reference group b. experimental group c. control group d. survey group. ______23. A usual research method for learning the attitudes of a population would be a. an experiment. b. A survey. c. An observational study. d. Content analysis ______24. In survey research, the total group of people the researcher is interested in is called a. the population b. the sample, c. the control group d. the random sample ______25. In the experiment method, the subjects who are exposed to all the experimental conditions except the independent variable are referred to as the_________________group. a. peer b. alternate c. control d. experimental ______26. A__________Sample is one in which every member of the population in The population has an equal chance of being selected. a. defined b. random c. purposive d. convenience ______27. A sociologist is following the research model outlined in the text. After reviewing the literature, the next step will be to a. find a suitable subject b. formulate a hypothesis c. collect the data. d. Choose a research design. ______28. Sociologists use two approaches when answering important questions. a. Explanatory and descriptive Approaches b. Direct and systematic Approaches c. Normative and systematic Approaches d. Normative and Empirical Approaches ______29. Sociologists use types of empirical studies a. Research and Theoretical Studies b. Descriptive and Explanatory Studies c. Hypothesis and Correlations Studies d. Longitudinal and Cross-sectional Studies ______30. The deductive approach begin with the a. Collecting data b. Theory and uses research to test the theory. c. Hypothesis d. Observation ______31. The inductive approach begin with a a. Theory b. Data Collection c. Reviewing the Literature d. The Problem State ______32. Quantitative Research deals with a. Words b. Numbers c. Interpretive descriptive d. Use number to analyze underlying meanings and patterns of social relationships. ______33. ________is the study of social life in its natural setting: observing and interviewing people where they live, work, and play. a. The survey b. Secondary analysis c. Field research d. The experiment ______34. ________refers to the process of collecting data while being part of the activities of the group that the researcher is studying a. The experiment b. Survey research c. Participant observation d. Secondary analysis _______35. A/an________is a detailed study of the life and activities of a group of people by researchers who may live with that group over a period of years. a. Correlational study b. ethnography c. experiment d. content analysis _______36. A/an _________is a carefully designed situation in which the researcher studies the impact of certain variables on subjects’ attitudes or behavior. a. case study b. correlational study c. experiment d. Participant observation _______37. In an experiment, the_______contains the subjects who are exposed to an independent variable to study its effect on them. a. Experiment group b. Dependent group c. Control group d. Independent group _______38. In an experiment, the_________contains the subjects who are not exposed to the independent variable. a. Experimental group b. Independent group c. Dependent group d. Control group _______39. ________is the extent to which a study or research instrument accurately measures what it is supposed to measure a. Validity b. Reliability c. Predictability d. Variability ______40. ________is the extent to which a study or research instrument yields consistent results when applied to different individual at one time or to same individuals over time. a. Validity b. Reliability c. Predictability d. Variability TRUE/FALSE ______41. In social science research, individuals are the most typical units of analysis. ______42. With qualitative research, statistics are used to analyze patterns of social relationship. ______43. Reliability is when a study gives consistent results to different research over time.

info@checkyourstudy.com Watch this video and answer the multi choices:  https://www.youtube.com/watch?v=D4lB4SowAQA   … Read More...
This homework requires that you read Chapter I (The Period) of the novel “A Tale of Two Cities” by Charles Dickens. You can read the text at http://www.gutenberg.org/cache/epub/98/pg98.txt. You do not need to consult the Internet for this homework. Actually, I suggest that you don’t. I just want you to give me a rationale of your own understanding about some of the statements that appear in Chapter I; I want you to answer – and justify – if the statements are contradictory or not. I do not need more than 10 lines for each answer. You will not get an immediate grade although I will post a summary of some your responses. I will use this homework at the very end of the semester to help you in case you are “sitting on the fence.” You may have to read Chapter I (about 60 lines to better answer the questions) completely and review your class notes.1 1) “It was the best of times, it was the worst of times.” 2) “We had everything before us, we had nothing before us.”

This homework requires that you read Chapter I (The Period) of the novel “A Tale of Two Cities” by Charles Dickens. You can read the text at http://www.gutenberg.org/cache/epub/98/pg98.txt. You do not need to consult the Internet for this homework. Actually, I suggest that you don’t. I just want you to give me a rationale of your own understanding about some of the statements that appear in Chapter I; I want you to answer – and justify – if the statements are contradictory or not. I do not need more than 10 lines for each answer. You will not get an immediate grade although I will post a summary of some your responses. I will use this homework at the very end of the semester to help you in case you are “sitting on the fence.” You may have to read Chapter I (about 60 lines to better answer the questions) completely and review your class notes.1 1) “It was the best of times, it was the worst of times.” 2) “We had everything before us, we had nothing before us.”

info@checkyourstudy.com
NAME: ARTIFACT: Describe your artifact. Why do you think it would work well for this project? _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ ASSIGNMENT CRITERIA Please answer “yes” or “no” to the following questions. Is your artifact something that was made by people? ___yes ___no Is your artifact specific? (i.e., not a broad concept) ___yes ___no Can you point to your artifact? (i.e., not an abstract idea) ___yes ___no Does your artifact contain enough material to analyze? ___yes ___no Does your artifact relate to the course theme? ___yes ___no Did you bring your artifact to class today? ___yes ___no If you answered no, why not? _________________________________________ REVIEW Take a moment to quickly review the fundamental moves of analysis with your artifact. Do you notice patterns of frequency? ___yes ___no Do you notice patterns of contrast? ___yes ___no Do you notice anomalies? ___yes ___no Do you notice intensity or specific moments of intensity? ___yes ___no Record notes from this exercise in the space provided. What patterns, anomalies, and moments of intensity have you identified that you’d like to keep in mind moving forward? _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ WILL IT WORK? Talk over your responses with a partner before recording an answer to this question. If you or your partner answered “no” to half or more than half of these questions, you may want to reconsider the artifact you have chosen to analyze. Will your artifact work for this project? ___yes ___no FINAL STEPS If you have determined—yes—your artifact will work for this project, record any notes you’d like to save from this exercise in your class notebook and hand this checklist in to your instructor. If you have determined—no—your artifact will not work for this project, take a few minutes to brainstorm other potential artifacts that better fit the assignment criteria and lend themselves to analysis (at least 3). Record your ideas in the space provided and in your class notebook, and hand this checklist in to your instructor. _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ If you have determined—I don’t know—or if you’re not sure if your artifact will work for this project, take a few minutes to write down concerns and questions this exercised has raised. Record them in the space provided and in your class notebook, and hand this checklist in to your instructor. _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ That’s it, you’re done! Expect an email in response to this exercise before the next class period.

NAME: ARTIFACT: Describe your artifact. Why do you think it would work well for this project? _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ ASSIGNMENT CRITERIA Please answer “yes” or “no” to the following questions. Is your artifact something that was made by people? ___yes ___no Is your artifact specific? (i.e., not a broad concept) ___yes ___no Can you point to your artifact? (i.e., not an abstract idea) ___yes ___no Does your artifact contain enough material to analyze? ___yes ___no Does your artifact relate to the course theme? ___yes ___no Did you bring your artifact to class today? ___yes ___no If you answered no, why not? _________________________________________ REVIEW Take a moment to quickly review the fundamental moves of analysis with your artifact. Do you notice patterns of frequency? ___yes ___no Do you notice patterns of contrast? ___yes ___no Do you notice anomalies? ___yes ___no Do you notice intensity or specific moments of intensity? ___yes ___no Record notes from this exercise in the space provided. What patterns, anomalies, and moments of intensity have you identified that you’d like to keep in mind moving forward? _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ WILL IT WORK? Talk over your responses with a partner before recording an answer to this question. If you or your partner answered “no” to half or more than half of these questions, you may want to reconsider the artifact you have chosen to analyze. Will your artifact work for this project? ___yes ___no FINAL STEPS If you have determined—yes—your artifact will work for this project, record any notes you’d like to save from this exercise in your class notebook and hand this checklist in to your instructor. If you have determined—no—your artifact will not work for this project, take a few minutes to brainstorm other potential artifacts that better fit the assignment criteria and lend themselves to analysis (at least 3). Record your ideas in the space provided and in your class notebook, and hand this checklist in to your instructor. _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ If you have determined—I don’t know—or if you’re not sure if your artifact will work for this project, take a few minutes to write down concerns and questions this exercised has raised. Record them in the space provided and in your class notebook, and hand this checklist in to your instructor. _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ That’s it, you’re done! Expect an email in response to this exercise before the next class period.

An air-track glider attached to a spring oscillates with a period of 1:50 s. At t = 0 the glider is 5:10 cm left of the equilibrium position and moving to the right at 37:0 cm s?1. a) What is the phase constant? b) What is the phase at t = 0:5 s?

An air-track glider attached to a spring oscillates with a period of 1:50 s. At t = 0 the glider is 5:10 cm left of the equilibrium position and moving to the right at 37:0 cm s?1. a) What is the phase constant? b) What is the phase at t = 0:5 s?

Motion occurs along the x axis. We use symbols A … Read More...
Select Case 1, 2, or 8 in the back of the textbook. After you have read the case, select at least one of the questions presented at the end.-If you select only one question, then you will need to elaborate with more examples and perspectives than if you select more than one, but the choice is yours. Fair warning: It is possible to fall into the trap of repeating oneself. To avoid that threat, think in advance of the different perspectives that you wish to explore. If you select more than one question, each answer will naturally be shorter. This may be a good approach if you discern that the questions lack strong potential to elicit in-depth answers. Remember to reply to the contributions of two other students in this exercise. This is a rule that we are only observing in the case analyses, given the relative complexity of the cases, compared to the chapter discussion questions. Always add value, from the textbook, news, personal experience, or all three. Indicate the case and question at the beginning, but avoid restating the question in your answer. In this respect, use the same method as in the chapter discussion questions, described in the Week 2 forum. Write at least 500 words (no minimum for replies, but do add value). Quoted passages do not contribute to the word count (so you will need to write more if you insert any quoted material). Post-edit your work carefully to catch errors. Avoid plagiarism at all cost. ——— Note on anomalous questions. Some questions will require you to work around selected details to fit the requisite discussion format. For example, Question 2 in Case 1 asks how your proposal will solve certain problems noted in answer to the previous question. If you have not actually answered Question 1, then you will have to assert one or more problems from the case, a proposed solution, and then an explanation of how your proposal may help. Question 3 is similar, in that you will need to identify a problem and a solution, followed by an argument about the budget. Although Alistair was expecting to hire a Project Engineer rather than a Quality Compliance Manager, the methods used to make the decision should be similar. The main difference in the Quality Compliance Manager position is that it is in a joint venture with a Hungarian government backed firm. International Joint Ventures (IJV) makes HRM practices more complicated because HRM practices and strategies are required for each IJV entity (Dowling, Festing, & Engle, 2013). HRM must address IJV in four stages, in which, each stage has an impact on the next. It is important for HRM to very thorough with each stage and communication through each stage is vital. To be successful, HRM must combine the IJV strategy along with the recruitment, selection, training, and development processes (Dowling et al., 2013). In light of the needs of the company and the new Quality Compliance Manager position, Alistair should choose the first candidate, Marie Erten-Loiseau. The fact that the job requires travel to France and Germany is a positive for Marie because she was born in France and was educated in France and Germany. The familiarity of these locations will help her as she meets with new business partners because she will have a good understanding of the policy and procedures required for companies in these two countries. Dowling et al., (2013), points out that the manager needs to be able to assess the desires of the stakeholders and be able to implement strategies based on their desires. Another reason for choosing Marie is that she has the most experience and has worked with Trianon for 13 years. The experience she has with the company is invaluable because she knows the goals of the company and strategies for implementing those goals. The last reason for choosing Marie is that she has been successful in her previous positions. She has lead two projects in two different countries and both were successful. This shows that she is able to adapt to the different practices of each country. There are many factors that Alistair should take into consideration to determine the correct choice for the Quality Compliance Manager position. The major factors that require consideration are the specificities of the entire situation, the reason for the assignment, and type of assignment. The four main specificities include context specificities, firm specific variables, local unit specificities, and IHRM practices (Dowling et al., 2013). The context specificities would include the differences in cultures between the assignment in Hungary and the base location for the Trianon, Marseilles. The firm specific variable includes any changes in the way operations in Hungary are conducted, whether it is strategy or HRM policies. The local unit specificities include the role of the joint venture in relation to Trianon and how this joint venture will fit into the long-term plan of the company. The company hopes that it will provide a good working relationship with the state supported airline, which will lead to more business in the future. The IHRM practices determine the employees that are hired and the training that is available to the employees. The reason for the assignment also is a major factor in determining the correct candidate. In the situation of Trianon, a joint venture with a Hungarian government back firm created a position that needed filling. The Quality Compliance Manager position allows Trianon to manage the joint venture operation, make sure it is successful, and build a strong relationship with Malev. The last major factor is the type of assignment. The Quality Compliance Manager assignment is long-term assignment because it is 3 years in duration. The joint venture is the first that the company has been involved in outside the UK so there is less familiarity on the administrative/compliance side. The candidate must act as an agent of direct control (Dowling et al., 2013) by assuring that compliance policies are followed and company strategy is implemented. Assessing whether a male or female would be the best fit for the position is also a factor that deserves consideration. The low number of female expatriates led Jessens, Cappellen, &Zanoni (2006) to research the following three myths: women have no desire to be in positions of authority in a foreign country, companies do not desire to place females in positions of authority while a foreign country, and women would be ineffective because of the views towards women in foreign countries. The research indicated that female expatriates do have conflict that arises related to their gender but the successful ones were able to turn the conflicts around based on the qualities that these women possess (Jessens et al., 2006). With all of these factors considered, I believe Marie Erten-Loiseau is the best candidate for the Quality Compliance Manager. References Dowling, P.J., Festing, M., & Engle, A.D. Sr. (2013). International Human Resource Management (6th ed.). Stamford, CT: Cengage Learning Janssens, M., Cappellen, T., &Zanoni, P. (2006). Successful female expatriates as agents: Positioning oneself through gender, hierarchy, and culture. Journal of World Business, 1-16. doi:10.1016/j.jwb.2006.01.001 2.) Case 8 – Questions 1 & 4 Multinational firms are often faced with recruiting and staffing decisions that could ultimately enhance or diminish the firm’s ability to be successful in a competitive global market. Perlmutter identified four staffing approaches for MNEs to consider based on the primary attitudes of international executives that would lay the foundation for MNEs during the recruitment and hiring process (Dowling, Festing, & Engle, 2013). At one point or another throughout the MacDougall family journey Lachlan and Lisa have served in one of the four capacities as an ethnocentric, polycentric, geocentric, and regiocentric employee. The ability to encompass all four attitudes that Perlmutter set forth is something that the MacDougall family has managed to do extremely well. The possibility for a multinational firm to recruit a family of this caliber that has been exposed and has an understanding of the positive and negative aspects of each attitude is phenomenal. This would be resourceful for any multinational firm. The MacDougal family’s exposure to cross-cultural management is also valuable. The diverse cultural background that the family has encountered on their international journey is a rarity. Cultural diversity and cross-cultural management play a critical role in MNEs because it produces a work environment that can transform the workplace into a place of learning and give the firm the availability to create new ideas for a more productive and competitive advantage over other firms (Sultana, Rashid, Mohiuddin, &Mazumder, 2013). This is something that is easy for the MacDougall family to bring to the table with the family’s given history. The expatriate lifestyle that has become second nature to the MacDougall family is beneficial for multinational firms for multifarious reasons Being raised around different cultures and then choosing to work internationally and learn different cultures has attributed to Lachlan’s successful career. The family’s ability to communicate and blend in socially among diverse cultures is an important aspect for international firms that want to stay competitive and be successful. The family has acclimated fairly easy to all of the places they have been and this is something that can be favorable when firms are recruiting employees. The MacDougall family has an upper-hand in the international marketplace naturally due to previous experiences with other countries and cultures. The exceptional way that the family has managed to conform to a multitude of other cultures and flourish is not an easy task. Marriage is not easy and many families experience a greater challenge avoiding divorcees when international mobility is involved. Lachlan and Lisa have been able to move together and this is an important aspect to the success of their marriage. Based on the case study they have a common desire to travel and both are successful in their careers. Lisa’s devotion to her husband’s successful career has put some strain on the marriage as she has had times where she felt she did not have her own identity. Military spouses experience this type of stress during long deployments and times that they have to hold the household together on their own. Another example is with employers who are transferred internationally for a short period of time or travel often. Separation of spouses can strain any marriage, but Lisa and Lachlan have been fortunate to avoid separation for any extended length of time. References Dowling, P.J., Festing, M., & Engle, A.D.Sr.(2013). International Human Resource Management. (6thed.). Stamford, CT: Cengage Sultana, M., Rashid, M., Mohiuddin, M. &Mazumder, M. (2013).Cross-cultural management and organizational performance.A Contnet analysis perspective.International Journal of Business and Management, 8(8), 133-146.

Select Case 1, 2, or 8 in the back of the textbook. After you have read the case, select at least one of the questions presented at the end.-If you select only one question, then you will need to elaborate with more examples and perspectives than if you select more than one, but the choice is yours. Fair warning: It is possible to fall into the trap of repeating oneself. To avoid that threat, think in advance of the different perspectives that you wish to explore. If you select more than one question, each answer will naturally be shorter. This may be a good approach if you discern that the questions lack strong potential to elicit in-depth answers. Remember to reply to the contributions of two other students in this exercise. This is a rule that we are only observing in the case analyses, given the relative complexity of the cases, compared to the chapter discussion questions. Always add value, from the textbook, news, personal experience, or all three. Indicate the case and question at the beginning, but avoid restating the question in your answer. In this respect, use the same method as in the chapter discussion questions, described in the Week 2 forum. Write at least 500 words (no minimum for replies, but do add value). Quoted passages do not contribute to the word count (so you will need to write more if you insert any quoted material). Post-edit your work carefully to catch errors. Avoid plagiarism at all cost. ——— Note on anomalous questions. Some questions will require you to work around selected details to fit the requisite discussion format. For example, Question 2 in Case 1 asks how your proposal will solve certain problems noted in answer to the previous question. If you have not actually answered Question 1, then you will have to assert one or more problems from the case, a proposed solution, and then an explanation of how your proposal may help. Question 3 is similar, in that you will need to identify a problem and a solution, followed by an argument about the budget. Although Alistair was expecting to hire a Project Engineer rather than a Quality Compliance Manager, the methods used to make the decision should be similar. The main difference in the Quality Compliance Manager position is that it is in a joint venture with a Hungarian government backed firm. International Joint Ventures (IJV) makes HRM practices more complicated because HRM practices and strategies are required for each IJV entity (Dowling, Festing, & Engle, 2013). HRM must address IJV in four stages, in which, each stage has an impact on the next. It is important for HRM to very thorough with each stage and communication through each stage is vital. To be successful, HRM must combine the IJV strategy along with the recruitment, selection, training, and development processes (Dowling et al., 2013). In light of the needs of the company and the new Quality Compliance Manager position, Alistair should choose the first candidate, Marie Erten-Loiseau. The fact that the job requires travel to France and Germany is a positive for Marie because she was born in France and was educated in France and Germany. The familiarity of these locations will help her as she meets with new business partners because she will have a good understanding of the policy and procedures required for companies in these two countries. Dowling et al., (2013), points out that the manager needs to be able to assess the desires of the stakeholders and be able to implement strategies based on their desires. Another reason for choosing Marie is that she has the most experience and has worked with Trianon for 13 years. The experience she has with the company is invaluable because she knows the goals of the company and strategies for implementing those goals. The last reason for choosing Marie is that she has been successful in her previous positions. She has lead two projects in two different countries and both were successful. This shows that she is able to adapt to the different practices of each country. There are many factors that Alistair should take into consideration to determine the correct choice for the Quality Compliance Manager position. The major factors that require consideration are the specificities of the entire situation, the reason for the assignment, and type of assignment. The four main specificities include context specificities, firm specific variables, local unit specificities, and IHRM practices (Dowling et al., 2013). The context specificities would include the differences in cultures between the assignment in Hungary and the base location for the Trianon, Marseilles. The firm specific variable includes any changes in the way operations in Hungary are conducted, whether it is strategy or HRM policies. The local unit specificities include the role of the joint venture in relation to Trianon and how this joint venture will fit into the long-term plan of the company. The company hopes that it will provide a good working relationship with the state supported airline, which will lead to more business in the future. The IHRM practices determine the employees that are hired and the training that is available to the employees. The reason for the assignment also is a major factor in determining the correct candidate. In the situation of Trianon, a joint venture with a Hungarian government back firm created a position that needed filling. The Quality Compliance Manager position allows Trianon to manage the joint venture operation, make sure it is successful, and build a strong relationship with Malev. The last major factor is the type of assignment. The Quality Compliance Manager assignment is long-term assignment because it is 3 years in duration. The joint venture is the first that the company has been involved in outside the UK so there is less familiarity on the administrative/compliance side. The candidate must act as an agent of direct control (Dowling et al., 2013) by assuring that compliance policies are followed and company strategy is implemented. Assessing whether a male or female would be the best fit for the position is also a factor that deserves consideration. The low number of female expatriates led Jessens, Cappellen, &Zanoni (2006) to research the following three myths: women have no desire to be in positions of authority in a foreign country, companies do not desire to place females in positions of authority while a foreign country, and women would be ineffective because of the views towards women in foreign countries. The research indicated that female expatriates do have conflict that arises related to their gender but the successful ones were able to turn the conflicts around based on the qualities that these women possess (Jessens et al., 2006). With all of these factors considered, I believe Marie Erten-Loiseau is the best candidate for the Quality Compliance Manager. References Dowling, P.J., Festing, M., & Engle, A.D. Sr. (2013). International Human Resource Management (6th ed.). Stamford, CT: Cengage Learning Janssens, M., Cappellen, T., &Zanoni, P. (2006). Successful female expatriates as agents: Positioning oneself through gender, hierarchy, and culture. Journal of World Business, 1-16. doi:10.1016/j.jwb.2006.01.001 2.) Case 8 – Questions 1 & 4 Multinational firms are often faced with recruiting and staffing decisions that could ultimately enhance or diminish the firm’s ability to be successful in a competitive global market. Perlmutter identified four staffing approaches for MNEs to consider based on the primary attitudes of international executives that would lay the foundation for MNEs during the recruitment and hiring process (Dowling, Festing, & Engle, 2013). At one point or another throughout the MacDougall family journey Lachlan and Lisa have served in one of the four capacities as an ethnocentric, polycentric, geocentric, and regiocentric employee. The ability to encompass all four attitudes that Perlmutter set forth is something that the MacDougall family has managed to do extremely well. The possibility for a multinational firm to recruit a family of this caliber that has been exposed and has an understanding of the positive and negative aspects of each attitude is phenomenal. This would be resourceful for any multinational firm. The MacDougal family’s exposure to cross-cultural management is also valuable. The diverse cultural background that the family has encountered on their international journey is a rarity. Cultural diversity and cross-cultural management play a critical role in MNEs because it produces a work environment that can transform the workplace into a place of learning and give the firm the availability to create new ideas for a more productive and competitive advantage over other firms (Sultana, Rashid, Mohiuddin, &Mazumder, 2013). This is something that is easy for the MacDougall family to bring to the table with the family’s given history. The expatriate lifestyle that has become second nature to the MacDougall family is beneficial for multinational firms for multifarious reasons Being raised around different cultures and then choosing to work internationally and learn different cultures has attributed to Lachlan’s successful career. The family’s ability to communicate and blend in socially among diverse cultures is an important aspect for international firms that want to stay competitive and be successful. The family has acclimated fairly easy to all of the places they have been and this is something that can be favorable when firms are recruiting employees. The MacDougall family has an upper-hand in the international marketplace naturally due to previous experiences with other countries and cultures. The exceptional way that the family has managed to conform to a multitude of other cultures and flourish is not an easy task. Marriage is not easy and many families experience a greater challenge avoiding divorcees when international mobility is involved. Lachlan and Lisa have been able to move together and this is an important aspect to the success of their marriage. Based on the case study they have a common desire to travel and both are successful in their careers. Lisa’s devotion to her husband’s successful career has put some strain on the marriage as she has had times where she felt she did not have her own identity. Military spouses experience this type of stress during long deployments and times that they have to hold the household together on their own. Another example is with employers who are transferred internationally for a short period of time or travel often. Separation of spouses can strain any marriage, but Lisa and Lachlan have been fortunate to avoid separation for any extended length of time. References Dowling, P.J., Festing, M., & Engle, A.D.Sr.(2013). International Human Resource Management. (6thed.). Stamford, CT: Cengage Sultana, M., Rashid, M., Mohiuddin, M. &Mazumder, M. (2013).Cross-cultural management and organizational performance.A Contnet analysis perspective.International Journal of Business and Management, 8(8), 133-146.

No expert has answered this question yet. You can browse … Read More...