Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic<br />21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic</br

Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic
21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic

Ignorant- A person is said to be ignorant if he … Read More...
Chapter 15 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Fluid Pressure in a U-Tube A U-tube is filled with water, and the two arms are capped. The tube is cylindrical, and the right arm has twice the radius of the left arm. The caps have negligible mass, are watertight, and can freely slide up and down the tube. Part A A one-inch depth of sand is poured onto the cap on each arm. After the caps have moved (if necessary) to reestablish equilibrium, is the right cap higher, lower, or the same height as the left cap? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Pressure in the Ocean The pressure at 10 below the surface of the ocean is about 2.00×105 . Part A higher lower the same height m Pa Which of the following statements is true? You did not open hints for this part. ANSWER: Part B Now consider the pressure 20 below the surface of the ocean. Which of the following statements is true? You did not open hints for this part. ANSWER: Relating Pressure and Height in a Container Learning Goal: To understand the derivation of the law relating height and pressure in a container. The weight of a column of seawater 1 in cross section and 10 high is about 2.00×105 . The weight of a column of seawater 1 in cross section and 10 high plus the weight of a column of air with the same cross section extending up to the top of the atmosphere is about 2.00×105 . The weight of 1 of seawater at 10 below the surface of the ocean is about 2.00×105 . The density of seawater is about 2.00×105 times the density of air at sea level. m2 m N m2 m N m3 m N m The pressure is twice that at a depth of 10 . The pressure is the same as that at a depth of 10 . The pressure is equal to that at a depth of 10 plus the weight per 1 cross sectional area of a column of seawater 10 high. The pressure is equal to the weight per 1 cross sectional area of a column of seawater 20 high. m m m m2 m m2 m In this problem, you will derive the law relating pressure to height in a container by analyzing a particular system. A container of uniform cross-sectional area is filled with liquid of uniform density . Consider a thin horizontal layer of liquid (thickness ) at a height as measured from the bottom of the container. Let the pressure exerted upward on the bottom of the layer be and the pressure exerted downward on the top be . Assume throughout the problem that the system is in equilibrium (the container has not been recently shaken or moved, etc.). Part A What is , the magnitude of the force exerted upward on the bottom of the liquid? You did not open hints for this part. ANSWER: Part B What is , the magnitude of the force exerted downward on the top of the liquid? A  dy y p p + dp Fup Fup = Fdown You did not open hints for this part. ANSWER: Part C What is the weight of the thin layer of liquid? Express your answer in terms of quantities given in the problem introduction and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Part D Since the liquid is in equilibrium, the net force on the thin layer of liquid is zero. Complete the force equation for the sum of the vertical forces acting on the liquid layer described in the problem introduction. Express your answer in terms of quantities given in the problem introduction and taking upward forces to be positive. You did not open hints for this part. ANSWER: Fdown = wlayer g wlayer = Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Submerged Ball A ball of mass and volume is lowered on a string into a fluid of density . Assume that the object would sink to the bottom if it were not supported by the string. Part A  = = i Fy,i mb V f What is the tension in the string when the ball is fully submerged but not touching the bottom, as shown in the figure? Express your answer in terms of any or all of the given quantities and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Archimedes’ Principle Learning Goal: To understand the applications of Archimedes’ principle. Archimedes’ principle is a powerful tool for solving many problems involving equilibrium in fluids. It states the following: When a body is partially or completely submerged in a fluid (either a liquid or a gas), the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body. As a result of the upward Archimedes force (often called the buoyant force), some objects may float in a fluid, and all of them appear to weigh less. This is the familiar phenomenon of buoyancy. Quantitatively, the buoyant force can be found as , where is the force, is the density of the fluid, is the magnitude of the acceleration due to gravity, and is the volume of the displaced fluid. In this problem, you will be asked several qualitative questions that should help you develop a feel for Archimedes’ principle. An object is placed in a fluid and then released. Assume that the object either floats to the surface (settling so that the object is partly above and partly below the fluid surface) or sinks to the bottom. (Note that for Parts A through D, you should assume that the object has settled in equilibrium.) Part A Consider the following statement: The magnitude of the buoyant force is equal to the weight of fluid displaced by the object. Under what circumstances is this statement true? T g T = Fbuoyant = fluidgV Fbuoyant fluid g V You did not open hints for this part. ANSWER: Part B Consider the following statement: The magnitude of the buoyant force is equal to the weight of the amount of fluid that has the same total volume as the object. Under what circumstances is this statement true? You did not open hints for this part. ANSWER: Part C Consider the following statement: The magnitude of the buoyant force equals the weight of the object. Under what circumstances is this statement true? for every object submerged partially or completely in a fluid only for an object that floats only for an object that sinks for no object submerged in a fluid for an object that is partially submerged in a fluid only for an object that floats for an object completely submerged in a fluid for no object partially or completely submerged in a fluid You did not open hints for this part. ANSWER: Part D Consider the following statement: The magnitude of the buoyant force is less than the weight of the object. Under what circumstances is this statement true? ANSWER: Now apply what you know to some more complicated situations. Part E An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a denser liquid. What would you observe? You did not open hints for this part. ANSWER: for every object submerged partially or completely in a fluid for an object that floats only for an object that sinks for no object submerged in a fluid for every object submerged partially or completely in a fluid for an object that floats for an object that sinks for no object submerged in a fluid Part F An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a less dense liquid. What would you observe? You did not open hints for this part. ANSWER: Part G Two objects, T and B, have identical size and shape and have uniform density. They are carefully placed in a container filled with a liquid. Both objects float in equilibrium. Less of object T is submerged than of object B, which floats, fully submerged, closer to the bottom of the container. Which of the following statements is true? ANSWER: The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. Object T has a greater density than object B. Object B has a greater density than object T. Both objects have the same density. ± Buoyant Force Conceptual Question A rectangular wooden block of weight floats with exactly one-half of its volume below the waterline. Part A What is the buoyant force acting on the block? You did not open hints for this part. ANSWER: Part B W The buoyant force cannot be determined. 2W W 1 W 2 The density of water is 1.00 . What is the density of the block? You did not open hints for this part. ANSWER: Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). g/cm3 2.00 between 1.00 and 2.00 1.00 between 0.50 and 1.00 0.50 The density cannot be determined. g/cm3 g/cm3 g/cm3 g/cm3 g/cm3 Flow Velocity of Blood Conceptual Question Arteriosclerotic plaques forming on the inner walls of arteries can decrease the effective cross-sectional area of an artery. Even small changes in the effective area of an artery can lead to very large changes in the blood pressure in the artery and possibly to the collapse of the blood vessel. Imagine a healthy artery, with blood flow velocity of and mass per unit volume of . The kinetic energy per unit volume of blood is given by Imagine that plaque has narrowed an artery to one-fifth of its normal cross-sectional area (an 80% blockage). Part A Compared to normal blood flow velocity, , what is the velocity of blood as it passes through this blockage? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C v0 = 0.14 m/s  = 1050 kg/m3 K0 =  . 1 2 v20 v0 80v0 20v0 5v0 v0/5 This question will be shown after you complete previous question(s). For parts D – F imagine that plaque has grown to a 90% blockage. Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). ± Playing with a Water Hose Two children, Ferdinand and Isabella, are playing with a water hose on a sunny summer day. Isabella is holding the hose in her hand 1.0 meters above the ground and is trying to spray Ferdinand, who is standing 10.0 meters away. Part A Will Isabella be able to spray Ferdinand if the water is flowing out of the hose at a constant speed of 3.5 meters per second? Assume that the hose is pointed parallel to the ground and take the magnitude of the acceleration due to gravity to be 9.81 meters per second, per second. You did not open hints for this part. v0 g ANSWER: Part B This question will be shown after you complete previous question(s). Tactics Box 15.2 Finding Whether an Object Floats or Sinks Learning Goal: To practice Tactics Box 15.2 Finding whether an object floats or sinks. If you hold an object underwater and then release it, it can float to the surface, sink, or remain “hanging” in the water, depending on whether the fluid density is larger than, smaller than, or equal to the object’s average density . These conditions are summarized in this Tactics Box. Yes No f avg TACTICS BOX 15.2 Finding whether an object floats or sinks Object sinks Object floats Object has neutral buoyancy An object sinks if it weighs more than the fluid it displaces, that is, if its average density is greater than the density of the fluid: . An object floats on the surface if it weighs less than the fluid it displaces, that is, if its average density is less than the density of the fluid: . An object hangs motionless in the fluid if it weighs exactly the same as the fluid it displaces. It has neutral buoyancy if its average density equals the density of the fluid: . Part A Ice at 0.0 has a density of 917 . A 3.00 ice cube is gently released inside a small container filled with oil and is observed to be neutrally buoyant. What is the density of the oil, ? Express your answer in kilograms per meter cubed to three significant figures. ANSWER: Part B Once the ice cube melts, what happens to the liquid water that it produces? You did not open hints for this part. ANSWER: avg > f avg < f avg = f 'C kg/m3 cm3 oil oil = kg/m3 Part C What happens if some ethyl alcohol of density 790 is poured into the container after the ice cube has melted? ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The liquid water sinks to the bottom of the container. The liquid water rises to the surface and floats on top of the oil. The liquid water is in static equilibrium at the location where the ice cube was originally placed. kg/m3 A layer of ethyl alcohol forms between the oil and the water. The layer of ethyl alcohol forms at the bottom of the container. The layer of ethyl alcohol forms on the surface.

Chapter 15 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Fluid Pressure in a U-Tube A U-tube is filled with water, and the two arms are capped. The tube is cylindrical, and the right arm has twice the radius of the left arm. The caps have negligible mass, are watertight, and can freely slide up and down the tube. Part A A one-inch depth of sand is poured onto the cap on each arm. After the caps have moved (if necessary) to reestablish equilibrium, is the right cap higher, lower, or the same height as the left cap? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Pressure in the Ocean The pressure at 10 below the surface of the ocean is about 2.00×105 . Part A higher lower the same height m Pa Which of the following statements is true? You did not open hints for this part. ANSWER: Part B Now consider the pressure 20 below the surface of the ocean. Which of the following statements is true? You did not open hints for this part. ANSWER: Relating Pressure and Height in a Container Learning Goal: To understand the derivation of the law relating height and pressure in a container. The weight of a column of seawater 1 in cross section and 10 high is about 2.00×105 . The weight of a column of seawater 1 in cross section and 10 high plus the weight of a column of air with the same cross section extending up to the top of the atmosphere is about 2.00×105 . The weight of 1 of seawater at 10 below the surface of the ocean is about 2.00×105 . The density of seawater is about 2.00×105 times the density of air at sea level. m2 m N m2 m N m3 m N m The pressure is twice that at a depth of 10 . The pressure is the same as that at a depth of 10 . The pressure is equal to that at a depth of 10 plus the weight per 1 cross sectional area of a column of seawater 10 high. The pressure is equal to the weight per 1 cross sectional area of a column of seawater 20 high. m m m m2 m m2 m In this problem, you will derive the law relating pressure to height in a container by analyzing a particular system. A container of uniform cross-sectional area is filled with liquid of uniform density . Consider a thin horizontal layer of liquid (thickness ) at a height as measured from the bottom of the container. Let the pressure exerted upward on the bottom of the layer be and the pressure exerted downward on the top be . Assume throughout the problem that the system is in equilibrium (the container has not been recently shaken or moved, etc.). Part A What is , the magnitude of the force exerted upward on the bottom of the liquid? You did not open hints for this part. ANSWER: Part B What is , the magnitude of the force exerted downward on the top of the liquid? A  dy y p p + dp Fup Fup = Fdown You did not open hints for this part. ANSWER: Part C What is the weight of the thin layer of liquid? Express your answer in terms of quantities given in the problem introduction and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Part D Since the liquid is in equilibrium, the net force on the thin layer of liquid is zero. Complete the force equation for the sum of the vertical forces acting on the liquid layer described in the problem introduction. Express your answer in terms of quantities given in the problem introduction and taking upward forces to be positive. You did not open hints for this part. ANSWER: Fdown = wlayer g wlayer = Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Submerged Ball A ball of mass and volume is lowered on a string into a fluid of density . Assume that the object would sink to the bottom if it were not supported by the string. Part A  = = i Fy,i mb V f What is the tension in the string when the ball is fully submerged but not touching the bottom, as shown in the figure? Express your answer in terms of any or all of the given quantities and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Archimedes’ Principle Learning Goal: To understand the applications of Archimedes’ principle. Archimedes’ principle is a powerful tool for solving many problems involving equilibrium in fluids. It states the following: When a body is partially or completely submerged in a fluid (either a liquid or a gas), the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body. As a result of the upward Archimedes force (often called the buoyant force), some objects may float in a fluid, and all of them appear to weigh less. This is the familiar phenomenon of buoyancy. Quantitatively, the buoyant force can be found as , where is the force, is the density of the fluid, is the magnitude of the acceleration due to gravity, and is the volume of the displaced fluid. In this problem, you will be asked several qualitative questions that should help you develop a feel for Archimedes’ principle. An object is placed in a fluid and then released. Assume that the object either floats to the surface (settling so that the object is partly above and partly below the fluid surface) or sinks to the bottom. (Note that for Parts A through D, you should assume that the object has settled in equilibrium.) Part A Consider the following statement: The magnitude of the buoyant force is equal to the weight of fluid displaced by the object. Under what circumstances is this statement true? T g T = Fbuoyant = fluidgV Fbuoyant fluid g V You did not open hints for this part. ANSWER: Part B Consider the following statement: The magnitude of the buoyant force is equal to the weight of the amount of fluid that has the same total volume as the object. Under what circumstances is this statement true? You did not open hints for this part. ANSWER: Part C Consider the following statement: The magnitude of the buoyant force equals the weight of the object. Under what circumstances is this statement true? for every object submerged partially or completely in a fluid only for an object that floats only for an object that sinks for no object submerged in a fluid for an object that is partially submerged in a fluid only for an object that floats for an object completely submerged in a fluid for no object partially or completely submerged in a fluid You did not open hints for this part. ANSWER: Part D Consider the following statement: The magnitude of the buoyant force is less than the weight of the object. Under what circumstances is this statement true? ANSWER: Now apply what you know to some more complicated situations. Part E An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a denser liquid. What would you observe? You did not open hints for this part. ANSWER: for every object submerged partially or completely in a fluid for an object that floats only for an object that sinks for no object submerged in a fluid for every object submerged partially or completely in a fluid for an object that floats for an object that sinks for no object submerged in a fluid Part F An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a less dense liquid. What would you observe? You did not open hints for this part. ANSWER: Part G Two objects, T and B, have identical size and shape and have uniform density. They are carefully placed in a container filled with a liquid. Both objects float in equilibrium. Less of object T is submerged than of object B, which floats, fully submerged, closer to the bottom of the container. Which of the following statements is true? ANSWER: The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. Object T has a greater density than object B. Object B has a greater density than object T. Both objects have the same density. ± Buoyant Force Conceptual Question A rectangular wooden block of weight floats with exactly one-half of its volume below the waterline. Part A What is the buoyant force acting on the block? You did not open hints for this part. ANSWER: Part B W The buoyant force cannot be determined. 2W W 1 W 2 The density of water is 1.00 . What is the density of the block? You did not open hints for this part. ANSWER: Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). g/cm3 2.00 between 1.00 and 2.00 1.00 between 0.50 and 1.00 0.50 The density cannot be determined. g/cm3 g/cm3 g/cm3 g/cm3 g/cm3 Flow Velocity of Blood Conceptual Question Arteriosclerotic plaques forming on the inner walls of arteries can decrease the effective cross-sectional area of an artery. Even small changes in the effective area of an artery can lead to very large changes in the blood pressure in the artery and possibly to the collapse of the blood vessel. Imagine a healthy artery, with blood flow velocity of and mass per unit volume of . The kinetic energy per unit volume of blood is given by Imagine that plaque has narrowed an artery to one-fifth of its normal cross-sectional area (an 80% blockage). Part A Compared to normal blood flow velocity, , what is the velocity of blood as it passes through this blockage? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C v0 = 0.14 m/s  = 1050 kg/m3 K0 =  . 1 2 v20 v0 80v0 20v0 5v0 v0/5 This question will be shown after you complete previous question(s). For parts D – F imagine that plaque has grown to a 90% blockage. Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). ± Playing with a Water Hose Two children, Ferdinand and Isabella, are playing with a water hose on a sunny summer day. Isabella is holding the hose in her hand 1.0 meters above the ground and is trying to spray Ferdinand, who is standing 10.0 meters away. Part A Will Isabella be able to spray Ferdinand if the water is flowing out of the hose at a constant speed of 3.5 meters per second? Assume that the hose is pointed parallel to the ground and take the magnitude of the acceleration due to gravity to be 9.81 meters per second, per second. You did not open hints for this part. v0 g ANSWER: Part B This question will be shown after you complete previous question(s). Tactics Box 15.2 Finding Whether an Object Floats or Sinks Learning Goal: To practice Tactics Box 15.2 Finding whether an object floats or sinks. If you hold an object underwater and then release it, it can float to the surface, sink, or remain “hanging” in the water, depending on whether the fluid density is larger than, smaller than, or equal to the object’s average density . These conditions are summarized in this Tactics Box. Yes No f avg TACTICS BOX 15.2 Finding whether an object floats or sinks Object sinks Object floats Object has neutral buoyancy An object sinks if it weighs more than the fluid it displaces, that is, if its average density is greater than the density of the fluid: . An object floats on the surface if it weighs less than the fluid it displaces, that is, if its average density is less than the density of the fluid: . An object hangs motionless in the fluid if it weighs exactly the same as the fluid it displaces. It has neutral buoyancy if its average density equals the density of the fluid: . Part A Ice at 0.0 has a density of 917 . A 3.00 ice cube is gently released inside a small container filled with oil and is observed to be neutrally buoyant. What is the density of the oil, ? Express your answer in kilograms per meter cubed to three significant figures. ANSWER: Part B Once the ice cube melts, what happens to the liquid water that it produces? You did not open hints for this part. ANSWER: avg > f avg < f avg = f 'C kg/m3 cm3 oil oil = kg/m3 Part C What happens if some ethyl alcohol of density 790 is poured into the container after the ice cube has melted? ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The liquid water sinks to the bottom of the container. The liquid water rises to the surface and floats on top of the oil. The liquid water is in static equilibrium at the location where the ice cube was originally placed. kg/m3 A layer of ethyl alcohol forms between the oil and the water. The layer of ethyl alcohol forms at the bottom of the container. The layer of ethyl alcohol forms on the surface.

please email info@checkyourstudy.com Chapter 15 Practice Problems (Practice – no … Read More...
Faculty of Science Technology and Engineering Department of Physics Senior Laboratory Faraday rotation AIM To show that optical activity is induced in a certain type of glass when it is in a magnetic field. To investigate the degree of rotation of linearly polarised light as a function of the applied magnetic field and hence determine a parameter which is characteristic of each material and known as Verdet’s constant. BACKGROUND INFORMATION A brief description of the properties and production of polarised light is given in the section labelled: Notes on polarisation. This should be read before proceeding with this experiment. Additional details may be found in the references listed at the end of this experiment. Whereas some materials, such as quartz, are naturally optically active, optical activity can be induced in others by the application of a magnetic field. For such materials, the angle through which the plane of polarisation of a linearly polarised beam is rotated () depends on the thickness of the sample (L), the strength of the magnetic field (B) and on the properties of the particular material. The latter is described by means of a parameter introduced by Verdet, which is wavelength dependent. Thus:  = V B L Lamp Polariser Solenoid Polariser Glass rod A Solenoid power supply Viewing mirror EXPERIMENTAL PROCEDURE The experimental arrangement is shown in the diagram. Unpolarised white light is produced by a hot filament and viewed using a mirror. • The light from the globe passes through two polarisers as well as the specially doped glass rod. Select one of the colour filters provided and place in the light path. Each of these filters transmits a relatively narrow band of wavelengths centred around a dominant wavelength as listed in the table. Filter No. Dominant Wavelength 98 4350 Å 50 4500 75 4900 58 5300 72 B 6060 92 6700 With the power supply for the coil switched off, (do not simply turn the potentiometer to zero: this still allows some current to flow) adjust one of the polarisers until minimum light is transmitted to the mirror. Minimum transmission can be determined visually. • Decide which polariser you will work with and do not alter the other one during the measurements. • The magnetic field is generated by a current in a solenoid (coil) placed around the glass rod. As the current in the coil is increased, the magnitude of the magnetic field will increase as shown on the calibration curve below. The degree of optical activity will also increase, resulting in some angle of rotation of the plane of polarisation. Hence you will need to rotate your chosen polariser to regain a minimum setting. 0 1 2 3 4 5 0.00 0.02 0.04 0.06 0.08 I (amps) B (tesla) Magnetic field (B) produced by current (I) in solenoid • Record the rotation angle () for coil currents of 0,1,2,3,4 and 5 amps. Avoid having the current in the coil switched on except when measurements are actually being taken as it can easily overheat. If the coil becomes too hot to touch, switch it off and wait for it to cool before proceeding. • Plot  as a function of B and, given that the length of the glass rod is 30 cm, determine Verdet’s constant for this material at the wavelength () in use. • Repeat the experiment for each of the wavelengths available using the filter set provided. • Calculate the logarithm for each V and  and tabulate the results. By plotting log V against log , determine the relationship between V and . [Hint: m log(x) = log (xm) and log(xy) = log(x) + log(y)]. • Calculate the errors involved in your determination of V. The uncertainty in a value of B may be taken as the uncertainty in reading the scale of the calibration curve) • The magnetic field direction can be reversed by reversing the direction of current flow in the coil. Describe the effect of this reversal and provide an explanation. Reference Optics Hecht.

Faculty of Science Technology and Engineering Department of Physics Senior Laboratory Faraday rotation AIM To show that optical activity is induced in a certain type of glass when it is in a magnetic field. To investigate the degree of rotation of linearly polarised light as a function of the applied magnetic field and hence determine a parameter which is characteristic of each material and known as Verdet’s constant. BACKGROUND INFORMATION A brief description of the properties and production of polarised light is given in the section labelled: Notes on polarisation. This should be read before proceeding with this experiment. Additional details may be found in the references listed at the end of this experiment. Whereas some materials, such as quartz, are naturally optically active, optical activity can be induced in others by the application of a magnetic field. For such materials, the angle through which the plane of polarisation of a linearly polarised beam is rotated () depends on the thickness of the sample (L), the strength of the magnetic field (B) and on the properties of the particular material. The latter is described by means of a parameter introduced by Verdet, which is wavelength dependent. Thus:  = V B L Lamp Polariser Solenoid Polariser Glass rod A Solenoid power supply Viewing mirror EXPERIMENTAL PROCEDURE The experimental arrangement is shown in the diagram. Unpolarised white light is produced by a hot filament and viewed using a mirror. • The light from the globe passes through two polarisers as well as the specially doped glass rod. Select one of the colour filters provided and place in the light path. Each of these filters transmits a relatively narrow band of wavelengths centred around a dominant wavelength as listed in the table. Filter No. Dominant Wavelength 98 4350 Å 50 4500 75 4900 58 5300 72 B 6060 92 6700 With the power supply for the coil switched off, (do not simply turn the potentiometer to zero: this still allows some current to flow) adjust one of the polarisers until minimum light is transmitted to the mirror. Minimum transmission can be determined visually. • Decide which polariser you will work with and do not alter the other one during the measurements. • The magnetic field is generated by a current in a solenoid (coil) placed around the glass rod. As the current in the coil is increased, the magnitude of the magnetic field will increase as shown on the calibration curve below. The degree of optical activity will also increase, resulting in some angle of rotation of the plane of polarisation. Hence you will need to rotate your chosen polariser to regain a minimum setting. 0 1 2 3 4 5 0.00 0.02 0.04 0.06 0.08 I (amps) B (tesla) Magnetic field (B) produced by current (I) in solenoid • Record the rotation angle () for coil currents of 0,1,2,3,4 and 5 amps. Avoid having the current in the coil switched on except when measurements are actually being taken as it can easily overheat. If the coil becomes too hot to touch, switch it off and wait for it to cool before proceeding. • Plot  as a function of B and, given that the length of the glass rod is 30 cm, determine Verdet’s constant for this material at the wavelength () in use. • Repeat the experiment for each of the wavelengths available using the filter set provided. • Calculate the logarithm for each V and  and tabulate the results. By plotting log V against log , determine the relationship between V and . [Hint: m log(x) = log (xm) and log(xy) = log(x) + log(y)]. • Calculate the errors involved in your determination of V. The uncertainty in a value of B may be taken as the uncertainty in reading the scale of the calibration curve) • The magnetic field direction can be reversed by reversing the direction of current flow in the coil. Describe the effect of this reversal and provide an explanation. Reference Optics Hecht.

Top of Form Abstract.     Faraday Effect or Faraday … Read More...
Explain the term “Stress Relaxation” and discuss its significance in the design of polymer components.

Explain the term “Stress Relaxation” and discuss its significance in the design of polymer components.

Reduction in stress in a material subjected to continued constant … Read More...
Define the term “creep” and discuss its significance in the design of polymer components.

Define the term “creep” and discuss its significance in the design of polymer components.

Creep is a time- dependent deformation under a certain applied … Read More...
Que 1: in women who suffer from migraine …………………. are classified menstrual migraines, which tend to be more severe and longer lasting . a) 5% – 10% b) 45% – 55% c) 20% – 50% d) 65%-75% Que 2: why are the women on average, slightly shorter than men a) They have fat then man which contributes to stature b) Their long bones are sealed and stop growing earlier than men c) Their brains are somewhat smaller than man’s brain d) Their brains are somewhat larger than man, brain que 3: menopause frequently occurs between ………………..age of year a) 25-30 b) 45-55 c) 35-40 d) 65-75 que 4: this hormone causes enlargement of the larynx and an increase in the length and thickness of the vocal cords. A) estrogen 2) cholesterol 3) progesterone 4) testosterone Que 5: the reproductive cycle includes which of the following interconnected sets of events a) Ovarian cycle b) Urinary cycle c) Placental cycle d) Female prostate cycle Que 6: high level of circulating progesterone have been associated with : a) Excessive milk production b) Ovarian cancer c) Inability to breast feed a new born child d) Pregnancy Que 7: although variations exist, ovulation typically occurs on the …………day before mensuaration a) 1st b) 14th c) 7th d) 28th Que 8: LH stimulates interstitial cells a) To decrease GnRH b) To produce FSH c) To produce testosterones d) To produce sperm Que 9:what region of the uterus is shed during menstration? a) Stratum basalis of the myometrium b) Stratum basalis of the endometrium c) Stratum functionalis of the endometrium d) Perimetrium Que 10: the phenomenon is which women living in close proximity tend to menstruate at approximately the time is called. a) Precocious puberty b) Menstrual synchrony’ c) Delayed puberty d) Ovarian synchrony Que 11.studies have shown that healthy menstruating women a) Should not participate in sports b) Often feel ill or weak when exercising c) Are able to safety engage in athletic activities d) Can contaminate others and should not engage in contacts sports. Que 12: which term below describes a chemical that resembles steroid hormones and posses threat to maintain homeostasis. a) Androgens b) Prostaglandins c) Endocrine disruptors d) All of the above Que 13: one of the primary function of ……….is preparing and sustaining the uterus of pregnancy a) Testosterone b) Progesterone c) Estradiol d) inhibin Que 14: typically ovulation occurs a) at the end of the uterine phase b) at the start of follicular phase c) during an increase of LH in the ovarian cycle d) at the middle of the luteal phase

Que 1: in women who suffer from migraine …………………. are classified menstrual migraines, which tend to be more severe and longer lasting . a) 5% – 10% b) 45% – 55% c) 20% – 50% d) 65%-75% Que 2: why are the women on average, slightly shorter than men a) They have fat then man which contributes to stature b) Their long bones are sealed and stop growing earlier than men c) Their brains are somewhat smaller than man’s brain d) Their brains are somewhat larger than man, brain que 3: menopause frequently occurs between ………………..age of year a) 25-30 b) 45-55 c) 35-40 d) 65-75 que 4: this hormone causes enlargement of the larynx and an increase in the length and thickness of the vocal cords. A) estrogen 2) cholesterol 3) progesterone 4) testosterone Que 5: the reproductive cycle includes which of the following interconnected sets of events a) Ovarian cycle b) Urinary cycle c) Placental cycle d) Female prostate cycle Que 6: high level of circulating progesterone have been associated with : a) Excessive milk production b) Ovarian cancer c) Inability to breast feed a new born child d) Pregnancy Que 7: although variations exist, ovulation typically occurs on the …………day before mensuaration a) 1st b) 14th c) 7th d) 28th Que 8: LH stimulates interstitial cells a) To decrease GnRH b) To produce FSH c) To produce testosterones d) To produce sperm Que 9:what region of the uterus is shed during menstration? a) Stratum basalis of the myometrium b) Stratum basalis of the endometrium c) Stratum functionalis of the endometrium d) Perimetrium Que 10: the phenomenon is which women living in close proximity tend to menstruate at approximately the time is called. a) Precocious puberty b) Menstrual synchrony’ c) Delayed puberty d) Ovarian synchrony Que 11.studies have shown that healthy menstruating women a) Should not participate in sports b) Often feel ill or weak when exercising c) Are able to safety engage in athletic activities d) Can contaminate others and should not engage in contacts sports. Que 12: which term below describes a chemical that resembles steroid hormones and posses threat to maintain homeostasis. a) Androgens b) Prostaglandins c) Endocrine disruptors d) All of the above Que 13: one of the primary function of ……….is preparing and sustaining the uterus of pregnancy a) Testosterone b) Progesterone c) Estradiol d) inhibin Que 14: typically ovulation occurs a) at the end of the uterine phase b) at the start of follicular phase c) during an increase of LH in the ovarian cycle d) at the middle of the luteal phase

Paper 1: Summary Our first few weeks of class have been devoted to summaries, and the practice of writing effective, informative synopses of longer texts. In each class session, we have discussed how to read an article or essay to extract its major points, how to phrase those points in your own words, how to organize those points logically, and how to ensure that your summary accurately reflects the contents of the original text. We have also focused on the importance of summaries for academic work, as they allow readers to understand the key elements of a significant issue or phenomenon, and allow writers to test their knowledge of a text by explaining its main points in brief. For this assignment, you will write a summary of either Lee Ross and Richard E. Nisbett’s “The Power of Situations” (WRAC, 579-582) or Solomon E. Asch’s “Opinions and Social Pressure” Your summary should clearly restate the central claim or thesis of the essay you select, go through the essay’s subordinate claims that support that thesis, and provide a few brief examples that illustrate those claims. Remember that you are not to offer your opinion on the essay – rather, you are summarizing the contents of the essay, without making your own arguments about those contents. Things to Keep in Mind When writing your summary, ask yourself the following questions: • Does this summary begin by stating the thesis of the essay you’ve chosen? • Does that statement of the thesis clearly communicate the central argument of the entire essay? That is, does it give the reader a firm sense of what the whole essay is about? • Are the subordinate points you’ve provided the most significant points within the essay that support the essay’s thesis? • Are the examples you’ve chosen important to understanding the essay’s argument? • Is the summary organized logically, with each idea clearly building upon its predecessor? • Is the summary clearly written, and free of grammatical errors? These will be the questions I ask as I evaluate your summary, so keep them in mind as you’re writing. You should also look over them again once you’ve finished the summary, and make any revisions you might need before submitting the final summary for a grade. Formal Requirements Papers should be 2-3 full pages long (no less, and not significantly more), typed in 12-point, Times New Roman font, and double-spaced. All papers must include a list of works cited, and all in-text citations should be provided in MLA format.

Paper 1: Summary Our first few weeks of class have been devoted to summaries, and the practice of writing effective, informative synopses of longer texts. In each class session, we have discussed how to read an article or essay to extract its major points, how to phrase those points in your own words, how to organize those points logically, and how to ensure that your summary accurately reflects the contents of the original text. We have also focused on the importance of summaries for academic work, as they allow readers to understand the key elements of a significant issue or phenomenon, and allow writers to test their knowledge of a text by explaining its main points in brief. For this assignment, you will write a summary of either Lee Ross and Richard E. Nisbett’s “The Power of Situations” (WRAC, 579-582) or Solomon E. Asch’s “Opinions and Social Pressure” Your summary should clearly restate the central claim or thesis of the essay you select, go through the essay’s subordinate claims that support that thesis, and provide a few brief examples that illustrate those claims. Remember that you are not to offer your opinion on the essay – rather, you are summarizing the contents of the essay, without making your own arguments about those contents. Things to Keep in Mind When writing your summary, ask yourself the following questions: • Does this summary begin by stating the thesis of the essay you’ve chosen? • Does that statement of the thesis clearly communicate the central argument of the entire essay? That is, does it give the reader a firm sense of what the whole essay is about? • Are the subordinate points you’ve provided the most significant points within the essay that support the essay’s thesis? • Are the examples you’ve chosen important to understanding the essay’s argument? • Is the summary organized logically, with each idea clearly building upon its predecessor? • Is the summary clearly written, and free of grammatical errors? These will be the questions I ask as I evaluate your summary, so keep them in mind as you’re writing. You should also look over them again once you’ve finished the summary, and make any revisions you might need before submitting the final summary for a grade. Formal Requirements Papers should be 2-3 full pages long (no less, and not significantly more), typed in 12-point, Times New Roman font, and double-spaced. All papers must include a list of works cited, and all in-text citations should be provided in MLA format.

info@checkyourstudy.com
BI 102 Lab 1 Writing Assignment How did the different concentrations of sucrose impact osmotic rate? This assignment requires you to evaluate a hypothesis and communicate the results of your experiment on the rate of osmosis into sucrose solutions of varying concentrations. The questions below are meant to guide you to reporting the key findings of your experiment and help you think through how to explain the findings and draw conclusions from them in a scientific manner. ASSIGNMENT: Please respond to the following questions to complete your laboratory write up. For this assignment you will only focus on the osmosis of water into sucrose concentrations of varying concentration. Make sure that your write up is accurate, and clearly written so that it is easily readable. A grading rubric is provided on the second page of this assignment. To earn full points on your write up, you must provide answers that align to the “meets” column of your grading rubric as well as meeting all “Quality of Writing and Mechanics” elements described in the rubric. There are also some tips on pages 3-4 of this assignment to help you succeed. FORMAT: • Type your responses, using 1.5 or double spacing. • Include the section headings (Hypothesis, Results, Analysis) and question number (example: 1, 2, 3, etc) in your answers but do not rewrite the question. • Graphs may be made with a computer program (example: Microsoft excel, Mac numbers, etc) or may be neatly produced with a ruler on graphing paper. • Print out the cover sheet on page 2 of this assignment, read and sign the academic honesty statement, and submit it with your write up. Your instructor WILL NOT accept a write up without the signed cover sheet. DUE DATE: Your write up is due at the beginning of class next week. Late assignments will have 1 point deducted per day up to 5 days, at which point the assignment will be assigned 0 points. Hypothesis and Prediction – Part 1 of Rubric 1. What did you think was going to happen in this experiment and why? You may find it helpful to state your answers to these questions as an “if-then” hypothesis-prediction. Be sure you have included a biological rationale that explains WHY you made this hypothesis/prediction. (You worked on this in question 2 on page 10 of this lab activity) Results – Part 2 of Rubric 2. How did the different concentrations of sucrose impact osmotic rate? Answer this question by creating a line graph that shows the results of your experiment. If you need assistance building a graph, there is a Guide to Graphing resource available on your Moodle lab course site. Analysis- Part 3 of Rubric 3. Explain why you think that the results shown in your graph support or refute your hypothesis (remember we never “prove” anything in science). Consider all your data and the overall data pattern as you answer this question. Don’t ignore unusual data that may not seem to fit into a specific patterns (“outliers”). Explain what you think might be behind these unusual data points. 4. What is the biological significance of your results? What biological concepts explain completely why these events happened in the experiment? How do these results help you understand the biology of the cell and how materials move back and forth across the cell membrane? (A hint: refer back to questions 1A-1F on page 10 of this lab activity). Think about giving a specific example. References- Mechanics Checklist 5. Provide at least one full citation (make sure you include an in-text citation that pinpoints where you used this resource) for a resource you made use of in performing the experiment, understanding the concepts and writing this assignment. (Perhaps your lab manual? Your textbook? A website?) If you used more than one resource, you need to cite each one! If you need help with citations, a Guide to Citing References is available on your Moodle lab course site. Please print out and submit this cover sheet with your lab writeup! Lab Writeup Assignment (1) Assessment Rubric-­‐ 10 points total Name: ________________________________________ Element Misses (1 point) Approaches (2 points) Meets (3 points) Hypothesis Clarity/Specificity Testability Rationale ___Hypothesis is unclear and hardto- understand ___Hypothesis is not testable ___No biological rationale for hypothesis or rationale is fully inaccurate ___Hypothesis included is clearly stated, but not specific or lacks specific details __Hypothesis is testable, but not in a feasible way in this lab ___Some foundation for hypothesis, but based in part on biological inaccuracy ___Hypothesis included is clearly stated and very specific ___Hypothesis is testable and could be tested within lab parameters ___Rationale for hypothesis is grounded in accurate biological information Graph Title Axes Variables Key Graph clarity Data accuracy ___Graph lacks a title ___Axes are not labeled ___Variables not addressed in graph ___No key or way to tell data points apart ___Graph is hard to read and comparisons cannot be made: Inappropriate graph type or use of scale ___Data graphed is inaccurate or does not relate to experiment ___Graph has a title that is not very descriptive ___Axes are either unlabeled, or units are unclear or wrong ___Variables addressed in graph, but not on correct axes ___Key included, but is hard to understand ___Graph is somewhat readable, comparisons can be made with difficulty: Appropriate graph type, but not scaled well ___Data graphed is partially accurate; some data is missing ___Graph has a concise, descriptive title ___Axes are labeled, including clarification of units used ___Variables on correct axes ___A clear, easy-to-use key to data points is included ___Graph is clearly readable and comparisons between treatments are easy to make: Graph type and scale are appropriate to data ___Data graphed is accurate and includes all relevant data, including controls (if needed) Analysis Hypothesis Scientific language Data addressed Explanation ___Hypothesis is not addressed ___Hypothesis is described using language like proven, true, or right ___No explanations for data patterns observed in graph or data does not support conclusions. ___No biological explanation for data trends or explanations are completely inaccurate ___Hypothesis is mentioned, but not linked well to data ___Hypothesis is not consistently described as supported or refuted ___Some data considered in conclusions but other data is ignored. Any unusual “outliers” are ignored ___Explanations include minimal or some inaccurate biological concepts ___Hypothesis is evaluated based upon data ___Hypothesis is consistently described as supported or refuted ___All data collected is considered and addressed by conclusions, including presence of outliers, ___Explanations include relevant and accurate biological concepts Quality of Writing and Mechanics: Worth 1 point. Writeup should meet all of the following criteria! Yes No ☐ ☐ Write up includes your name, the date, and your lab section ☐ ☐ Write up is free from spelling and grammatical errors (make sure you proofread!!) ☐ ☐ Write up is clear and easy-to-understand ☐ ☐ Write up includes full citation for at least one reference with corresponding in-text citation ☐ ☐ All portions of write up are clearly labeled, and question numbers are included Plagiarism refers to the use of original work, ideas, or text that are not your own. This includes cut-and-paste from websites, copying directly from texts, and copying the work of others, including fellow students. Telling someone your answers to the questions (including telling someone how to make their graph, question #2), or asking for the answers to any question, is cheating. (Asking someone how to make the graph for this assignment is NOT the same as asking for help learning excel or some other software). All forms of cheating, including plagiarism and copying of work will result in an immediate zero for the exam, quiz, or assignment. In the case of copying, all parties involved in the unethical behavior will earn zeros. Cheating students will be referred to the Student Conduct Committee for further action. You also have the right to appeal to the Student Conduct Committee. I have read and understand the plagiarism statement. ____________________________________________________ Signature Guidelines for Good Quality Scientific Reports Hypothesis and Prediction: The hypothesis is a tentative explanation for the phenomenon. Remember that: • A good hypothesis and prediction is testable (and should be testable under the conditions of our lab environment; For example, if your hypothesis requires shooting a rocket into space, then its not really testable under our laboratory conditions). • Your explanation can be ruled out through testing, or falsified. • A good hypothesis and prediction is detailed and specific in what it is testing. • A good hypothesis provides a rationale or explanation for why you think your prediction is reasonable and this rationale is based on what we know about biology. • A good prediction is specific and can be tested with a specific experiment. Examples*: I think that diet soda will float and regular soda will sink. {This hypothesis misses the goal. It is not specific as we don’t know where the sodas are floating and sinking, and it does not provide any explanation to explain why the hypothesis makes sense} Because diet soda does not contain sugar and regular soda does, the diet soda will float in a bucket of water, while regular soda will sink. {This hypothesis approaches the goal. It is more specific about the conditions, and it provides a partial explanation about why the hypothesis makes sense, but the connection between sugar and sinking is unclear} If diet soda does not contain sugar, then its density (mass/volume) is lower than that of regular soda which does contain sugar, and so diet soda will float in a bucket of water while regular soda sinks. {This hypothesis meets the goal. It is specific and the rationale- sugar affects density and density is what determines floating or sinking in water- is clearly articulated} *Note that these examples are for different experiments and investigations and NOT about your osmosis lab. They are provided only to help you think about what you need to include in your write up. Graph: The graph is a visual representation of the data you gathered while testing your hypothesis. Remember that: • A graph needs a concise title that clearly describes the data that it is showing. • Data must be put on the correct axes of the graph. In general, the data you collected (representing what you are trying to find out about) goes on the vertical (Y) axis. The supporting data that that describes how, when or under what conditions you collected your data goes on the horizontal (X) axis. (For this reason time nearly always goes on the X-axis). • Axes must be labeled, including the units in which data were recorded • Data points should be clearly marked and identified; a key is helpful if more than one group of data is included in the graph. • The scale of a graph is important. It should be consistent (there should be no change in the units or increments on a single axis) and appropriate to the data you collected Examples: {This graph misses the goal. There is no title, nor is there a key to help distinguish what the data points mean. The scale is too large- from 0 to 100 with an increment of 50, when the maximum number in the graph is 25- and makes it hard to interpret this graph. The x-axis is labeled, but without units (the months) and the y-axis has units, but the label is incomplete- number of what?} {This graph meets the goal. There is a descriptive title, and all of the axes are clearly labeled with units. There is a key so that we can distinguish what each set of data points represent. The dependent variable (number of individuals) is correctly placed on the y-axis with the independent variable of time placed on the x-axis. The scale of 0-30 is appropriate to the data, with each line on the x-axis representing an increment of 5.} 0 50 100 Number Month 0 5 10 15 20 25 30 March April May June July Number of individuals Month (2011) Population size of three different madtom catiCish in the Marais de Cygnes River in Spring/Summer 2011 Brindled madtom Neosho madtom Slender madtom Analysis: You need to evaluate your hypothesis based on the data patterns shown by your graph. Remember that: • You use data to determine support or refute your hypothesis. It is only possible to support a hypothesis, not to “prove” one (that would require testing every possible permutation and combination of factors). Your evaluation of your hypothesis should not be contradicted by the pattern shown by your data. • Refer back to the prediction you made as part of your hypothesis and use your data to justify your decision to support or refute your hypothesis. • In the “if” part of your hypothesis you should have provided a rationale, or explanation for the prediction you made in your hypothesis (“then” part of hypothesis”). Use this to help you explain why you think you observed the specific pattern of data revealed in your graph. • You should consider all of the data you collected in examining the support (or lack of support for your hypothesis). If there are unusual data points or “outliers” that don’t seem to fit the general pattern in your graph, explain what you think those mean. Examples: I was right. Diet Pepsi floated and so did Apricot Nectar. Regular Pepsi sank. Obviously the regular Pepsi was heavier. This helps us understand the concept of density, which is a really important one. {This analysis misses the goal. The hypothesis isn’t actually mentioned and the data is only briefly described. There is no explanation of the importance of the Apricot Nectar results. Finally, there is no connection to how these results help understand density or why it is biologically important} I hypothesized that diet soda would float, and all three cans of diet Pepsi did float while the regular Pepsi sank. This supports my hypothesis. Both types of Pepsi were 8.5 fluid ounces in volume, but the regular Pepsi also contained 16 grams of sugar. This means that the regular Pepsi had 16 more grams of mass provided by the sugar in the same amount of volume. This would lead to an increase in density, which explains why the regular soda cans sank. When we put in a can of Apricot Nectar, which had 19 grams of sugar, it floated. This was unexpected, but I think it is explained by the fact that an Apricot Nectar can had a volume of 7 fluid ounces, but the dimensions of the can are the same as that of a Pepsi can. A same-sized can with less liquid probably has an air space that helped it float. The results of this experiment help us understand how the air bladder of a fish, which creates an air space inside the fish, helps it float in the water and also how seaweeds and other living things with air spaces or other factors that decrease their density keep from sinking to the bottom of the water. {This analysis meets the goal. It clearly ties the hypothesis to the results and outlines what they mean. It describes how the results support the hypothesis, but also explains a possible reason behind the unusual results of the Apricot Nectar. Finally, there is a link to how this experiment helps us understand biology}

BI 102 Lab 1 Writing Assignment How did the different concentrations of sucrose impact osmotic rate? This assignment requires you to evaluate a hypothesis and communicate the results of your experiment on the rate of osmosis into sucrose solutions of varying concentrations. The questions below are meant to guide you to reporting the key findings of your experiment and help you think through how to explain the findings and draw conclusions from them in a scientific manner. ASSIGNMENT: Please respond to the following questions to complete your laboratory write up. For this assignment you will only focus on the osmosis of water into sucrose concentrations of varying concentration. Make sure that your write up is accurate, and clearly written so that it is easily readable. A grading rubric is provided on the second page of this assignment. To earn full points on your write up, you must provide answers that align to the “meets” column of your grading rubric as well as meeting all “Quality of Writing and Mechanics” elements described in the rubric. There are also some tips on pages 3-4 of this assignment to help you succeed. FORMAT: • Type your responses, using 1.5 or double spacing. • Include the section headings (Hypothesis, Results, Analysis) and question number (example: 1, 2, 3, etc) in your answers but do not rewrite the question. • Graphs may be made with a computer program (example: Microsoft excel, Mac numbers, etc) or may be neatly produced with a ruler on graphing paper. • Print out the cover sheet on page 2 of this assignment, read and sign the academic honesty statement, and submit it with your write up. Your instructor WILL NOT accept a write up without the signed cover sheet. DUE DATE: Your write up is due at the beginning of class next week. Late assignments will have 1 point deducted per day up to 5 days, at which point the assignment will be assigned 0 points. Hypothesis and Prediction – Part 1 of Rubric 1. What did you think was going to happen in this experiment and why? You may find it helpful to state your answers to these questions as an “if-then” hypothesis-prediction. Be sure you have included a biological rationale that explains WHY you made this hypothesis/prediction. (You worked on this in question 2 on page 10 of this lab activity) Results – Part 2 of Rubric 2. How did the different concentrations of sucrose impact osmotic rate? Answer this question by creating a line graph that shows the results of your experiment. If you need assistance building a graph, there is a Guide to Graphing resource available on your Moodle lab course site. Analysis- Part 3 of Rubric 3. Explain why you think that the results shown in your graph support or refute your hypothesis (remember we never “prove” anything in science). Consider all your data and the overall data pattern as you answer this question. Don’t ignore unusual data that may not seem to fit into a specific patterns (“outliers”). Explain what you think might be behind these unusual data points. 4. What is the biological significance of your results? What biological concepts explain completely why these events happened in the experiment? How do these results help you understand the biology of the cell and how materials move back and forth across the cell membrane? (A hint: refer back to questions 1A-1F on page 10 of this lab activity). Think about giving a specific example. References- Mechanics Checklist 5. Provide at least one full citation (make sure you include an in-text citation that pinpoints where you used this resource) for a resource you made use of in performing the experiment, understanding the concepts and writing this assignment. (Perhaps your lab manual? Your textbook? A website?) If you used more than one resource, you need to cite each one! If you need help with citations, a Guide to Citing References is available on your Moodle lab course site. Please print out and submit this cover sheet with your lab writeup! Lab Writeup Assignment (1) Assessment Rubric-­‐ 10 points total Name: ________________________________________ Element Misses (1 point) Approaches (2 points) Meets (3 points) Hypothesis Clarity/Specificity Testability Rationale ___Hypothesis is unclear and hardto- understand ___Hypothesis is not testable ___No biological rationale for hypothesis or rationale is fully inaccurate ___Hypothesis included is clearly stated, but not specific or lacks specific details __Hypothesis is testable, but not in a feasible way in this lab ___Some foundation for hypothesis, but based in part on biological inaccuracy ___Hypothesis included is clearly stated and very specific ___Hypothesis is testable and could be tested within lab parameters ___Rationale for hypothesis is grounded in accurate biological information Graph Title Axes Variables Key Graph clarity Data accuracy ___Graph lacks a title ___Axes are not labeled ___Variables not addressed in graph ___No key or way to tell data points apart ___Graph is hard to read and comparisons cannot be made: Inappropriate graph type or use of scale ___Data graphed is inaccurate or does not relate to experiment ___Graph has a title that is not very descriptive ___Axes are either unlabeled, or units are unclear or wrong ___Variables addressed in graph, but not on correct axes ___Key included, but is hard to understand ___Graph is somewhat readable, comparisons can be made with difficulty: Appropriate graph type, but not scaled well ___Data graphed is partially accurate; some data is missing ___Graph has a concise, descriptive title ___Axes are labeled, including clarification of units used ___Variables on correct axes ___A clear, easy-to-use key to data points is included ___Graph is clearly readable and comparisons between treatments are easy to make: Graph type and scale are appropriate to data ___Data graphed is accurate and includes all relevant data, including controls (if needed) Analysis Hypothesis Scientific language Data addressed Explanation ___Hypothesis is not addressed ___Hypothesis is described using language like proven, true, or right ___No explanations for data patterns observed in graph or data does not support conclusions. ___No biological explanation for data trends or explanations are completely inaccurate ___Hypothesis is mentioned, but not linked well to data ___Hypothesis is not consistently described as supported or refuted ___Some data considered in conclusions but other data is ignored. Any unusual “outliers” are ignored ___Explanations include minimal or some inaccurate biological concepts ___Hypothesis is evaluated based upon data ___Hypothesis is consistently described as supported or refuted ___All data collected is considered and addressed by conclusions, including presence of outliers, ___Explanations include relevant and accurate biological concepts Quality of Writing and Mechanics: Worth 1 point. Writeup should meet all of the following criteria! Yes No ☐ ☐ Write up includes your name, the date, and your lab section ☐ ☐ Write up is free from spelling and grammatical errors (make sure you proofread!!) ☐ ☐ Write up is clear and easy-to-understand ☐ ☐ Write up includes full citation for at least one reference with corresponding in-text citation ☐ ☐ All portions of write up are clearly labeled, and question numbers are included Plagiarism refers to the use of original work, ideas, or text that are not your own. This includes cut-and-paste from websites, copying directly from texts, and copying the work of others, including fellow students. Telling someone your answers to the questions (including telling someone how to make their graph, question #2), or asking for the answers to any question, is cheating. (Asking someone how to make the graph for this assignment is NOT the same as asking for help learning excel or some other software). All forms of cheating, including plagiarism and copying of work will result in an immediate zero for the exam, quiz, or assignment. In the case of copying, all parties involved in the unethical behavior will earn zeros. Cheating students will be referred to the Student Conduct Committee for further action. You also have the right to appeal to the Student Conduct Committee. I have read and understand the plagiarism statement. ____________________________________________________ Signature Guidelines for Good Quality Scientific Reports Hypothesis and Prediction: The hypothesis is a tentative explanation for the phenomenon. Remember that: • A good hypothesis and prediction is testable (and should be testable under the conditions of our lab environment; For example, if your hypothesis requires shooting a rocket into space, then its not really testable under our laboratory conditions). • Your explanation can be ruled out through testing, or falsified. • A good hypothesis and prediction is detailed and specific in what it is testing. • A good hypothesis provides a rationale or explanation for why you think your prediction is reasonable and this rationale is based on what we know about biology. • A good prediction is specific and can be tested with a specific experiment. Examples*: I think that diet soda will float and regular soda will sink. {This hypothesis misses the goal. It is not specific as we don’t know where the sodas are floating and sinking, and it does not provide any explanation to explain why the hypothesis makes sense} Because diet soda does not contain sugar and regular soda does, the diet soda will float in a bucket of water, while regular soda will sink. {This hypothesis approaches the goal. It is more specific about the conditions, and it provides a partial explanation about why the hypothesis makes sense, but the connection between sugar and sinking is unclear} If diet soda does not contain sugar, then its density (mass/volume) is lower than that of regular soda which does contain sugar, and so diet soda will float in a bucket of water while regular soda sinks. {This hypothesis meets the goal. It is specific and the rationale- sugar affects density and density is what determines floating or sinking in water- is clearly articulated} *Note that these examples are for different experiments and investigations and NOT about your osmosis lab. They are provided only to help you think about what you need to include in your write up. Graph: The graph is a visual representation of the data you gathered while testing your hypothesis. Remember that: • A graph needs a concise title that clearly describes the data that it is showing. • Data must be put on the correct axes of the graph. In general, the data you collected (representing what you are trying to find out about) goes on the vertical (Y) axis. The supporting data that that describes how, when or under what conditions you collected your data goes on the horizontal (X) axis. (For this reason time nearly always goes on the X-axis). • Axes must be labeled, including the units in which data were recorded • Data points should be clearly marked and identified; a key is helpful if more than one group of data is included in the graph. • The scale of a graph is important. It should be consistent (there should be no change in the units or increments on a single axis) and appropriate to the data you collected Examples: {This graph misses the goal. There is no title, nor is there a key to help distinguish what the data points mean. The scale is too large- from 0 to 100 with an increment of 50, when the maximum number in the graph is 25- and makes it hard to interpret this graph. The x-axis is labeled, but without units (the months) and the y-axis has units, but the label is incomplete- number of what?} {This graph meets the goal. There is a descriptive title, and all of the axes are clearly labeled with units. There is a key so that we can distinguish what each set of data points represent. The dependent variable (number of individuals) is correctly placed on the y-axis with the independent variable of time placed on the x-axis. The scale of 0-30 is appropriate to the data, with each line on the x-axis representing an increment of 5.} 0 50 100 Number Month 0 5 10 15 20 25 30 March April May June July Number of individuals Month (2011) Population size of three different madtom catiCish in the Marais de Cygnes River in Spring/Summer 2011 Brindled madtom Neosho madtom Slender madtom Analysis: You need to evaluate your hypothesis based on the data patterns shown by your graph. Remember that: • You use data to determine support or refute your hypothesis. It is only possible to support a hypothesis, not to “prove” one (that would require testing every possible permutation and combination of factors). Your evaluation of your hypothesis should not be contradicted by the pattern shown by your data. • Refer back to the prediction you made as part of your hypothesis and use your data to justify your decision to support or refute your hypothesis. • In the “if” part of your hypothesis you should have provided a rationale, or explanation for the prediction you made in your hypothesis (“then” part of hypothesis”). Use this to help you explain why you think you observed the specific pattern of data revealed in your graph. • You should consider all of the data you collected in examining the support (or lack of support for your hypothesis). If there are unusual data points or “outliers” that don’t seem to fit the general pattern in your graph, explain what you think those mean. Examples: I was right. Diet Pepsi floated and so did Apricot Nectar. Regular Pepsi sank. Obviously the regular Pepsi was heavier. This helps us understand the concept of density, which is a really important one. {This analysis misses the goal. The hypothesis isn’t actually mentioned and the data is only briefly described. There is no explanation of the importance of the Apricot Nectar results. Finally, there is no connection to how these results help understand density or why it is biologically important} I hypothesized that diet soda would float, and all three cans of diet Pepsi did float while the regular Pepsi sank. This supports my hypothesis. Both types of Pepsi were 8.5 fluid ounces in volume, but the regular Pepsi also contained 16 grams of sugar. This means that the regular Pepsi had 16 more grams of mass provided by the sugar in the same amount of volume. This would lead to an increase in density, which explains why the regular soda cans sank. When we put in a can of Apricot Nectar, which had 19 grams of sugar, it floated. This was unexpected, but I think it is explained by the fact that an Apricot Nectar can had a volume of 7 fluid ounces, but the dimensions of the can are the same as that of a Pepsi can. A same-sized can with less liquid probably has an air space that helped it float. The results of this experiment help us understand how the air bladder of a fish, which creates an air space inside the fish, helps it float in the water and also how seaweeds and other living things with air spaces or other factors that decrease their density keep from sinking to the bottom of the water. {This analysis meets the goal. It clearly ties the hypothesis to the results and outlines what they mean. It describes how the results support the hypothesis, but also explains a possible reason behind the unusual results of the Apricot Nectar. Finally, there is a link to how this experiment helps us understand biology}

info@checkyourstudy.com Whatsapp +919911743277
Question 2 (1 point) Which of the following is correct about interpreting the results of statistical tests? Question 2 options: 1) Obtaining a probability value of .05 tells us the difference between groups is definitely not caused by chance fluctuation. 2) If a probability value falls above .05, then the results will have to be replicated before we can have confidence in them. 3) Obtaining a probability value of .05 gives us confidence that the findings are not the result of chance, but does not eliminate this possibility. 4) A .05 probability value means there is a 5 percent chance the finding reflects a real difference. Question 3 (1 point) Which of the following statements is true about theories of personality? Question 3 options: 1) They provide only a part of the picture of human personality. 2) They support the expert’s viewpoint. 3) Theories are predicted from one hypothesis or another. 4) They are directly tested using empirical methods. Question 4 (1 point) Which of the following statements is correct about hypothetical constructs? Question 4 options: 1) They are useful inventions by researchers that have no physical reality. 2) They are easier to measure than personality variables. 3) They cannot be measured with personality tests. 4) They have poor reliability and validity. Question 5 (1 point) According to the “law of parsimony,” Question 5 options: 1) a good theory generates a large number of hypotheses. 2) the best theory is the one that explains a phenomenon with the fewest constructs. 3) hypotheses are generated from theories. 4) theories should require as few studies as possible to support them. ________________________________________ Question 6 (1 point) Which of the following does a correlation coefficient not tell us? Question 6 options: 1) If the difference between two means reflects a real difference or can be attributed tochancefluctuation. 2) The strength of a relationship between two measures. 3) The direction of a relationship between two measures. 4) How well a score on one measure can be predicted by a score on another measure. Question 7 (1 point) A researcher finds that males make fewer errors than females when working in a competitive situation. However, women make fewer errors than men when working in acooperative situation. This is an example of Question 7 options: 1) a confound. 2) two manipulated independent variables. 3) an interaction. 4) a failure to replicate.

Question 2 (1 point) Which of the following is correct about interpreting the results of statistical tests? Question 2 options: 1) Obtaining a probability value of .05 tells us the difference between groups is definitely not caused by chance fluctuation. 2) If a probability value falls above .05, then the results will have to be replicated before we can have confidence in them. 3) Obtaining a probability value of .05 gives us confidence that the findings are not the result of chance, but does not eliminate this possibility. 4) A .05 probability value means there is a 5 percent chance the finding reflects a real difference. Question 3 (1 point) Which of the following statements is true about theories of personality? Question 3 options: 1) They provide only a part of the picture of human personality. 2) They support the expert’s viewpoint. 3) Theories are predicted from one hypothesis or another. 4) They are directly tested using empirical methods. Question 4 (1 point) Which of the following statements is correct about hypothetical constructs? Question 4 options: 1) They are useful inventions by researchers that have no physical reality. 2) They are easier to measure than personality variables. 3) They cannot be measured with personality tests. 4) They have poor reliability and validity. Question 5 (1 point) According to the “law of parsimony,” Question 5 options: 1) a good theory generates a large number of hypotheses. 2) the best theory is the one that explains a phenomenon with the fewest constructs. 3) hypotheses are generated from theories. 4) theories should require as few studies as possible to support them. ________________________________________ Question 6 (1 point) Which of the following does a correlation coefficient not tell us? Question 6 options: 1) If the difference between two means reflects a real difference or can be attributed tochancefluctuation. 2) The strength of a relationship between two measures. 3) The direction of a relationship between two measures. 4) How well a score on one measure can be predicted by a score on another measure. Question 7 (1 point) A researcher finds that males make fewer errors than females when working in a competitive situation. However, women make fewer errors than men when working in acooperative situation. This is an example of Question 7 options: 1) a confound. 2) two manipulated independent variables. 3) an interaction. 4) a failure to replicate.

No expert has answered this question yet. You can browse … Read More...