1. Express in your own words the meaning of these terms a. Balance b. Reaction c. Equation d. Reactant e. Product f. Dozen g. Mole Molar mass h. Reaction rate Activation energy i. Catalyst j. Equilibrium k. Dynamic equilibrium l. Chemical equilibrium Le Chatelier’s Principle m. Exergonic Endergonic n. Entropy o. Enthalpy p. Thermodynamics q. First Law of Thermodynamics Second Law of Thermodynamics

1. Express in your own words the meaning of these terms a. Balance b. Reaction c. Equation d. Reactant e. Product f. Dozen g. Mole Molar mass h. Reaction rate Activation energy i. Catalyst j. Equilibrium k. Dynamic equilibrium l. Chemical equilibrium Le Chatelier’s Principle m. Exergonic Endergonic n. Entropy o. Enthalpy p. Thermodynamics q. First Law of Thermodynamics Second Law of Thermodynamics

Express in your own words the meaning of these terms: … Read More...
Assignment 1 Due: 11:59pm on Wednesday, February 5, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 1.6 Part A Determine the sign (positive or negative) of the position for the particle in the figure. ANSWER: Correct Part B Determine the sign (positive or negative) of the velocity for the particle in the figure. ANSWER: Correct Positive Negative Negative Positive Part C Determine the sign (positive or negative) of the acceleration for the particle in the figure. ANSWER: Correct Conceptual Question 1.7 Part A Determine the sign (positive or negative) of the position for the particle in the figure. ANSWER: Positive Negative Correct Part B Determine the sign (positive or negative) of the velocity for the particle in the figure. ANSWER: Correct Part C Determine the sign (positive or negative) of the acceleration for the particle in the figure. ANSWER: Correct Enhanced EOC: Problem 1.18 The figure shows the motion diagram of a drag racer. The camera took one frame every 2 . Positive Negative Positive Negative Negative Positive s You may want to review ( pages 16 – 19) . For help with math skills, you may want to review: Plotting Points on a Graph Part A Make a position-versus-time graph for the drag racer. Hint 1. How to approach the problem Based on Table 1.1 in the book/e-text, what two observables are associated with each point? Which position or point of the drag racer occurs first? Which position occurs last? If you label the first point as happening at , at what time does the next point occur? At what time does the last position point occur? What is the position of a point halfway in between and ? Can you think of a way to estimate the positions of the points using a ruler? ANSWER: t = 0 s x = 0 m x = 200 m Correct Motion of Two Rockets Learning Goal: To learn to use images of an object in motion to determine velocity and acceleration. Two toy rockets are traveling in the same direction (taken to be the x axis). A diagram is shown of a time-exposure image where a stroboscope has illuminated the rockets at the uniform time intervals indicated. Part A At what time(s) do the rockets have the same velocity? Hint 1. How to determine the velocity The diagram shows position, not velocity. You can’t find instantaneous velocity from this diagram, but you can determine the average velocity between two times and : . Note that no position values are given in the diagram; you will need to estimate these based on the distance between successive positions of the rockets. ANSWER: Correct t1 t2 vavg[t1, t2] = x(t2)−x(t1) t2−t1 at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Part B At what time(s) do the rockets have the same x position? ANSWER: Correct Part C At what time(s) do the two rockets have the same acceleration? Hint 1. How to determine the acceleration The velocity is related to the spacing between images in a stroboscopic diagram. Since acceleration is the rate at which velocity changes, the acceleration is related to the how much this spacing changes from one interval to the next. ANSWER: at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Correct Part D The motion of the rocket labeled A is an example of motion with uniform (i.e., constant) __________. ANSWER: Correct Part E The motion of the rocket labeled B is an example of motion with uniform (i.e., constant) __________. ANSWER: Correct Part F At what time(s) is rocket A ahead of rocket B? and nonzero acceleration velocity displacement time and nonzero acceleration velocity displacement time Hint 1. Use the diagram You can answer this question by looking at the diagram and identifying the time(s) when rocket A is to the right of rocket B. ANSWER: Correct Dimensions of Physical Quantities Learning Goal: To introduce the idea of physical dimensions and to learn how to find them. Physical quantities are generally not purely numerical: They have a particular dimension or combination of dimensions associated with them. Thus, your height is not 74, but rather 74 inches, often expressed as 6 feet 2 inches. Although feet and inches are different units they have the same dimension–length. Part A In classical mechanics there are three base dimensions. Length is one of them. What are the other two? Hint 1. MKS system The current system of units is called the International System (abbreviated SI from the French Système International). In the past this system was called the mks system for its base units: meter, kilogram, and second. What are the dimensions of these quantities? ANSWER: before only after only before and after between and at no time(s) shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Correct There are three dimensions used in mechanics: length ( ), mass ( ), and time ( ). A combination of these three dimensions suffices to express any physical quantity, because when a new physical quantity is needed (e.g., velocity), it always obeys an equation that permits it to be expressed in terms of the units used for these three dimensions. One then derives a unit to measure the new physical quantity from that equation, and often its unit is given a special name. Such new dimensions are called derived dimensions and the units they are measured in are called derived units. For example, area has derived dimensions . (Note that “dimensions of variable ” is symbolized as .) You can find these dimensions by looking at the formula for the area of a square , where is the length of a side of the square. Clearly . Plugging this into the equation gives . Part B Find the dimensions of volume. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for volume You have likely learned many formulas for the volume of various shapes in geometry. Any of these equations will give you the dimensions for volume. You can find the dimensions most easily from the volume of a cube , where is the length of the edge of the cube. ANSWER: acceleration and mass acceleration and time acceleration and charge mass and time mass and charge time and charge l m t A [A] = l2 x [x] A = s2 s [s] = l [A] = [s] = 2 l2 [V ] l m t V = e3 e [V ] = l3 Correct Part C Find the dimensions of speed. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for speed Speed is defined in terms of distance and time as . Therefore, . Hint 2. Familiar units for speed You are probably accustomed to hearing speeds in miles per hour (or possibly kilometers per hour). Think about the dimensions for miles and hours. If you divide the dimensions for miles by the dimensions for hours, you will have the dimensions for speed. ANSWER: Correct The dimensions of a quantity are not changed by addition or subtraction of another quantity with the same dimensions. This means that , which comes from subtracting two speeds, has the same dimensions as speed. It does not make physical sense to add or subtract two quanitites that have different dimensions, like length plus time. You can add quantities that have different units, like miles per hour and kilometers per hour, as long as you convert both quantities to the same set of units before you actually compute the sum. You can use this rule to check your answers to any physics problem you work. If the answer involves the sum or difference of two quantities with different dimensions, then it must be incorrect. This rule also ensures that the dimensions of any physical quantity will never involve sums or differences of the base dimensions. (As in the preceeding example, is not a valid dimension for a [v] l m t v d t v = d t [v] = [d]/[t] [v] = lt−1 v l + t physical quantitiy.) A valid dimension will only involve the product or ratio of powers of the base dimensions (e.g. ). Part D Find the dimensions of acceleration. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for acceleration In physics, acceleration is defined as the change in velocity in a certain time. This is shown by the equation . The is a symbol that means “the change in.” ANSWER: Correct Consistency of Units In physics, every physical quantity is measured with respect to a unit. Time is measured in seconds, length is measured in meters, and mass is measured in kilograms. Knowing the units of physical quantities will help you solve problems in physics. Part A Gravity causes objects to be attracted to one another. This attraction keeps our feet firmly planted on the ground and causes the moon to orbit the earth. The force of gravitational attraction is represented by the equation , where is the magnitude of the gravitational attraction on either body, and are the masses of the bodies, is the distance between them, and is the gravitational constant. In SI units, the units of force are , the units of mass are , and the units of distance are . For this equation to have consistent units, the units of must be which of the following? Hint 1. How to approach the problem To solve this problem, we start with the equation m2/3 l2 t−2 [a] l m t a a = v/t  [a] = lt−2 F = Gm1m2 r2 F m1 m2 r G kg  m/s2 kg m G . For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for . ANSWER: Correct Part B One consequence of Einstein’s theory of special relativity is that mass is a form of energy. This mass-energy relationship is perhaps the most famous of all physics equations: , where is mass, is the speed of the light, and is the energy. In SI units, the units of speed are . For the preceding equation to have consistent units (the same units on both sides of the equation), the units of must be which of the following? Hint 1. How to approach the problem To solve this problem, we start with the equation . For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for . ANSWER: F = Gm1m2 r2 m1 kg G kg3 ms2 kgs2 m3 m3 kgs2 m kgs2 E = mc2 m c E m/s E E = mc2 m kg E Correct To solve the types of problems typified by these examples, we start with the given equation. For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for the units of the unknown variable. Problem 1.24 Convert the following to SI units: Part A 5.0 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B 54 Express your answer to two significant figures and include the appropriate units. kgm s kgm2 s2 kgs2 m2 kgm2 s m kg in 0.13 m ft/s ANSWER: Correct Part C 72 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D 17 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 1.55 The figure shows a motion diagram of a car traveling down a street. The camera took one frame every 10 . A distance scale is provided. 16 ms mph 32 ms in2 1.1×10−2 m2 s Part A Make a position-versus-time graph for the car. ANSWER: Incorrect; Try Again ± Moving at the Speed of Light Part A How many nanoseconds does it take light to travel a distance of 4.40 in vacuum? Express your answer numerically in nanoseconds. Hint 1. How to approach the problem Light travels at a constant speed; therefore, you can use the formula for the distance traveled in a certain amount of time by an object moving at constant speed. Before performing any calculations, it is often recommended, although it is not strictly necessary, to convert all quantities to their fundamental units rather than to multiples of the fundamental unit. km Hint 2. Find how many seconds it takes light to travel the given distance Given that the speed of light in vacuum is , how many seconds does it take light to travel a distance of 4.40 ? Express your answer numerically in seconds. Hint 1. Find the time it takes light to travel a certain distance How long does it take light to travel a distance ? Let be the speed of light. Hint 1. The speed of an object The equation that relates the distance traveled by an object with constant speed in a time is . ANSWER: Correct Hint 2. Convert the given distance to meters Convert = 4.40 to meters. Express your answer numerically in meters. Hint 1. Conversion of kilometers to meters Recall that . 3.00 × 108 m/s km r c s v t s = vt r  c r c c r d km 1 km = 103 m ANSWER: Correct ANSWER: Correct Now convert the time into nanoseconds. Recall that . ANSWER: Correct Score Summary: Your score on this assignment is 84.7%. You received 50.84 out of a possible total of 60 points. 4.40km = 4400 m 1.47×10−5 s 1 ns = 10−9 s 1.47×104 ns

Assignment 1 Due: 11:59pm on Wednesday, February 5, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 1.6 Part A Determine the sign (positive or negative) of the position for the particle in the figure. ANSWER: Correct Part B Determine the sign (positive or negative) of the velocity for the particle in the figure. ANSWER: Correct Positive Negative Negative Positive Part C Determine the sign (positive or negative) of the acceleration for the particle in the figure. ANSWER: Correct Conceptual Question 1.7 Part A Determine the sign (positive or negative) of the position for the particle in the figure. ANSWER: Positive Negative Correct Part B Determine the sign (positive or negative) of the velocity for the particle in the figure. ANSWER: Correct Part C Determine the sign (positive or negative) of the acceleration for the particle in the figure. ANSWER: Correct Enhanced EOC: Problem 1.18 The figure shows the motion diagram of a drag racer. The camera took one frame every 2 . Positive Negative Positive Negative Negative Positive s You may want to review ( pages 16 – 19) . For help with math skills, you may want to review: Plotting Points on a Graph Part A Make a position-versus-time graph for the drag racer. Hint 1. How to approach the problem Based on Table 1.1 in the book/e-text, what two observables are associated with each point? Which position or point of the drag racer occurs first? Which position occurs last? If you label the first point as happening at , at what time does the next point occur? At what time does the last position point occur? What is the position of a point halfway in between and ? Can you think of a way to estimate the positions of the points using a ruler? ANSWER: t = 0 s x = 0 m x = 200 m Correct Motion of Two Rockets Learning Goal: To learn to use images of an object in motion to determine velocity and acceleration. Two toy rockets are traveling in the same direction (taken to be the x axis). A diagram is shown of a time-exposure image where a stroboscope has illuminated the rockets at the uniform time intervals indicated. Part A At what time(s) do the rockets have the same velocity? Hint 1. How to determine the velocity The diagram shows position, not velocity. You can’t find instantaneous velocity from this diagram, but you can determine the average velocity between two times and : . Note that no position values are given in the diagram; you will need to estimate these based on the distance between successive positions of the rockets. ANSWER: Correct t1 t2 vavg[t1, t2] = x(t2)−x(t1) t2−t1 at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Part B At what time(s) do the rockets have the same x position? ANSWER: Correct Part C At what time(s) do the two rockets have the same acceleration? Hint 1. How to determine the acceleration The velocity is related to the spacing between images in a stroboscopic diagram. Since acceleration is the rate at which velocity changes, the acceleration is related to the how much this spacing changes from one interval to the next. ANSWER: at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Correct Part D The motion of the rocket labeled A is an example of motion with uniform (i.e., constant) __________. ANSWER: Correct Part E The motion of the rocket labeled B is an example of motion with uniform (i.e., constant) __________. ANSWER: Correct Part F At what time(s) is rocket A ahead of rocket B? and nonzero acceleration velocity displacement time and nonzero acceleration velocity displacement time Hint 1. Use the diagram You can answer this question by looking at the diagram and identifying the time(s) when rocket A is to the right of rocket B. ANSWER: Correct Dimensions of Physical Quantities Learning Goal: To introduce the idea of physical dimensions and to learn how to find them. Physical quantities are generally not purely numerical: They have a particular dimension or combination of dimensions associated with them. Thus, your height is not 74, but rather 74 inches, often expressed as 6 feet 2 inches. Although feet and inches are different units they have the same dimension–length. Part A In classical mechanics there are three base dimensions. Length is one of them. What are the other two? Hint 1. MKS system The current system of units is called the International System (abbreviated SI from the French Système International). In the past this system was called the mks system for its base units: meter, kilogram, and second. What are the dimensions of these quantities? ANSWER: before only after only before and after between and at no time(s) shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Correct There are three dimensions used in mechanics: length ( ), mass ( ), and time ( ). A combination of these three dimensions suffices to express any physical quantity, because when a new physical quantity is needed (e.g., velocity), it always obeys an equation that permits it to be expressed in terms of the units used for these three dimensions. One then derives a unit to measure the new physical quantity from that equation, and often its unit is given a special name. Such new dimensions are called derived dimensions and the units they are measured in are called derived units. For example, area has derived dimensions . (Note that “dimensions of variable ” is symbolized as .) You can find these dimensions by looking at the formula for the area of a square , where is the length of a side of the square. Clearly . Plugging this into the equation gives . Part B Find the dimensions of volume. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for volume You have likely learned many formulas for the volume of various shapes in geometry. Any of these equations will give you the dimensions for volume. You can find the dimensions most easily from the volume of a cube , where is the length of the edge of the cube. ANSWER: acceleration and mass acceleration and time acceleration and charge mass and time mass and charge time and charge l m t A [A] = l2 x [x] A = s2 s [s] = l [A] = [s] = 2 l2 [V ] l m t V = e3 e [V ] = l3 Correct Part C Find the dimensions of speed. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for speed Speed is defined in terms of distance and time as . Therefore, . Hint 2. Familiar units for speed You are probably accustomed to hearing speeds in miles per hour (or possibly kilometers per hour). Think about the dimensions for miles and hours. If you divide the dimensions for miles by the dimensions for hours, you will have the dimensions for speed. ANSWER: Correct The dimensions of a quantity are not changed by addition or subtraction of another quantity with the same dimensions. This means that , which comes from subtracting two speeds, has the same dimensions as speed. It does not make physical sense to add or subtract two quanitites that have different dimensions, like length plus time. You can add quantities that have different units, like miles per hour and kilometers per hour, as long as you convert both quantities to the same set of units before you actually compute the sum. You can use this rule to check your answers to any physics problem you work. If the answer involves the sum or difference of two quantities with different dimensions, then it must be incorrect. This rule also ensures that the dimensions of any physical quantity will never involve sums or differences of the base dimensions. (As in the preceeding example, is not a valid dimension for a [v] l m t v d t v = d t [v] = [d]/[t] [v] = lt−1 v l + t physical quantitiy.) A valid dimension will only involve the product or ratio of powers of the base dimensions (e.g. ). Part D Find the dimensions of acceleration. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for acceleration In physics, acceleration is defined as the change in velocity in a certain time. This is shown by the equation . The is a symbol that means “the change in.” ANSWER: Correct Consistency of Units In physics, every physical quantity is measured with respect to a unit. Time is measured in seconds, length is measured in meters, and mass is measured in kilograms. Knowing the units of physical quantities will help you solve problems in physics. Part A Gravity causes objects to be attracted to one another. This attraction keeps our feet firmly planted on the ground and causes the moon to orbit the earth. The force of gravitational attraction is represented by the equation , where is the magnitude of the gravitational attraction on either body, and are the masses of the bodies, is the distance between them, and is the gravitational constant. In SI units, the units of force are , the units of mass are , and the units of distance are . For this equation to have consistent units, the units of must be which of the following? Hint 1. How to approach the problem To solve this problem, we start with the equation m2/3 l2 t−2 [a] l m t a a = v/t  [a] = lt−2 F = Gm1m2 r2 F m1 m2 r G kg  m/s2 kg m G . For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for . ANSWER: Correct Part B One consequence of Einstein’s theory of special relativity is that mass is a form of energy. This mass-energy relationship is perhaps the most famous of all physics equations: , where is mass, is the speed of the light, and is the energy. In SI units, the units of speed are . For the preceding equation to have consistent units (the same units on both sides of the equation), the units of must be which of the following? Hint 1. How to approach the problem To solve this problem, we start with the equation . For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for . ANSWER: F = Gm1m2 r2 m1 kg G kg3 ms2 kgs2 m3 m3 kgs2 m kgs2 E = mc2 m c E m/s E E = mc2 m kg E Correct To solve the types of problems typified by these examples, we start with the given equation. For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for the units of the unknown variable. Problem 1.24 Convert the following to SI units: Part A 5.0 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B 54 Express your answer to two significant figures and include the appropriate units. kgm s kgm2 s2 kgs2 m2 kgm2 s m kg in 0.13 m ft/s ANSWER: Correct Part C 72 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D 17 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 1.55 The figure shows a motion diagram of a car traveling down a street. The camera took one frame every 10 . A distance scale is provided. 16 ms mph 32 ms in2 1.1×10−2 m2 s Part A Make a position-versus-time graph for the car. ANSWER: Incorrect; Try Again ± Moving at the Speed of Light Part A How many nanoseconds does it take light to travel a distance of 4.40 in vacuum? Express your answer numerically in nanoseconds. Hint 1. How to approach the problem Light travels at a constant speed; therefore, you can use the formula for the distance traveled in a certain amount of time by an object moving at constant speed. Before performing any calculations, it is often recommended, although it is not strictly necessary, to convert all quantities to their fundamental units rather than to multiples of the fundamental unit. km Hint 2. Find how many seconds it takes light to travel the given distance Given that the speed of light in vacuum is , how many seconds does it take light to travel a distance of 4.40 ? Express your answer numerically in seconds. Hint 1. Find the time it takes light to travel a certain distance How long does it take light to travel a distance ? Let be the speed of light. Hint 1. The speed of an object The equation that relates the distance traveled by an object with constant speed in a time is . ANSWER: Correct Hint 2. Convert the given distance to meters Convert = 4.40 to meters. Express your answer numerically in meters. Hint 1. Conversion of kilometers to meters Recall that . 3.00 × 108 m/s km r c s v t s = vt r  c r c c r d km 1 km = 103 m ANSWER: Correct ANSWER: Correct Now convert the time into nanoseconds. Recall that . ANSWER: Correct Score Summary: Your score on this assignment is 84.7%. You received 50.84 out of a possible total of 60 points. 4.40km = 4400 m 1.47×10−5 s 1 ns = 10−9 s 1.47×104 ns

please email info@checkyourstudy.com
A block with mass m =7.1 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.23 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.4 m/s. The block oscillates on the spring without friction. 1) What is the spring constant of the spring? N/m You currently have 1 submissions for this question. Only 10 submission are allowed. You can make 9 more submissions for this question. 2) What is the oscillation frequency? Hz You currently have 2 submissions for this question. Only 10 submission are allowed. You can make 8 more submissions for this question. 3) After t = 0.37 s what is the speed of the block? m/s You currently have 1 submissions for this question. Only 10 submission are allowed. You can make 9 more submissions for this question. 4) What is the magnitude of the maximum acceleration of the block? m/s2 You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 5) At t = 0.37 s what is the magnitude of the net force on the block? N You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 6) Where is the potential energy of the system the greatest? At the highest point of the oscillation. At the new equilibrium position of the oscillation. At the lowest point of the oscillation. You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. (Survey Question) 7) Below is some space to write notes on this problem A 5.2-kg object on a frictionless horizontal surface is attached to one end of a horizontal spring that has a force constantk = 717 N/m. The spring is stretched 7.9 cm from equilibrium and released. 1) (a) What is the frequency of the motion? Hz You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 2) (b) What is the period of the motion? s You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 3) (c) What is the amplitude of the motion? cm You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 4) (d) What is the maximum speed of the motion? m/s You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 5) (e) What is the maximum acceleration of the motion? m/s2 You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 6) (f) When does the object first reach its equilibrium position? s You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 7) (h) What is its acceleration at this time? m/s2 You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 1) An 86 kg person steps into a car of mass 2437 kg, causing it to sink 2.35 cm on its springs. Assuming no damping, with what frequency will the car and passenger vibrate on the springs? Hz You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 1) A 0.117-kg block is suspended from a spring. When a small pebble of mass 30 g is placed on the block, the spring stretches an additional 5.1 cm. With the pebble on the block, the block oscillates with an amplitude of 12 cm. Find the maximum amplitude of oscillation at which the pebble will remain in contact with the block. Block and Spring SHM ________________________________________ At t = 0 a block with mass M = 5 kg moves with a velocity v = 2 m/s at position xo = -.33 m from the equilibrium position of the spring. The block is attached to a massless spring of spring constant k = 61.2 N/m and slides on a frictionless surface. At what time will the block next pass x = 0, the place where the spring is unstretched? t1 = seconds You currently have 1 submissions for this question. Only 10 submission are allowed. You can make 9 more submissions for this question. A simple pendulum with mass m = 1.9 kg and length L = 2.39 m hangs from the ceiling. It is pulled back to an small angle of θ = 9.9° from the vertical and released at t = 0. 1) What is the period of oscillation? s You currently have 2 submissions for this question. Only 10 submission are allowed. You can make 8 more submissions for this question. 2) What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? N You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 3) What is the maximum speed of the pendulum? m/s You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 4) What is the angular displacement at t = 3.5 s? (give the answer as a negative angle if the angle is to the left of the vertical) ° You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 5) What is the magnitude of the tangential acceleration as the pendulum passes through the equilibrium position? m/s2 You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 6) What is the magnitude of the radial acceleration as the pendulum passes through the equilibrium position? m/s2 You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 7) Which of the following would change the frequency of oscillation of this simple pendulum? increasing the mass decreasing the initial angular displacement increasing the length hanging the pendulum in an elevator accelerating downward You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. (Survey Question) 8) Below is some space to write notes on this problem 1) If the period of a 74-cm-long simple pendulum is 1.72 s, what is the value of g at the location of the pendulum? m/s2 You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. Torsion Pendulum • 1 • 2 • 3 • 4 • 5 A torsion pendulum is made from a disk of mass m = 6.6 kg and radius R = 0.66 m. A force of F = 44.8 N exerted on the edge of the disk rotates the disk 1/4 of a revolution from equilibrium. 1) What is the torsion constant of this pendulum? N-m/rad You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 2) What is the minimum torque needed to rotate the pendulum a full revolution from equilibrium? N-m You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 3) What is the angular frequency of oscillation of this torsion pendulum? rad/s You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 4) Which of the following would change the period of oscillation of this torsion pendulum? increasing the mass decreasing the initial angular displacement replacing the disk with a sphere of equal mass and radius hanging the pendulum in an elevator accelerating downward You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. (Survey Question) 5) Below is some space to write notes on this problem You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. Physical Pendulum ________________________________________ A rigid rod of length L= 1 m and mass M = 2.5 kg is attached to a pivot mounted d = 0.17 m from one end. The rod can rotate in the vertical plane, and is influenced by gravity. What is the period for small oscillations of the pendulum shown? T = seconds A circular hoop of radius 57 cm is hung on a narrow horizontal rod and allowed to swing in the plane of the hoop. What is the period of its oscillation, assuming that the amplitude is small? s 1) You are given a wooden rod 68 cm long and asked to drill a small diameter hole in it so that when pivoted about the the hole the period of the pendulum will be a minimum. How far from the center should you drill the hole? cm

A block with mass m =7.1 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.23 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.4 m/s. The block oscillates on the spring without friction. 1) What is the spring constant of the spring? N/m You currently have 1 submissions for this question. Only 10 submission are allowed. You can make 9 more submissions for this question. 2) What is the oscillation frequency? Hz You currently have 2 submissions for this question. Only 10 submission are allowed. You can make 8 more submissions for this question. 3) After t = 0.37 s what is the speed of the block? m/s You currently have 1 submissions for this question. Only 10 submission are allowed. You can make 9 more submissions for this question. 4) What is the magnitude of the maximum acceleration of the block? m/s2 You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 5) At t = 0.37 s what is the magnitude of the net force on the block? N You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 6) Where is the potential energy of the system the greatest? At the highest point of the oscillation. At the new equilibrium position of the oscillation. At the lowest point of the oscillation. You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. (Survey Question) 7) Below is some space to write notes on this problem A 5.2-kg object on a frictionless horizontal surface is attached to one end of a horizontal spring that has a force constantk = 717 N/m. The spring is stretched 7.9 cm from equilibrium and released. 1) (a) What is the frequency of the motion? Hz You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 2) (b) What is the period of the motion? s You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 3) (c) What is the amplitude of the motion? cm You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 4) (d) What is the maximum speed of the motion? m/s You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 5) (e) What is the maximum acceleration of the motion? m/s2 You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 6) (f) When does the object first reach its equilibrium position? s You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 7) (h) What is its acceleration at this time? m/s2 You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 1) An 86 kg person steps into a car of mass 2437 kg, causing it to sink 2.35 cm on its springs. Assuming no damping, with what frequency will the car and passenger vibrate on the springs? Hz You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 1) A 0.117-kg block is suspended from a spring. When a small pebble of mass 30 g is placed on the block, the spring stretches an additional 5.1 cm. With the pebble on the block, the block oscillates with an amplitude of 12 cm. Find the maximum amplitude of oscillation at which the pebble will remain in contact with the block. Block and Spring SHM ________________________________________ At t = 0 a block with mass M = 5 kg moves with a velocity v = 2 m/s at position xo = -.33 m from the equilibrium position of the spring. The block is attached to a massless spring of spring constant k = 61.2 N/m and slides on a frictionless surface. At what time will the block next pass x = 0, the place where the spring is unstretched? t1 = seconds You currently have 1 submissions for this question. Only 10 submission are allowed. You can make 9 more submissions for this question. A simple pendulum with mass m = 1.9 kg and length L = 2.39 m hangs from the ceiling. It is pulled back to an small angle of θ = 9.9° from the vertical and released at t = 0. 1) What is the period of oscillation? s You currently have 2 submissions for this question. Only 10 submission are allowed. You can make 8 more submissions for this question. 2) What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? N You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 3) What is the maximum speed of the pendulum? m/s You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 4) What is the angular displacement at t = 3.5 s? (give the answer as a negative angle if the angle is to the left of the vertical) ° You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 5) What is the magnitude of the tangential acceleration as the pendulum passes through the equilibrium position? m/s2 You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 6) What is the magnitude of the radial acceleration as the pendulum passes through the equilibrium position? m/s2 You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 7) Which of the following would change the frequency of oscillation of this simple pendulum? increasing the mass decreasing the initial angular displacement increasing the length hanging the pendulum in an elevator accelerating downward You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. (Survey Question) 8) Below is some space to write notes on this problem 1) If the period of a 74-cm-long simple pendulum is 1.72 s, what is the value of g at the location of the pendulum? m/s2 You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. Torsion Pendulum • 1 • 2 • 3 • 4 • 5 A torsion pendulum is made from a disk of mass m = 6.6 kg and radius R = 0.66 m. A force of F = 44.8 N exerted on the edge of the disk rotates the disk 1/4 of a revolution from equilibrium. 1) What is the torsion constant of this pendulum? N-m/rad You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 2) What is the minimum torque needed to rotate the pendulum a full revolution from equilibrium? N-m You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 3) What is the angular frequency of oscillation of this torsion pendulum? rad/s You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. 4) Which of the following would change the period of oscillation of this torsion pendulum? increasing the mass decreasing the initial angular displacement replacing the disk with a sphere of equal mass and radius hanging the pendulum in an elevator accelerating downward You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. (Survey Question) 5) Below is some space to write notes on this problem You currently have 0 submissions for this question. Only 10 submission are allowed. You can make 10 more submissions for this question. Physical Pendulum ________________________________________ A rigid rod of length L= 1 m and mass M = 2.5 kg is attached to a pivot mounted d = 0.17 m from one end. The rod can rotate in the vertical plane, and is influenced by gravity. What is the period for small oscillations of the pendulum shown? T = seconds A circular hoop of radius 57 cm is hung on a narrow horizontal rod and allowed to swing in the plane of the hoop. What is the period of its oscillation, assuming that the amplitude is small? s 1) You are given a wooden rod 68 cm long and asked to drill a small diameter hole in it so that when pivoted about the the hole the period of the pendulum will be a minimum. How far from the center should you drill the hole? cm

No expert has answered this question yet. You can browse … Read More...
Discuss the differences in North Pole and the magnetic North Pole, and the South Pole and the magnetic South Pole in terms of dip angle and magnetic declination. Discuss the cause of northern lights

Discuss the differences in North Pole and the magnetic North Pole, and the South Pole and the magnetic South Pole in terms of dip angle and magnetic declination. Discuss the cause of northern lights

The South Pole of the Earth’s magnet is in the … Read More...
you will be developing a Java program that calculates the calories burned based on running and walking activities. Suppose that users of your program do both running and walking as daily physical activity. Calories burned depends on the amount of time spent on each of these activities and the body weight of the person as given by following two equations Calories burned while running = (Body weight in pounds) x (0.63) x (Distance in miles) Calories burned while walking = (Body weight in pounds) x (0.30) x (Distance in miles) Develop a java program that asks the user to enter the body weight in pounds and distance in each of the category. Then calculate and display Calories burned while running, Calories burned while walking, and the total calories burned. Name your program as lab3.java

you will be developing a Java program that calculates the calories burned based on running and walking activities. Suppose that users of your program do both running and walking as daily physical activity. Calories burned depends on the amount of time spent on each of these activities and the body weight of the person as given by following two equations Calories burned while running = (Body weight in pounds) x (0.63) x (Distance in miles) Calories burned while walking = (Body weight in pounds) x (0.30) x (Distance in miles) Develop a java program that asks the user to enter the body weight in pounds and distance in each of the category. Then calculate and display Calories burned while running, Calories burned while walking, and the total calories burned. Name your program as lab3.java

For any additional help, please contact: info@checkyourstudy.com Call and Whatsapp … Read More...
Chapter 07 Reading Questions Due: 11:59pm on Friday, May 23, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Chapter 7 Reading Quiz Question 17 Part A A lake is currently at high pool, with the same amount of water flowing into the lake as is flowing over the spillway. Which of the following temporary changes would increase the resident time of water in this lake? ANSWER: Chapter 7 Reading Quiz Question 16 Part A A large reservoir behind a dam is rapidly rising, as rain and melting snow add more water than is being released out of the dam’s spillway. In this situation, _____. ANSWER: Chapter 7 Reading Quiz Question 1 Part A Which one of the following statements is correct? ANSWER: Double the rate of water flow into the lake and double the rate of water flow out of the lake, while keeping the lake at the same level. Keep the inflow into the lake the same, but release twice as much water from the lake, resulting in a lowering of the lake level. Decrease the inflow into the lake by half, and decrease the outflow of the lake by half. None of the choices would increase the resident time in the lake. the net flux is positive and the capital of water within the reservoir is decreasing the net flux is positive and the capital of water within the reservoir is increasing the net flux is negative and the capital of water within the reservoir is increasing the net flux is negative and the capital of water within the reservoir is decreasing Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 1 of 8 5/21/2014 8:01 PM Chapter 7 Reading Quiz Question 18 Part A A raging river cascades down a granite mountain and eventually reaches the ocean. At the mouth of the river is a beautiful sandy beach composed of fine grains of granite particles from the river. The entire process of producing this sand is a result of _____. ANSWER: Chapter 7 Reading Quiz Question 4 Part A The physical and chemical properties of soils are primarily determined by _____. ANSWER: Chapter 7 Reading Quiz Question 19 Part A Several inches of rain fall over a field of tall corn, soaking into the soil and draining into ditches. Within an hour, there is no standing water and the humidity over the field rises quickly. At a nearby shopping mall, the rainwater fell onto blacktop and drained to sewer pipes, which carried the water directly into a stream. Which of the following occurred in The cycling time of an element or molecule in an ecosystem is equal to the sum of all the flux times. The cycling time is how long it takes an element or molecule to pass through a biogeochemical cycle. The cycling time of water moving through an ecosystem is typically shorter than the resident time in any pool in this system. The amount of time that water spends in an ocean is the cycling time. mineral evaporation erosion, weathering, transport, and then deposition erosion, dissolution, and precipitation organisms consuming and eroding granite the properties of rock from which the soils develop the amount of precipitation that the soil experiences the range of temperatures that the soil experiences the types of animals that live and move through the soils Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 2 of 8 5/21/2014 8:01 PM the cornfield but not in the parking lot? ANSWER: Chapter 7 Reading Quiz Question 6 Part A Most of the water on Earth is found in _____. ANSWER: Chapter 7 Reading Quiz Question 5 Part A Which one of the following primarily results from the effects of solar energy? ANSWER: Chapter 7 Reading Quiz Question 20 Part A A rural Minnesota farmer grows a variety of vegetables to feed her family. In addition, she cuts down some of her dead trees for firewood to heat her home in the winter. This farmer is adding to the flux of the carbon cycle in her region by _____. precipitation evaporation runoff transpiration the polar ice caps lakes and streams aquifers the oceans evaporation of water from a lake the formation of ice on the top of a pond movement of ocean tides the movement of water over a waterfall Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 3 of 8 5/21/2014 8:01 PM ANSWER: Chapter 7 Reading Quiz Question 8 Part A In a terrestrial ecosystem, most carbon is stored in the biomass of _____. ANSWER: Chapter 7 Reading Quiz Question 7 Part A In which of the following countries would we expect that the terrestrial ecosystems have the highest net primary production and biomass? ANSWER: Chapter 7 Reading Quiz Question 22 Part A Some farmers in the Midwest of the United States rotate their crops from year to year, switching from soybeans to corn on the same fields. What is one of the advantages of doing this? encouraging photosynthesis as she raises crops burning carbon-based fuels by consuming vegetables grown on her farm All of the choices are correct. the animals living there air the top layers of soil containing dead organisms living plants China Australia Brazil United States Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 4 of 8 5/21/2014 8:01 PM ANSWER: Chapter 7 Reading Quiz Question 10 Part A Most nitrogen enters the biosphere through the process of _____ ANSWER: Chapter 7 Reading Quiz Question 9 Part A Where do we expect to find the least amount of nitrogen? ANSWER: Chapter 7 Reading Quiz Question 12 Part A Along the west coast of the United States, upwellings bring deep ocean waters to the surface, carrying with them _____, which greatly increases NPP. ANSWER: The corn crop benefits from reactive nitrogen added to the soil by the soybean crop. Both crops require the same fertilizing supplies, so farmers save by buying fertilizer in bulk. Soybeans add large amounts of carbon dioxide to the soil, which helps the corn crop. Corn adds large amounts of phosphorus to the soil, which helps the soybean crop. nitrogen fixation in which bacteria convert N2 to NH3 cellular respiration, in which animals convert N2 to NH4 fermentation in which bacteria convert N2 to HNO3 photosynthesis, in which plants convert N2 to NO2 in Earth’s crust in plants in animals in the atmosphere Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 5 of 8 5/21/2014 8:01 PM Chapter 7 Reading Quiz Question 11 Part A Which one of the following statements about the carbon, phosphorus, and nitrogen cycles is true? ANSWER: Chapter 7 Reading Quiz Question 24 Part A A large coal-burning power plant is about 50 miles upwind from a lake that used to be popular for fishing. But now, just five years after the plant was constructed, the fish populations are decreasing dramatically. Which one of the following impacts of this coal-burning power plant is most likely hurting the fish populations in this downwind lake? ANSWER: Chapter 7 Reading Quiz Question 14 Part A Which one of the following statements about sulfur is correct? ANSWER: oxygen phosphate carbon sulfur Phosphorus is virtually absent in the atmosphere. The major source of carbon used by plants is the soil. Bacteria drive the phosphorus cycle. The major source of nitrogen used by plants is the air. insufficient sunlight reaching the lake low oxygen levels from burning fossil fuels eutrophication of the lake acidification of the lake Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 6 of 8 5/21/2014 8:01 PM Chapter 7 Reading Quiz Question 13 Part A Nitrogen and sulfur are important to all organisms because they are important constituents of _____. ANSWER: Chapter 7 Reading Quiz Question 25 Part A In Iowa, a small, deep lake in the summer becomes stratified with warmer, less-dense water at the surface and colder, denser water near the bottom. As fall air temperatures decrease, the surface water cools and then drops toward the bottom, mixing the lake levels together. As a result of this mixing, _____. ANSWER: Chapter 7 Reading Quiz Question 15 Part A A fire spreads across hundreds of acres of prairie, burning most of the plant parts above the ground. Compared to before the fire, right after this fire the pool of nutrients in the prairie plants _____. The main pool of sulfur is in the atmosphere where the flux is high and the residence time is long. The main pool of sulfur is in rocks. The flux of sulfur through the atmosphere is high and the residence is short. The main pool of sulfur is in the atmosphere where the flux is low and the residence time is long. The main pool of sulfur is in rocks. The flux of sulfur through the atmosphere is low and the residence is short. nucleic acids glucose phosphates some amino acids nitrogen and phosphorus are added to the lake nitrogen and phosphorus decrease near the surface of the lake nitrogen and phosphorus increase near the surface of the lake None of the choices is correct. Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 7 of 8 5/21/2014 8:01 PM ANSWER: Score Summary: Your score on this assignment is 0.0%. You received 0 out of a possible total of 21 points. and the soil decreases increases and the pool of nutrients in the soil decreases and the soil increases decreases and the pool of nutrients in the soil increases Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 8 of 8 5/21/2014 8:01 PM

Chapter 07 Reading Questions Due: 11:59pm on Friday, May 23, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Chapter 7 Reading Quiz Question 17 Part A A lake is currently at high pool, with the same amount of water flowing into the lake as is flowing over the spillway. Which of the following temporary changes would increase the resident time of water in this lake? ANSWER: Chapter 7 Reading Quiz Question 16 Part A A large reservoir behind a dam is rapidly rising, as rain and melting snow add more water than is being released out of the dam’s spillway. In this situation, _____. ANSWER: Chapter 7 Reading Quiz Question 1 Part A Which one of the following statements is correct? ANSWER: Double the rate of water flow into the lake and double the rate of water flow out of the lake, while keeping the lake at the same level. Keep the inflow into the lake the same, but release twice as much water from the lake, resulting in a lowering of the lake level. Decrease the inflow into the lake by half, and decrease the outflow of the lake by half. None of the choices would increase the resident time in the lake. the net flux is positive and the capital of water within the reservoir is decreasing the net flux is positive and the capital of water within the reservoir is increasing the net flux is negative and the capital of water within the reservoir is increasing the net flux is negative and the capital of water within the reservoir is decreasing Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 1 of 8 5/21/2014 8:01 PM Chapter 7 Reading Quiz Question 18 Part A A raging river cascades down a granite mountain and eventually reaches the ocean. At the mouth of the river is a beautiful sandy beach composed of fine grains of granite particles from the river. The entire process of producing this sand is a result of _____. ANSWER: Chapter 7 Reading Quiz Question 4 Part A The physical and chemical properties of soils are primarily determined by _____. ANSWER: Chapter 7 Reading Quiz Question 19 Part A Several inches of rain fall over a field of tall corn, soaking into the soil and draining into ditches. Within an hour, there is no standing water and the humidity over the field rises quickly. At a nearby shopping mall, the rainwater fell onto blacktop and drained to sewer pipes, which carried the water directly into a stream. Which of the following occurred in The cycling time of an element or molecule in an ecosystem is equal to the sum of all the flux times. The cycling time is how long it takes an element or molecule to pass through a biogeochemical cycle. The cycling time of water moving through an ecosystem is typically shorter than the resident time in any pool in this system. The amount of time that water spends in an ocean is the cycling time. mineral evaporation erosion, weathering, transport, and then deposition erosion, dissolution, and precipitation organisms consuming and eroding granite the properties of rock from which the soils develop the amount of precipitation that the soil experiences the range of temperatures that the soil experiences the types of animals that live and move through the soils Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 2 of 8 5/21/2014 8:01 PM the cornfield but not in the parking lot? ANSWER: Chapter 7 Reading Quiz Question 6 Part A Most of the water on Earth is found in _____. ANSWER: Chapter 7 Reading Quiz Question 5 Part A Which one of the following primarily results from the effects of solar energy? ANSWER: Chapter 7 Reading Quiz Question 20 Part A A rural Minnesota farmer grows a variety of vegetables to feed her family. In addition, she cuts down some of her dead trees for firewood to heat her home in the winter. This farmer is adding to the flux of the carbon cycle in her region by _____. precipitation evaporation runoff transpiration the polar ice caps lakes and streams aquifers the oceans evaporation of water from a lake the formation of ice on the top of a pond movement of ocean tides the movement of water over a waterfall Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 3 of 8 5/21/2014 8:01 PM ANSWER: Chapter 7 Reading Quiz Question 8 Part A In a terrestrial ecosystem, most carbon is stored in the biomass of _____. ANSWER: Chapter 7 Reading Quiz Question 7 Part A In which of the following countries would we expect that the terrestrial ecosystems have the highest net primary production and biomass? ANSWER: Chapter 7 Reading Quiz Question 22 Part A Some farmers in the Midwest of the United States rotate their crops from year to year, switching from soybeans to corn on the same fields. What is one of the advantages of doing this? encouraging photosynthesis as she raises crops burning carbon-based fuels by consuming vegetables grown on her farm All of the choices are correct. the animals living there air the top layers of soil containing dead organisms living plants China Australia Brazil United States Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 4 of 8 5/21/2014 8:01 PM ANSWER: Chapter 7 Reading Quiz Question 10 Part A Most nitrogen enters the biosphere through the process of _____ ANSWER: Chapter 7 Reading Quiz Question 9 Part A Where do we expect to find the least amount of nitrogen? ANSWER: Chapter 7 Reading Quiz Question 12 Part A Along the west coast of the United States, upwellings bring deep ocean waters to the surface, carrying with them _____, which greatly increases NPP. ANSWER: The corn crop benefits from reactive nitrogen added to the soil by the soybean crop. Both crops require the same fertilizing supplies, so farmers save by buying fertilizer in bulk. Soybeans add large amounts of carbon dioxide to the soil, which helps the corn crop. Corn adds large amounts of phosphorus to the soil, which helps the soybean crop. nitrogen fixation in which bacteria convert N2 to NH3 cellular respiration, in which animals convert N2 to NH4 fermentation in which bacteria convert N2 to HNO3 photosynthesis, in which plants convert N2 to NO2 in Earth’s crust in plants in animals in the atmosphere Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 5 of 8 5/21/2014 8:01 PM Chapter 7 Reading Quiz Question 11 Part A Which one of the following statements about the carbon, phosphorus, and nitrogen cycles is true? ANSWER: Chapter 7 Reading Quiz Question 24 Part A A large coal-burning power plant is about 50 miles upwind from a lake that used to be popular for fishing. But now, just five years after the plant was constructed, the fish populations are decreasing dramatically. Which one of the following impacts of this coal-burning power plant is most likely hurting the fish populations in this downwind lake? ANSWER: Chapter 7 Reading Quiz Question 14 Part A Which one of the following statements about sulfur is correct? ANSWER: oxygen phosphate carbon sulfur Phosphorus is virtually absent in the atmosphere. The major source of carbon used by plants is the soil. Bacteria drive the phosphorus cycle. The major source of nitrogen used by plants is the air. insufficient sunlight reaching the lake low oxygen levels from burning fossil fuels eutrophication of the lake acidification of the lake Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 6 of 8 5/21/2014 8:01 PM Chapter 7 Reading Quiz Question 13 Part A Nitrogen and sulfur are important to all organisms because they are important constituents of _____. ANSWER: Chapter 7 Reading Quiz Question 25 Part A In Iowa, a small, deep lake in the summer becomes stratified with warmer, less-dense water at the surface and colder, denser water near the bottom. As fall air temperatures decrease, the surface water cools and then drops toward the bottom, mixing the lake levels together. As a result of this mixing, _____. ANSWER: Chapter 7 Reading Quiz Question 15 Part A A fire spreads across hundreds of acres of prairie, burning most of the plant parts above the ground. Compared to before the fire, right after this fire the pool of nutrients in the prairie plants _____. The main pool of sulfur is in the atmosphere where the flux is high and the residence time is long. The main pool of sulfur is in rocks. The flux of sulfur through the atmosphere is high and the residence is short. The main pool of sulfur is in the atmosphere where the flux is low and the residence time is long. The main pool of sulfur is in rocks. The flux of sulfur through the atmosphere is low and the residence is short. nucleic acids glucose phosphates some amino acids nitrogen and phosphorus are added to the lake nitrogen and phosphorus decrease near the surface of the lake nitrogen and phosphorus increase near the surface of the lake None of the choices is correct. Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 7 of 8 5/21/2014 8:01 PM ANSWER: Score Summary: Your score on this assignment is 0.0%. You received 0 out of a possible total of 21 points. and the soil decreases increases and the pool of nutrients in the soil decreases and the soil increases decreases and the pool of nutrients in the soil increases Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 8 of 8 5/21/2014 8:01 PM

info@checkyourstudy.com
Explain the relationship between the physical environments and the types of cultures and societies that the various indigenous peoples developed — be sure to use specific examples. Why do you think some Native American societies formed large-scale societies, while most did not? What do the Native American stories in the History 10 Readings reveal about what they valued? (Be sure to refer to the documents by name in your work and explain how the story reveals what they valued. For example, you could say, “In the reading about the Creation of the World, the Zuni saw the importance of both men and women in the roles that Sky-father and Earth-mother play together in determining how their children will find their way in the world by . . . . ” And then use a relevant quote from the story to support your point. ) Unit 3: Unit 1.1: Native Americans – Unit 1 Threaded Discussion 1 You have now read and examined a variety of Native American cultures. Europeans referred to them as “savage” or “uncivilized.” But do cultural differences, shaped by the environments in which people found themselves, make a peoples savage or uncivilized? Unit 1 — Threaded Discussion 1

Explain the relationship between the physical environments and the types of cultures and societies that the various indigenous peoples developed — be sure to use specific examples. Why do you think some Native American societies formed large-scale societies, while most did not? What do the Native American stories in the History 10 Readings reveal about what they valued? (Be sure to refer to the documents by name in your work and explain how the story reveals what they valued. For example, you could say, “In the reading about the Creation of the World, the Zuni saw the importance of both men and women in the roles that Sky-father and Earth-mother play together in determining how their children will find their way in the world by . . . . ” And then use a relevant quote from the story to support your point. ) Unit 3: Unit 1.1: Native Americans – Unit 1 Threaded Discussion 1 You have now read and examined a variety of Native American cultures. Europeans referred to them as “savage” or “uncivilized.” But do cultural differences, shaped by the environments in which people found themselves, make a peoples savage or uncivilized? Unit 1 — Threaded Discussion 1

info@checkyourstudy.com Explain the relationship between the physical environments and the … Read More...