Chapter 03 Homework Due: 11:59pm on Friday, May 23, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Components and Structure of the Atom Learning Goal: To specify the basic components of the atom and describe our modern conception of its structure. Part A The atom consists of three types of subatomic particles: protons, neutrons, and electrons. The electron is by far the lightest of the three, while the much heavier proton and neutron have masses very similar to each other. Two of the types of particles carry an electrical charge, while the third is neutral. Label the subatomic particles and appropriate charges by their relative locations. Identify the subatomic particles by dragging the appropriate labels to their respective targets. Hint 1. Which subatomic particles carry electric charge? Of the three subatomic particles, two carry equal but opposite charges. Select the two correct statements that match the subatomic particle with the appropriate charge. Check all that apply. ANSWER: Hint 2. Which subatomic particles are not found in the nucleus? Protons and electrons carry equal but opposite charges. Atomic nuclei are positively charged and are not composed of negatively charged particles. Which types of subatomic particles cannot be located within the nucleus? Select any that apply. ANSWER: ANSWER: The electron carries a positive charge. The proton carries a positive charge. The neutron carries a positive charge. The proton carries a negative charge. The electron carries a negative charge. The neutron carries a negative charge. neutrons electrons protons Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 1 of 14 5/21/2014 8:02 PM Correct This image represents the classical model of the atom proposed by Niels Bohr. Although this model has changed slightly as the result of modern scientific discoveries, it does help in understanding the relative locations of the subatomic particles in the atom. Notice that the protons and neutrons are bound in the nucleus, while the electrons are located in the space surrounding the nucleus. Part B Of the three types of subatomic particles, only neutrons do not carry charge. Protons carry a positive charge, and electrons carry a negative charge. Protons and neutrons are bound in the nucleus, while electrons orbit the nucleus. When the number of each type of subatomic particle in an atom changes, the characteristics defining the atom also change. Match the appropriate phrases with the type of subatomic particle that completes the defining characteristic. Match the words in the left column to the appropriate blanks in the sentences on the right. Make certain each sentence is complete before submitting your answer. Hint 1. What type of subatomic particle is lost or gained when an ion forms? For any atom of a given element to go from being neutral ( ) to being ionized ( ), what type of subatomic particle must be lost or gained? Select all that apply. ANSWER: Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 2 of 14 5/21/2014 8:02 PM Hint 2. What type of subatomic particle identifies an element? When identifying the element classification of a particular atom, which type of subatomic particle is used? ANSWER: ANSWER: Correct The number of each type of subatomic particle plays an important role in the characteristics of the atom. The general element classification (hydrogen, carbon, oxygen, etc.) is governed by the number of protons in the nucleus. If the number of protons changes in an atom, so does the type of element. The electrons are the only type of subatomic particle not in the nucleus. They orbit around the nucleus, bound by the electromagnetic force. When electrons are lost or gained by a neutral atom, the charge balance shifts, resulting in the atom becoming an ion. Ions can be either positive when electrons are lost or negative when electrons are gained. Part C In the classical view of the atom, Bohr pictured electrons orbiting the positively charged nucleus similar to how the planets orbit the Sun. While this picture was not entirely correct, it provides a good framework in which to make calculations about the energies of electrons. Different from the predictions of Newtonian mechanics, which allows any energy to be possible, Bohr described the electron orbits (now called orbitals) as having specific energies. Rank the following electron energy states according to their electron energies. Rank from highest to lowest energies. Hint 1. What are the definitions of orbital, ground state, and excited state? Define orbital, ground state, and excited state. loss of an electron loss of a proton loss of a neutron gain of an electron gain of a proton gain of a neutron electron proton neutron Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 3 of 14 5/21/2014 8:02 PM Match the words in the left column to the appropriate blanks in the sentences on the right. Make certain each sentence is complete before submitting your answer. ANSWER: Hint 2. How does the state change when an electron absorbs energy? Electrons can absorb energy either from light radiation or from collisions with other atoms. If an electron is in the first excited energy state and absorbs enough energy to go to the next higher energy state, into what state will the electron transition? ANSWER: ANSWER: the ground state the second excited state the third excited state Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 4 of 14 5/21/2014 8:02 PM Correct Excited states refer to the energy of an electron. The higher the state, the higher the energy of the electron. The electron energies of each orbital are fixed. The energy required for an electron to transition between each orbital is an exact value, corresponding to the difference between the orbital energies. Any energy more or less than these precise differences cannot be used by the electron to make a transition; only the energies equal to the full values can induce a transition. Part D The Bohr model accounted for most of the general characteristics of the atom. However, the modern model based on quantum mechanics explains that, although the energy of each orbital is fixed, the orbital radius is actually an average distance. The result is a “cloud” where the electron is most likely to be located. The following is an image of an atom of hydrogen, consisting of one proton, zero neutrons, and one electron. When an electron is excited to different energy levels, the radius from the nucleus also changes. Rank the following electron energy states according to the average distance of the electron from the nucleus. Rank from largest to smallest distances. Hint 1. What is the relationship between electron orbital distance and electron energy? Rank the following general electron energies from largest to smallest electron orbital distances. Rank from largest to smallest orbital distances. ANSWER: ANSWER: Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 5 of 14 5/21/2014 8:02 PM Correct Excited states refer to the energy state of an electron. The higher the state, the higher the energy and the greater the distance of the electron from the nucleus. Due to the attractive force between the negatively charged electron and the positively charged nucleus, the electron requires greater energies to overcome this attraction and achieve orbits at greater distances. Concept Review: The pH Scale Can you classify solutions as acidic, neutral, or basic? Part A Decide whether each label describes a solution that is acidic, neutral, or basic, and then drag it into the appropriate bin. ANSWER: Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 6 of 14 5/21/2014 8:02 PM Correct Activity: Carbohydrates Click here to complete this activity. Then answer the questions. Part A Glycogen is _____. ANSWER: Correct Animals store energy in the form of glycogen. a polysaccharide found in animals a source of saturated fat a polysaccharide found in plant cell walls the form in which plants store sugars a transport protein that carries oxygen Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 7 of 14 5/21/2014 8:02 PM Part B glucose + glucose —> _____ by _____. ANSWER: Correct Maltose is the disaccharide formed when two glucose molecules are linked by dehydration synthesis. Part C Which of these is a source of lactose? ANSWER: Correct Lactose is the sugar found in milk. Part D Which of these is a polysaccharide? ANSWER: Correct Cellulose is a carbohydrate composed of many monomers. Part E _____ is the most abundant organic compound on Earth. ANSWER: maltose + water … dehydration synthesis lactose + water … hydrolysis starch + water … dehydration synthesis sucrose + water … dehydration synthesis cellulose + water … hydrolysis potatoes sugar beets sugar cane starch milk sucrose lactose glucose galactose cellulose Cellulose Lactose Starch Glucose Glycogen Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 8 of 14 5/21/2014 8:02 PM Correct Cellulose, a component of plant cell walls, is the most abundant organic compound found on earth. Activity: Protein Structure Click here to complete this activity. Then answer the questions. Part A Proteins are polymers of _____. ANSWER: Correct Proteins are polymers of amino acids. Part B What type of bond joins the monomers in a protein’s primary structure? ANSWER: Correct The amino acids of a protein are linked by peptide bonds. Part C Which of these illustrates the secondary structure of a protein? ANSWER: nucleotides CH2O units glycerol hydrocarbons amino acids ionic hydrogen hydrophobic S—S peptide Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 9 of 14 5/21/2014 8:02 PM Correct Alpha helices and beta pleated sheets are characteristic of a protein’s secondary structure. Part D The secondary structure of a protein results from _____. ANSWER: Correct Electronegative oxygen and nitrogen atoms leave hydrogen atoms with partial positive charges. Part E Tertiary structure is NOT directly dependent on _____. ANSWER: bonds between sulfur atoms peptide bonds hydrogen bonds hydrophobic interactions ionic bonds hydrophobic interactions ionic bonds hydrogen bonds peptide bonds bonds between sulfur atoms Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 10 of 14 5/21/2014 8:02 PM Correct Peptide bonds link together the amino acids of a protein’s primary structure. Activity: Lipids Click here to complete this activity. Then answer the questions. Part A Which of these is NOT a lipid? ANSWER: Correct RNA is a nucleic acid Part B This figure is an example of a(n) _____. ANSWER: Correct The fatty acid tails lack double bonds. steroids phospholipid RNA cholesterol wax steroid unsaturated fat nucleic acid protein saturated fat Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 11 of 14 5/21/2014 8:02 PM Part C Which of these is a phospholipid? ANSWER: Correct Phospholipids are composed of a phosphate group, a glycerol, and fatty acids. Part D Which of these is rich in unsaturated fats? ANSWER: Correct Olive oil is a plant oil, and most plant oils are rich in unsaturated fats. Part E beef fat lard butter olive oil a fat that is solid at room temperature Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 12 of 14 5/21/2014 8:02 PM A function of cholesterol that does not harm health is its role _____. ANSWER: Correct Cholesterol is an important component of animal cell membranes. Concept Review: Types of Macromolecules Can you identify characteristics of proteins, nucleic acids, and carbohydrates? Part A Decide whether each label describes proteins, nucleic acids, or carbohydrates, and then drag it into the appropriate bin. ANSWER: Correct Concept Review: Earth’s Interior Layers Can you identify characteristics of Earth’s interior layers? Part A Drag the labels to the appropriate targets. ANSWER: as a component of animal cell membranes in calcium and phosphate metabolism All of cholesterol’s effects cause the body harm. as the most abundant male sex hormone as the primary female sex hormone Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 13 of 14 5/21/2014 8:02 PM Correct Score Summary: Your score on this assignment is 99.6%. You received 31.87 out of a possible total of 32 points. Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 14 of 14 5/21/2014 8:02 PM

Chapter 03 Homework Due: 11:59pm on Friday, May 23, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Components and Structure of the Atom Learning Goal: To specify the basic components of the atom and describe our modern conception of its structure. Part A The atom consists of three types of subatomic particles: protons, neutrons, and electrons. The electron is by far the lightest of the three, while the much heavier proton and neutron have masses very similar to each other. Two of the types of particles carry an electrical charge, while the third is neutral. Label the subatomic particles and appropriate charges by their relative locations. Identify the subatomic particles by dragging the appropriate labels to their respective targets. Hint 1. Which subatomic particles carry electric charge? Of the three subatomic particles, two carry equal but opposite charges. Select the two correct statements that match the subatomic particle with the appropriate charge. Check all that apply. ANSWER: Hint 2. Which subatomic particles are not found in the nucleus? Protons and electrons carry equal but opposite charges. Atomic nuclei are positively charged and are not composed of negatively charged particles. Which types of subatomic particles cannot be located within the nucleus? Select any that apply. ANSWER: ANSWER: The electron carries a positive charge. The proton carries a positive charge. The neutron carries a positive charge. The proton carries a negative charge. The electron carries a negative charge. The neutron carries a negative charge. neutrons electrons protons Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 1 of 14 5/21/2014 8:02 PM Correct This image represents the classical model of the atom proposed by Niels Bohr. Although this model has changed slightly as the result of modern scientific discoveries, it does help in understanding the relative locations of the subatomic particles in the atom. Notice that the protons and neutrons are bound in the nucleus, while the electrons are located in the space surrounding the nucleus. Part B Of the three types of subatomic particles, only neutrons do not carry charge. Protons carry a positive charge, and electrons carry a negative charge. Protons and neutrons are bound in the nucleus, while electrons orbit the nucleus. When the number of each type of subatomic particle in an atom changes, the characteristics defining the atom also change. Match the appropriate phrases with the type of subatomic particle that completes the defining characteristic. Match the words in the left column to the appropriate blanks in the sentences on the right. Make certain each sentence is complete before submitting your answer. Hint 1. What type of subatomic particle is lost or gained when an ion forms? For any atom of a given element to go from being neutral ( ) to being ionized ( ), what type of subatomic particle must be lost or gained? Select all that apply. ANSWER: Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 2 of 14 5/21/2014 8:02 PM Hint 2. What type of subatomic particle identifies an element? When identifying the element classification of a particular atom, which type of subatomic particle is used? ANSWER: ANSWER: Correct The number of each type of subatomic particle plays an important role in the characteristics of the atom. The general element classification (hydrogen, carbon, oxygen, etc.) is governed by the number of protons in the nucleus. If the number of protons changes in an atom, so does the type of element. The electrons are the only type of subatomic particle not in the nucleus. They orbit around the nucleus, bound by the electromagnetic force. When electrons are lost or gained by a neutral atom, the charge balance shifts, resulting in the atom becoming an ion. Ions can be either positive when electrons are lost or negative when electrons are gained. Part C In the classical view of the atom, Bohr pictured electrons orbiting the positively charged nucleus similar to how the planets orbit the Sun. While this picture was not entirely correct, it provides a good framework in which to make calculations about the energies of electrons. Different from the predictions of Newtonian mechanics, which allows any energy to be possible, Bohr described the electron orbits (now called orbitals) as having specific energies. Rank the following electron energy states according to their electron energies. Rank from highest to lowest energies. Hint 1. What are the definitions of orbital, ground state, and excited state? Define orbital, ground state, and excited state. loss of an electron loss of a proton loss of a neutron gain of an electron gain of a proton gain of a neutron electron proton neutron Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 3 of 14 5/21/2014 8:02 PM Match the words in the left column to the appropriate blanks in the sentences on the right. Make certain each sentence is complete before submitting your answer. ANSWER: Hint 2. How does the state change when an electron absorbs energy? Electrons can absorb energy either from light radiation or from collisions with other atoms. If an electron is in the first excited energy state and absorbs enough energy to go to the next higher energy state, into what state will the electron transition? ANSWER: ANSWER: the ground state the second excited state the third excited state Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 4 of 14 5/21/2014 8:02 PM Correct Excited states refer to the energy of an electron. The higher the state, the higher the energy of the electron. The electron energies of each orbital are fixed. The energy required for an electron to transition between each orbital is an exact value, corresponding to the difference between the orbital energies. Any energy more or less than these precise differences cannot be used by the electron to make a transition; only the energies equal to the full values can induce a transition. Part D The Bohr model accounted for most of the general characteristics of the atom. However, the modern model based on quantum mechanics explains that, although the energy of each orbital is fixed, the orbital radius is actually an average distance. The result is a “cloud” where the electron is most likely to be located. The following is an image of an atom of hydrogen, consisting of one proton, zero neutrons, and one electron. When an electron is excited to different energy levels, the radius from the nucleus also changes. Rank the following electron energy states according to the average distance of the electron from the nucleus. Rank from largest to smallest distances. Hint 1. What is the relationship between electron orbital distance and electron energy? Rank the following general electron energies from largest to smallest electron orbital distances. Rank from largest to smallest orbital distances. ANSWER: ANSWER: Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 5 of 14 5/21/2014 8:02 PM Correct Excited states refer to the energy state of an electron. The higher the state, the higher the energy and the greater the distance of the electron from the nucleus. Due to the attractive force between the negatively charged electron and the positively charged nucleus, the electron requires greater energies to overcome this attraction and achieve orbits at greater distances. Concept Review: The pH Scale Can you classify solutions as acidic, neutral, or basic? Part A Decide whether each label describes a solution that is acidic, neutral, or basic, and then drag it into the appropriate bin. ANSWER: Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 6 of 14 5/21/2014 8:02 PM Correct Activity: Carbohydrates Click here to complete this activity. Then answer the questions. Part A Glycogen is _____. ANSWER: Correct Animals store energy in the form of glycogen. a polysaccharide found in animals a source of saturated fat a polysaccharide found in plant cell walls the form in which plants store sugars a transport protein that carries oxygen Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 7 of 14 5/21/2014 8:02 PM Part B glucose + glucose —> _____ by _____. ANSWER: Correct Maltose is the disaccharide formed when two glucose molecules are linked by dehydration synthesis. Part C Which of these is a source of lactose? ANSWER: Correct Lactose is the sugar found in milk. Part D Which of these is a polysaccharide? ANSWER: Correct Cellulose is a carbohydrate composed of many monomers. Part E _____ is the most abundant organic compound on Earth. ANSWER: maltose + water … dehydration synthesis lactose + water … hydrolysis starch + water … dehydration synthesis sucrose + water … dehydration synthesis cellulose + water … hydrolysis potatoes sugar beets sugar cane starch milk sucrose lactose glucose galactose cellulose Cellulose Lactose Starch Glucose Glycogen Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 8 of 14 5/21/2014 8:02 PM Correct Cellulose, a component of plant cell walls, is the most abundant organic compound found on earth. Activity: Protein Structure Click here to complete this activity. Then answer the questions. Part A Proteins are polymers of _____. ANSWER: Correct Proteins are polymers of amino acids. Part B What type of bond joins the monomers in a protein’s primary structure? ANSWER: Correct The amino acids of a protein are linked by peptide bonds. Part C Which of these illustrates the secondary structure of a protein? ANSWER: nucleotides CH2O units glycerol hydrocarbons amino acids ionic hydrogen hydrophobic S—S peptide Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 9 of 14 5/21/2014 8:02 PM Correct Alpha helices and beta pleated sheets are characteristic of a protein’s secondary structure. Part D The secondary structure of a protein results from _____. ANSWER: Correct Electronegative oxygen and nitrogen atoms leave hydrogen atoms with partial positive charges. Part E Tertiary structure is NOT directly dependent on _____. ANSWER: bonds between sulfur atoms peptide bonds hydrogen bonds hydrophobic interactions ionic bonds hydrophobic interactions ionic bonds hydrogen bonds peptide bonds bonds between sulfur atoms Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 10 of 14 5/21/2014 8:02 PM Correct Peptide bonds link together the amino acids of a protein’s primary structure. Activity: Lipids Click here to complete this activity. Then answer the questions. Part A Which of these is NOT a lipid? ANSWER: Correct RNA is a nucleic acid Part B This figure is an example of a(n) _____. ANSWER: Correct The fatty acid tails lack double bonds. steroids phospholipid RNA cholesterol wax steroid unsaturated fat nucleic acid protein saturated fat Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 11 of 14 5/21/2014 8:02 PM Part C Which of these is a phospholipid? ANSWER: Correct Phospholipids are composed of a phosphate group, a glycerol, and fatty acids. Part D Which of these is rich in unsaturated fats? ANSWER: Correct Olive oil is a plant oil, and most plant oils are rich in unsaturated fats. Part E beef fat lard butter olive oil a fat that is solid at room temperature Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 12 of 14 5/21/2014 8:02 PM A function of cholesterol that does not harm health is its role _____. ANSWER: Correct Cholesterol is an important component of animal cell membranes. Concept Review: Types of Macromolecules Can you identify characteristics of proteins, nucleic acids, and carbohydrates? Part A Decide whether each label describes proteins, nucleic acids, or carbohydrates, and then drag it into the appropriate bin. ANSWER: Correct Concept Review: Earth’s Interior Layers Can you identify characteristics of Earth’s interior layers? Part A Drag the labels to the appropriate targets. ANSWER: as a component of animal cell membranes in calcium and phosphate metabolism All of cholesterol’s effects cause the body harm. as the most abundant male sex hormone as the primary female sex hormone Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 13 of 14 5/21/2014 8:02 PM Correct Score Summary: Your score on this assignment is 99.6%. You received 31.87 out of a possible total of 32 points. Chapter 03 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 14 of 14 5/21/2014 8:02 PM

info@checkyourstudy.com
10) Three children, Alfredo, Michael, and Connie, are playing on a merry-go-round. Their positions on the merry-go-round are shown in the top-view picture at right. The merry-go-round is rotating clockwise and is neither speeding up nor slowing down. Each of the children will move in a circle as the merry-go-round rotates: Which of the following statements is correct about Michael’s place on the merry-go-round? a) the angular velocity is the same as that of Alfredo and Connie, but the speed is less than Alfredo and greater than Connie b) the angular velocity is the same as Alfredo and Connie, but the speed is greater than Alfredo and less than Connie c) the speed is the same as Alfredo and Connie, but the angular velocity is less than Alfredo and greater than Connie d) the speed is the same as Alfredo and Connie, but his angular velocity is greater than Alfredo and less than Connie e) the speed is greater than Alfredo and the angular velocity is greater than Alfredo

10) Three children, Alfredo, Michael, and Connie, are playing on a merry-go-round. Their positions on the merry-go-round are shown in the top-view picture at right. The merry-go-round is rotating clockwise and is neither speeding up nor slowing down. Each of the children will move in a circle as the merry-go-round rotates: Which of the following statements is correct about Michael’s place on the merry-go-round? a) the angular velocity is the same as that of Alfredo and Connie, but the speed is less than Alfredo and greater than Connie b) the angular velocity is the same as Alfredo and Connie, but the speed is greater than Alfredo and less than Connie c) the speed is the same as Alfredo and Connie, but the angular velocity is less than Alfredo and greater than Connie d) the speed is the same as Alfredo and Connie, but his angular velocity is greater than Alfredo and less than Connie e) the speed is greater than Alfredo and the angular velocity is greater than Alfredo

Fall Semester 2015 NMSU Econ 252, Instructor: Dr. Larry Blank Writing Assignment and Critical Thinking Problems: This assignment is worth 100 points toward your overall course average. The criteria used to grade this assignment includes the professional appearance of the document you submit, your ability to use the principles of supply and demand to critically assess the impacts, and your ability to explain your conclusions in writing. Each part can be answered in one page or less. Assigned: October 5, 2015 Deadline: Friday, October 16, 2015 You will email your assignment in Canvas. Before you email your assignment, make sure your name is on your paper AND your full name is included in the electronic file name. For example, filename: Jose Sanchez_Econ252_paper.doc I will not read your work if your name is not in the electronic filename. Assignment: Answers to all parts shall be completed in a Microsoft Word document. Begin by copying the Scenario below and then, for each part, copy the problem before completing your answer. You may want to draw your diagrams in Microsoft PowerPoint or other software and then copy and paste the diagram into the Word document as a “Picture (Enhanced Metafile)” using the “Paste Special” feature in Word. The document you turn in should be six (6) pages long. For the first page include a short title for this assignment, the course name and number, your name, and then copy and paste everything below beginning with “Scenario” onto your first page. The 2nd page of your document should include the description of Part 1 and then your diagram and answer. Do the same for Parts 2-5, with each part on a separate page. Scenario: The Federal Government implemented a policy some years ago to subsidize the production of ethanol fuel at 46 cents per gallon. See news article here: http://usnews.nbcnews.com/_news/2011/12/29/9804028-6-billion-a-year-ethanol-subsidy-dies-but-wait-theres-more?lite Ethanol is an alternative fuel (a substitute for regular gasoline) that can be used in some models of automobiles designed to burn any mix of gasoline up to 85% ethanol (fuel is known as E85, and auto manufacturers label these vehicles as “FlexFuel” and similar names). A primary input in the production of ethanol is corn. For the purposes of this assignment, assume that all relevant markets are perfectly competitive. Part 1: Show geometrically using the supply and demand curves the impact the subsidy had in the ethanol market (hint: the result has been a reduction in the market price of ethanol). Fully explain the impact of the production subsidy in terms of the behavior of producers (sellers) in the market and customers (buyers) in the market and what has happened to equilibrium price and quantity in the market for ethanol. Part 2: Show geometrically using the supply and demand curves what impact the reduction in market price for ethanol had in the market for regular gasoline. Fully explain the impact this reduced ethanol price had on the customer demand for regular gasoline. Part 3: Show geometrically using the supply and demand curves the impact due to the change in the equilibrium quantity in the market for ethanol had in the market for corn. Fully explain the impact and the resulting equilibrium price and quantity for corn. Part 4: Show geometrically using the supply and demand curves what impact the change in the market price of corn had in the market for manufactured corn tortillas (assume that the market for corn tortillas is perfectly competitive). Corn tortillas are a staple food item in the diets of millions of families across the U.S.. Fully explain the impact of change in the market price of corn in terms of the behavior of producers (sellers) in the market and customers (buyers) in the corn tortilla market. Part 5: Show geometrically using the supply and demand curves the impact in the ethanol market when the ethanol subsidy ended on Jan. 1, 2012. Give one possible explanation why I can no longer find E85 fuel at gas stations. Hint: When the subsidy still existed, the market price of E85 was about 30 cents a gallon less than regular gasoline. E85 is not a perfect substitute for regular gasoline because the performance is less and gas mileage drops by 5-7 miles per gallon.

Fall Semester 2015 NMSU Econ 252, Instructor: Dr. Larry Blank Writing Assignment and Critical Thinking Problems: This assignment is worth 100 points toward your overall course average. The criteria used to grade this assignment includes the professional appearance of the document you submit, your ability to use the principles of supply and demand to critically assess the impacts, and your ability to explain your conclusions in writing. Each part can be answered in one page or less. Assigned: October 5, 2015 Deadline: Friday, October 16, 2015 You will email your assignment in Canvas. Before you email your assignment, make sure your name is on your paper AND your full name is included in the electronic file name. For example, filename: Jose Sanchez_Econ252_paper.doc I will not read your work if your name is not in the electronic filename. Assignment: Answers to all parts shall be completed in a Microsoft Word document. Begin by copying the Scenario below and then, for each part, copy the problem before completing your answer. You may want to draw your diagrams in Microsoft PowerPoint or other software and then copy and paste the diagram into the Word document as a “Picture (Enhanced Metafile)” using the “Paste Special” feature in Word. The document you turn in should be six (6) pages long. For the first page include a short title for this assignment, the course name and number, your name, and then copy and paste everything below beginning with “Scenario” onto your first page. The 2nd page of your document should include the description of Part 1 and then your diagram and answer. Do the same for Parts 2-5, with each part on a separate page. Scenario: The Federal Government implemented a policy some years ago to subsidize the production of ethanol fuel at 46 cents per gallon. See news article here: http://usnews.nbcnews.com/_news/2011/12/29/9804028-6-billion-a-year-ethanol-subsidy-dies-but-wait-theres-more?lite Ethanol is an alternative fuel (a substitute for regular gasoline) that can be used in some models of automobiles designed to burn any mix of gasoline up to 85% ethanol (fuel is known as E85, and auto manufacturers label these vehicles as “FlexFuel” and similar names). A primary input in the production of ethanol is corn. For the purposes of this assignment, assume that all relevant markets are perfectly competitive. Part 1: Show geometrically using the supply and demand curves the impact the subsidy had in the ethanol market (hint: the result has been a reduction in the market price of ethanol). Fully explain the impact of the production subsidy in terms of the behavior of producers (sellers) in the market and customers (buyers) in the market and what has happened to equilibrium price and quantity in the market for ethanol. Part 2: Show geometrically using the supply and demand curves what impact the reduction in market price for ethanol had in the market for regular gasoline. Fully explain the impact this reduced ethanol price had on the customer demand for regular gasoline. Part 3: Show geometrically using the supply and demand curves the impact due to the change in the equilibrium quantity in the market for ethanol had in the market for corn. Fully explain the impact and the resulting equilibrium price and quantity for corn. Part 4: Show geometrically using the supply and demand curves what impact the change in the market price of corn had in the market for manufactured corn tortillas (assume that the market for corn tortillas is perfectly competitive). Corn tortillas are a staple food item in the diets of millions of families across the U.S.. Fully explain the impact of change in the market price of corn in terms of the behavior of producers (sellers) in the market and customers (buyers) in the corn tortilla market. Part 5: Show geometrically using the supply and demand curves the impact in the ethanol market when the ethanol subsidy ended on Jan. 1, 2012. Give one possible explanation why I can no longer find E85 fuel at gas stations. Hint: When the subsidy still existed, the market price of E85 was about 30 cents a gallon less than regular gasoline. E85 is not a perfect substitute for regular gasoline because the performance is less and gas mileage drops by 5-7 miles per gallon.

Name___________________________________ Period_____ Investigation: Making Waves PART I: Objectives: • Learn vocabulary describing waves • Calculate the speed of a wave • Understand how amplitude affects the speed of a wave • Understand how frequency and wavelength affect the speed of a wave Open this web site: http://phet.colorado.edu/new/simulations/sims.php?sim=Wave_on_a_String You can click on Run Now! to run the simulation online, or Run Offline to save it to your desktop. It might run faster this way. Start by Wiggling the Wrench. Spend about 5 minutes experimenting with the Tension, Manual/Pulse/Oscillate, Fixed/Loose/No end, and changing the Amplitude, Frequency and Damping. Click on Show Rulers and Timer. Practice moving the rulers around and starting/resetting the timer. Click on the Pause/Play and Step buttons to see how they work. Use these settings: Pulse, Amplitude=50, Pulse Width=35, Damping=0, Tension at High and No End. NOTE that the amplitude is just a relative scale (not centimeters). Send a single pulse down the string. This is called a TRANSVERSE PULSE. Watch the motion of the green dots.  1. As the pulse goes by from left to right, in what direction does the string move? ________________________________________________________________________________________________________________________________________________  2. A definition of TRANSVERSE is “lying across”. Why is TRANSVERSE a good name for the wave you just observed? ________________________________________________________________________________________________________________________________________________ Make another pulse, and then PAUSE the wave. Use the vertical ruler to measure the amplitude of the wave in centimeters. This is the distance from the dotted orange line to the crest of the wave. Record the amplitude in Table 1 in the first row. Now, measure the time for a pulse to travel 100 cm. To do this: • Reset the clock to 0:00 and reset the generator • Click Pause/Play—it should say PAUSED on the screen • Click Pulse • Click Pause/Play again to start a timed pulse. Pause again just as the crest (peak) of the pulse touches the window 100 cm away. Record the time for a pulse to travel 100 cm in Table 1. Run 3 time trials, and record in the table. Calculate the average time. Now, measure the amplitude and timing of pulses for two other amplitudes (one smaller than 50, one larger than 50). Do three trials at each amplitude and calculate the average times. Calculate the average wave speed for each of the three amplitudes. See below for a sample calculation. Table 1 Your measured amplitude, cm Time for pulse to travel 100 cm, seconds Average time, seconds Speed=length of string / average time Example of speed calculation: Speed = string length/ average time Speed = 100 cm/2 seconds = 50 cm/second  3. How does the amplitude of a wave affect the speed of a wave? ________________________________________________________________________ Use these settings: Oscillate, Fixed end. Try amplitude=20, frequency=51, damping=0. The result is called a periodic wave. 4. Describe the appearance of the wave you created. ________________________________________________________________________________________________________________________________________________________________________________________________________________________ You should see waves that do not move along the string. You will also see points where the string does not move at all. These waves are called STANDING WAVES. The points where the wave doesn’t move are called NODES. Pause the simulation.  5. Draw the standing wave in the box below, labeling the AMPLITUDE, WAVELENGTH and NODES of a standing wave. Use these settings: Amplitude=20, Frequency=50, Damping=0, Oscillate, No End. Reset the clock. You can also measure the wave frequency. To do this, you should pair up with another student if possible. Watch the piston go up and down to make the wave. One up and down motion represents one wave. Use the clock to measure the time required for 10 complete cycles or waves. You will also need to PAUSE the wave to measure the wavelength of the wave in centimeters (cm). The frequency of the wave is calculated in the following way: Frequency = 10 waves/# seconds for 10 cycles For example, 10 waves/5 seconds = 2 cycles per second, or 2 Hertz. Make several waves by changing the wave frequency—use numbers over 30 on the scale. For each wave, measure the wavelength using the ruler. Now, calculate the frequency. See the example in the first row of Table 2. Record the wavelength and frequency of three waves with different wavelengths. Wavelength (cm) Frequency (cycles/second or Hertz) Speed (cm/s) = Wavelength x frequency 33 cm 10 waves/5.45 sec = 1.8 Hertz 33 cm x 1.8 Hertz = 59.4 cm/second Based on the equation used to calculate the speed of a wave, answer questions 6 and 7.  6. If you increase the wavelength of a wave, how does the speed change? ________________________________________________________________________________________________________________________________________________  7. If you increase the frequency of a wave, how does the speed change? ________________________________________________________________________________________________________________________________________________ Part II: Objectives: • Interpret a 2D top view picture of a wave • Identify areas of constructive and destructive interference in 2D • Predict the behavior of water, sound, or light when you have two sources o What will happen in constructive areas o What will happen in destructive areas 1) Open the “Wave Interference” simulation from the PhET website (in Sound & Waves) 2) On the water simulation, what does the crest (peak) of the wave look like in the top view? What does the trough look like? 3) When you add two drips, what changes about the waves’ patterns? 4) What does the wave look like in the area that the two waves constructively interfere? Describe both the top view and what the side view would look like. a. TOP: b. SIDE: 5) What does the wave look like in the area that the two waves destructively interfere? Describe both the top view and what the side view would look like. a. TOP: b. SIDE: 6) Switch to the sound simulation. a. What do you think will happen when you put two speakers next to each other? b. Why do you think this will happen? c. Try it (putting two speakers together) and tell me what happened. 7) Now switch to the light simulation. a. What do you think will happen when you put two light sources next to each other? b. Why do you think this will happen? c. Try it (putting two light sources together) and tell me what happened. d. What happens when you use one light source and two slits? 8) What is similar about all three of these simulations (i.e. water, sound & light)? 9) How do I know that these things are waves and not particles? (Think about what would happen in the two slit experiment if they were particles).

Name___________________________________ Period_____ Investigation: Making Waves PART I: Objectives: • Learn vocabulary describing waves • Calculate the speed of a wave • Understand how amplitude affects the speed of a wave • Understand how frequency and wavelength affect the speed of a wave Open this web site: http://phet.colorado.edu/new/simulations/sims.php?sim=Wave_on_a_String You can click on Run Now! to run the simulation online, or Run Offline to save it to your desktop. It might run faster this way. Start by Wiggling the Wrench. Spend about 5 minutes experimenting with the Tension, Manual/Pulse/Oscillate, Fixed/Loose/No end, and changing the Amplitude, Frequency and Damping. Click on Show Rulers and Timer. Practice moving the rulers around and starting/resetting the timer. Click on the Pause/Play and Step buttons to see how they work. Use these settings: Pulse, Amplitude=50, Pulse Width=35, Damping=0, Tension at High and No End. NOTE that the amplitude is just a relative scale (not centimeters). Send a single pulse down the string. This is called a TRANSVERSE PULSE. Watch the motion of the green dots.  1. As the pulse goes by from left to right, in what direction does the string move? ________________________________________________________________________________________________________________________________________________  2. A definition of TRANSVERSE is “lying across”. Why is TRANSVERSE a good name for the wave you just observed? ________________________________________________________________________________________________________________________________________________ Make another pulse, and then PAUSE the wave. Use the vertical ruler to measure the amplitude of the wave in centimeters. This is the distance from the dotted orange line to the crest of the wave. Record the amplitude in Table 1 in the first row. Now, measure the time for a pulse to travel 100 cm. To do this: • Reset the clock to 0:00 and reset the generator • Click Pause/Play—it should say PAUSED on the screen • Click Pulse • Click Pause/Play again to start a timed pulse. Pause again just as the crest (peak) of the pulse touches the window 100 cm away. Record the time for a pulse to travel 100 cm in Table 1. Run 3 time trials, and record in the table. Calculate the average time. Now, measure the amplitude and timing of pulses for two other amplitudes (one smaller than 50, one larger than 50). Do three trials at each amplitude and calculate the average times. Calculate the average wave speed for each of the three amplitudes. See below for a sample calculation. Table 1 Your measured amplitude, cm Time for pulse to travel 100 cm, seconds Average time, seconds Speed=length of string / average time Example of speed calculation: Speed = string length/ average time Speed = 100 cm/2 seconds = 50 cm/second  3. How does the amplitude of a wave affect the speed of a wave? ________________________________________________________________________ Use these settings: Oscillate, Fixed end. Try amplitude=20, frequency=51, damping=0. The result is called a periodic wave. 4. Describe the appearance of the wave you created. ________________________________________________________________________________________________________________________________________________________________________________________________________________________ You should see waves that do not move along the string. You will also see points where the string does not move at all. These waves are called STANDING WAVES. The points where the wave doesn’t move are called NODES. Pause the simulation.  5. Draw the standing wave in the box below, labeling the AMPLITUDE, WAVELENGTH and NODES of a standing wave. Use these settings: Amplitude=20, Frequency=50, Damping=0, Oscillate, No End. Reset the clock. You can also measure the wave frequency. To do this, you should pair up with another student if possible. Watch the piston go up and down to make the wave. One up and down motion represents one wave. Use the clock to measure the time required for 10 complete cycles or waves. You will also need to PAUSE the wave to measure the wavelength of the wave in centimeters (cm). The frequency of the wave is calculated in the following way: Frequency = 10 waves/# seconds for 10 cycles For example, 10 waves/5 seconds = 2 cycles per second, or 2 Hertz. Make several waves by changing the wave frequency—use numbers over 30 on the scale. For each wave, measure the wavelength using the ruler. Now, calculate the frequency. See the example in the first row of Table 2. Record the wavelength and frequency of three waves with different wavelengths. Wavelength (cm) Frequency (cycles/second or Hertz) Speed (cm/s) = Wavelength x frequency 33 cm 10 waves/5.45 sec = 1.8 Hertz 33 cm x 1.8 Hertz = 59.4 cm/second Based on the equation used to calculate the speed of a wave, answer questions 6 and 7.  6. If you increase the wavelength of a wave, how does the speed change? ________________________________________________________________________________________________________________________________________________  7. If you increase the frequency of a wave, how does the speed change? ________________________________________________________________________________________________________________________________________________ Part II: Objectives: • Interpret a 2D top view picture of a wave • Identify areas of constructive and destructive interference in 2D • Predict the behavior of water, sound, or light when you have two sources o What will happen in constructive areas o What will happen in destructive areas 1) Open the “Wave Interference” simulation from the PhET website (in Sound & Waves) 2) On the water simulation, what does the crest (peak) of the wave look like in the top view? What does the trough look like? 3) When you add two drips, what changes about the waves’ patterns? 4) What does the wave look like in the area that the two waves constructively interfere? Describe both the top view and what the side view would look like. a. TOP: b. SIDE: 5) What does the wave look like in the area that the two waves destructively interfere? Describe both the top view and what the side view would look like. a. TOP: b. SIDE: 6) Switch to the sound simulation. a. What do you think will happen when you put two speakers next to each other? b. Why do you think this will happen? c. Try it (putting two speakers together) and tell me what happened. 7) Now switch to the light simulation. a. What do you think will happen when you put two light sources next to each other? b. Why do you think this will happen? c. Try it (putting two light sources together) and tell me what happened. d. What happens when you use one light source and two slits? 8) What is similar about all three of these simulations (i.e. water, sound & light)? 9) How do I know that these things are waves and not particles? (Think about what would happen in the two slit experiment if they were particles).

Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic<br />21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic</br

Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic
21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic

Ignorant- A person is said to be ignorant if he … Read More...
Module Overview Summary of Module Description For full details, go to Module Descriptor. Aims The aim of this module is to: • Develop individuals for a career in business and management • Enhance and develop employability , professional and lifelong learning skills and personal development Learning Outcomes Learners will be able to critically evaluate the acquisition of a range of academic and professional skills using a number of theoretical frameworks. Assessment – Summary Category Assessment Description Duration Word Count Weight (%) Written Assignment Essay 1 Reflective Essay N/A 3000 45 For full details, go to Assessment. Additional Information Remember that a variety of Resources is available to support your learning materials.Skills and character audit This document provides an initial picture of your skills and character. It will also provide the basis of further documents that make up the first assignment on the module. It is based on the skills statements that form a fundamental part of your Masters programme which were approved by a validation panel that consisted of members of staff in the Business School, academic staff from other higher education institutions and employers. The statements in the form are there for you and you will not be judged on whether your responses are positive or negative. The responses should enable you to identify what you are good or bad at from which you can create a personal SLOT analysis (Strengths, Limitations, Opportunities, Threats). From this SLOT analysis you can then concentrate on developing certain areas that will enhance your academic and professional development. We would very much like to” get to know” you through this document and would encourage you to also complete the notes section. In this you could give us a rationale for your responses to the questions. As a guide to how you should gauge your response consider the following: Strongly agree – I have a wide range of experience in this area and have been commended by a tutor or employer for my efforts in this area Agree – I am comfortable with this aspect and have been able to demonstrate my ability Disagree – I am Ok with this but realise that I do need to improve Strongly disagree – I know I am weak in this area and need to focus on this as I could fine this weakness to be detrimental to my progression Explain why – please take the room to consider the reasons for your answer as this is the reflection that is of most value. Do not worry if your section spills onto the next page.   Intellectual (thinking) skills Strongly Agree Agree Disagree Strongly Disagree I am a creative person who can adapt my thinking to circumstances I am able to organise my thoughts, analyse, synthesise and critically appraise situations I can identify assumptions, evaluate statements in terms of evidence, detect false logic or reasoning, identify implicit values, define terms adequately and generalise appropriately Explain why: Professional/Vocational skills Strongly Agree Agree Disagree Strongly Disagree I use a wide range of techniques in approaching and solving problems. I am comfortable with a range of research techniques I am able to analyse and interpret quantitative data I am able to analyse and interpret qualitative data My leadership skills are well developed and I can adapt them to different situations I am able to manage people effectively Motivating myself and others comes easy to me I am aware of my responsibilities to myself, the organisation and other people I treat people with respect and consideration Explain why:   Key/Common skills Strongly Agree Agree Disagree Strongly Disagree I am able to use mathematical techniques to analyse data I can effectively interpret numerical data including tables and charts I am able to use a wide range of software on a PC I use a range Information Technology devices to communicate and access information I am a good listener I am able to communicate my ideas well in a face-to-face situation I can adapt my written style to suit an audiences needs I am comfortable presenting my ideas to an audience Whenever I have completed a task I always reflect on the experience with a view to seeking continuous improvement I manage my time effectively I am always prompt when asked to complete a task I am aware of the need to be sensitive to the cultural differences to which I have been exposed I am keen to learn about other people and their country and culture I enjoy working with others to complete a task I know my own character and am sensitive of this in a group situation I understand that a group is made of individuals and I am sensitive to the needs and preferences of others I will always ensure that I get my views across in a meeting I am willing to accept the viewpoint of others I always give 100% in a group task Explain why: SLOT Analysis Having responded to the statements above you should now be in a position to look forward and recognise those areas on which your development will be based. The SLOT analysis can help you to arrange this. Strengths – can be those skills and characteristics to which you have responded positively to in the previous section. It is worth noting that whilst you may be strong in these areas that does not mean you ignore their development. Indeed you may be able to utilise these strengths in the development of areas identified as weaknesses or to overcome strengths, this will enhance those skills and characteristics. Limitations – All of us can identify some sort of limitation to our skills. None of us should be afraid of doing this as this is the first stage on the improvement and development of these weaknesses. Opportunities – These arise or can be created. When thinking of this look ahead at opportunities that will arise in a professional, academic or social context within which your development can take place. Threats – Many threats from your development can come from within – your own characteristics e.g. poor time management can lead to missing deadlines. However we could equally identify a busy lifestyle as a threat to our development. Once again think widely in terms of where the threat will come from. Do not worry if you find that a strength can also be a limitation. This is often true as a characteristic you have may be strength in one situation but a limitation in another. E.g. you may be an assertive person, which is positive, but this could be negative in a group situation. Please try and elaborate this in the notes section at the foot of the table. SLOT Analysis (you may need to use two pages to set out this analysis) Strengths Limitations Opportunities Threats Analysis of the Bullet points in the SLOT table Objectives Having undertaken some analysis of your skills and characteristics the aim of this next section is to identify various aspects of your development during the course of this module, other modules on your course, and extra-curricular activities. Make sure the objectives are SMART:- S – Specific. Clearly identified from the exercises undertaken M – Measurable. The outcomes can be easily demonstrated (to yourself, and where possible others) A – Achievable. They can be done given the opportunities available to you R – Relevant. They form part of your development either on this award, in your employability prospects or in your current job role T – Timebound. They can be achieved within a given timescale Whilst there are 5 rows in the table below, please feel free to add more. However be sure that you need to do this development and that they fit within the scope of the above criteria. Area What I am going to do. How I am going to do it When I am going to do it by Force Field Analysis This technique was designed by Kurt Lewin (1947 and 1953). In the business world it is used for decision making, looking at forces that need to be considered when implementing change – it can be said to be a specialised method of weighing up the pros and cons of a decision. Having looked at your personal strengths and weaknesses we would like you to use this technique to become aware of those factors that will help/hinder, give you motivation for or may act against, your personal development. Whilst you could do this for each of your objectives we want you to think in terms of where you would like to be at the end of your Masters programme. In the central pillar, put in a statement of where you want to be at the end of the course. Then in the arrows either side look at those factors/forces that may work in your favour. Be realistic and please add as many arrows that you think may be necessary; use a separate page for the module if it makes it easier to structure your thoughts. Forces or factors working for achieving your desired outcome Where I want to be Forces or factors against working against you achieving your desired outcome

Module Overview Summary of Module Description For full details, go to Module Descriptor. Aims The aim of this module is to: • Develop individuals for a career in business and management • Enhance and develop employability , professional and lifelong learning skills and personal development Learning Outcomes Learners will be able to critically evaluate the acquisition of a range of academic and professional skills using a number of theoretical frameworks. Assessment – Summary Category Assessment Description Duration Word Count Weight (%) Written Assignment Essay 1 Reflective Essay N/A 3000 45 For full details, go to Assessment. Additional Information Remember that a variety of Resources is available to support your learning materials.Skills and character audit This document provides an initial picture of your skills and character. It will also provide the basis of further documents that make up the first assignment on the module. It is based on the skills statements that form a fundamental part of your Masters programme which were approved by a validation panel that consisted of members of staff in the Business School, academic staff from other higher education institutions and employers. The statements in the form are there for you and you will not be judged on whether your responses are positive or negative. The responses should enable you to identify what you are good or bad at from which you can create a personal SLOT analysis (Strengths, Limitations, Opportunities, Threats). From this SLOT analysis you can then concentrate on developing certain areas that will enhance your academic and professional development. We would very much like to” get to know” you through this document and would encourage you to also complete the notes section. In this you could give us a rationale for your responses to the questions. As a guide to how you should gauge your response consider the following: Strongly agree – I have a wide range of experience in this area and have been commended by a tutor or employer for my efforts in this area Agree – I am comfortable with this aspect and have been able to demonstrate my ability Disagree – I am Ok with this but realise that I do need to improve Strongly disagree – I know I am weak in this area and need to focus on this as I could fine this weakness to be detrimental to my progression Explain why – please take the room to consider the reasons for your answer as this is the reflection that is of most value. Do not worry if your section spills onto the next page.   Intellectual (thinking) skills Strongly Agree Agree Disagree Strongly Disagree I am a creative person who can adapt my thinking to circumstances I am able to organise my thoughts, analyse, synthesise and critically appraise situations I can identify assumptions, evaluate statements in terms of evidence, detect false logic or reasoning, identify implicit values, define terms adequately and generalise appropriately Explain why: Professional/Vocational skills Strongly Agree Agree Disagree Strongly Disagree I use a wide range of techniques in approaching and solving problems. I am comfortable with a range of research techniques I am able to analyse and interpret quantitative data I am able to analyse and interpret qualitative data My leadership skills are well developed and I can adapt them to different situations I am able to manage people effectively Motivating myself and others comes easy to me I am aware of my responsibilities to myself, the organisation and other people I treat people with respect and consideration Explain why:   Key/Common skills Strongly Agree Agree Disagree Strongly Disagree I am able to use mathematical techniques to analyse data I can effectively interpret numerical data including tables and charts I am able to use a wide range of software on a PC I use a range Information Technology devices to communicate and access information I am a good listener I am able to communicate my ideas well in a face-to-face situation I can adapt my written style to suit an audiences needs I am comfortable presenting my ideas to an audience Whenever I have completed a task I always reflect on the experience with a view to seeking continuous improvement I manage my time effectively I am always prompt when asked to complete a task I am aware of the need to be sensitive to the cultural differences to which I have been exposed I am keen to learn about other people and their country and culture I enjoy working with others to complete a task I know my own character and am sensitive of this in a group situation I understand that a group is made of individuals and I am sensitive to the needs and preferences of others I will always ensure that I get my views across in a meeting I am willing to accept the viewpoint of others I always give 100% in a group task Explain why: SLOT Analysis Having responded to the statements above you should now be in a position to look forward and recognise those areas on which your development will be based. The SLOT analysis can help you to arrange this. Strengths – can be those skills and characteristics to which you have responded positively to in the previous section. It is worth noting that whilst you may be strong in these areas that does not mean you ignore their development. Indeed you may be able to utilise these strengths in the development of areas identified as weaknesses or to overcome strengths, this will enhance those skills and characteristics. Limitations – All of us can identify some sort of limitation to our skills. None of us should be afraid of doing this as this is the first stage on the improvement and development of these weaknesses. Opportunities – These arise or can be created. When thinking of this look ahead at opportunities that will arise in a professional, academic or social context within which your development can take place. Threats – Many threats from your development can come from within – your own characteristics e.g. poor time management can lead to missing deadlines. However we could equally identify a busy lifestyle as a threat to our development. Once again think widely in terms of where the threat will come from. Do not worry if you find that a strength can also be a limitation. This is often true as a characteristic you have may be strength in one situation but a limitation in another. E.g. you may be an assertive person, which is positive, but this could be negative in a group situation. Please try and elaborate this in the notes section at the foot of the table. SLOT Analysis (you may need to use two pages to set out this analysis) Strengths Limitations Opportunities Threats Analysis of the Bullet points in the SLOT table Objectives Having undertaken some analysis of your skills and characteristics the aim of this next section is to identify various aspects of your development during the course of this module, other modules on your course, and extra-curricular activities. Make sure the objectives are SMART:- S – Specific. Clearly identified from the exercises undertaken M – Measurable. The outcomes can be easily demonstrated (to yourself, and where possible others) A – Achievable. They can be done given the opportunities available to you R – Relevant. They form part of your development either on this award, in your employability prospects or in your current job role T – Timebound. They can be achieved within a given timescale Whilst there are 5 rows in the table below, please feel free to add more. However be sure that you need to do this development and that they fit within the scope of the above criteria. Area What I am going to do. How I am going to do it When I am going to do it by Force Field Analysis This technique was designed by Kurt Lewin (1947 and 1953). In the business world it is used for decision making, looking at forces that need to be considered when implementing change – it can be said to be a specialised method of weighing up the pros and cons of a decision. Having looked at your personal strengths and weaknesses we would like you to use this technique to become aware of those factors that will help/hinder, give you motivation for or may act against, your personal development. Whilst you could do this for each of your objectives we want you to think in terms of where you would like to be at the end of your Masters programme. In the central pillar, put in a statement of where you want to be at the end of the course. Then in the arrows either side look at those factors/forces that may work in your favour. Be realistic and please add as many arrows that you think may be necessary; use a separate page for the module if it makes it easier to structure your thoughts. Forces or factors working for achieving your desired outcome Where I want to be Forces or factors against working against you achieving your desired outcome

  Intellectual (thinking) skills   Strongly Agree Agree Disagree Strongly … Read More...
Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

The objectification of women has been a very controversial topic … Read More...
EGR 3323 HW2 1) For points P(1, -2, 1) , Q(0, -2, 5) and R(4, -6, 7) , a) Find the vector v from point P to point Q? b) Find the vector k from R to P? c) Calculate the dot product of v and k. d) Calculate the cross product of v and k. e) The projection of v on k. f) The angle between v and k. For question 1, Write a MATLAB program to verify your answers. Submit the output displayed.(Use matlab functions such as dot, cross, norm, acos) 2) Solar panels have to be installed carefully so that the tilt of the roof and direction to the sun rays should maximize the power absorbed from the sun. P2 P1 P3 P4 Here are the coordinates of the corners of the roof at the picture P1(8,6,4) , P2(8,10,4), P3(6,8,8) and P4(6,4,8). Determine the following for this roof. a) What are the edge vectors that define the roof surface? Write them in component form. b) What is the unit vector (p) perpendicular to these edge vectors of the roof surface? c) If the flow of solar energy is in s=[4 -3 2] direction with magnitude of 1000 watts/meter2, calculate the dot product of E=1000us and p. (where us is the unit vector of s). d) Calculate the angle between s and p. What do you say about this angle for maximum solar energy? 3) Find the unit vector perpendicular to the plane -3x + 7y – 2z = 8. 4) A wheel is rotating about x-axis with angular speed w=20sec-1 (you can take this quantity as it is, no need to transform to rads/sec, the units for this angular speed is revolutions/secs) The rotation is clockwise if one sits at the origin and looks at this wheel in the positive x direction. Find the velocity and speed at point [4 3 0]. Make a sketch. 5) Two forces of equal magnitude are applied to the wrench. If a moment of 50N-m is required to loosen the nut and determine the Force vectors.

EGR 3323 HW2 1) For points P(1, -2, 1) , Q(0, -2, 5) and R(4, -6, 7) , a) Find the vector v from point P to point Q? b) Find the vector k from R to P? c) Calculate the dot product of v and k. d) Calculate the cross product of v and k. e) The projection of v on k. f) The angle between v and k. For question 1, Write a MATLAB program to verify your answers. Submit the output displayed.(Use matlab functions such as dot, cross, norm, acos) 2) Solar panels have to be installed carefully so that the tilt of the roof and direction to the sun rays should maximize the power absorbed from the sun. P2 P1 P3 P4 Here are the coordinates of the corners of the roof at the picture P1(8,6,4) , P2(8,10,4), P3(6,8,8) and P4(6,4,8). Determine the following for this roof. a) What are the edge vectors that define the roof surface? Write them in component form. b) What is the unit vector (p) perpendicular to these edge vectors of the roof surface? c) If the flow of solar energy is in s=[4 -3 2] direction with magnitude of 1000 watts/meter2, calculate the dot product of E=1000us and p. (where us is the unit vector of s). d) Calculate the angle between s and p. What do you say about this angle for maximum solar energy? 3) Find the unit vector perpendicular to the plane -3x + 7y – 2z = 8. 4) A wheel is rotating about x-axis with angular speed w=20sec-1 (you can take this quantity as it is, no need to transform to rads/sec, the units for this angular speed is revolutions/secs) The rotation is clockwise if one sits at the origin and looks at this wheel in the positive x direction. Find the velocity and speed at point [4 3 0]. Make a sketch. 5) Two forces of equal magnitude are applied to the wrench. If a moment of 50N-m is required to loosen the nut and determine the Force vectors.

info@checkyourstudy.com