Chapter 07 Homework Due: 11:59pm on Friday, May 23, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy BioFlix Quiz: The Carbon Cycle Watch the animation at left before answering the questions below. Part A An organism gets carbon by using carbon dioxide in the atmosphere to make sugar molecules. This organism is a Hint 1. Review the animation or your Study Sheet for The Carbon Cycle. ANSWER: Correct During photosynthesis, producers use carbon dioxide to make sugar molecules. Part B Which organisms play a role in returning carbon to the atmosphere? Hint 1. Review the animation or your Study Sheet for The Carbon Cycle. ANSWER: higher-level consumer. producer. primary consumer. decomposer. None of the above Consumers and decomposers, but not producers. Producers only. Decomposers only. Consumers only. Producers, consumers, and decomposers. Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 1 of 7 5/21/2014 8:02 PM Correct Producers, consumers, and decomposers all return carbon dioxide to the atmosphere during cellular respiration. Part C Every carbon atom in the organic molecules that make up your body MUST recently have been part of Hint 1. Review the animation or your Study Sheet for The Carbon Cycle. ANSWER: Correct You are a consumer, and all your carbon comes ultimately from plants and other producers. Part D Imagine following a single carbon atom through the carbon cycle. Which of the following is a possible path for the carbon atom to take? Hint 1. Review the animation or your Study Sheet for The Carbon Cycle. ANSWER: Correct Carbon moves from the atmosphere into a producer (such as a plant), up the food chain, and then back to the atmosphere during cellular respiration. Part E Which process or processes return carbon to the atmosphere? Hint 1. Review the animation. ANSWER: Correct Cellular respiration results in the release of carbon dioxide to the atmosphere. a higher-level consumer. a primary consumer. a decomposer. a producer. a sugar molecule made in one of your chloroplasts. The atmosphere; a plant; a higher-level consumer; then back to the atmosphere. The atmosphere; a plant; an herbivore; another plant; then back to the atmosphere. The atmosphere, a plant, a herbivore, a decomposer, then back to the atmosphere The atmosphere; a decomposer; a higher-level consumer; then back to the atmosphere. The atmosphere; a decomposer; then back to the atmosphere. Cellular respiration only Photosynthesis only Cellular respiration and photosynthesis Breakdown of large organic molecules into smaller organic molecules Cellular respiration and the breakdown of large organic molecules into smaller organic molecules Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 2 of 7 5/21/2014 8:02 PM Activity: The Nitrogen Cycle Click here to complete this activity. Then answer the questions. Part A Nitrifying bacteria convert _____ to _____. ANSWER: Correct Nitrifying bacteria convert ammonium to nitrites. Part B _____ removes nitrogen from the atmosphere. ANSWER: Correct Nitrogen fixation is the conversion of nitrogen gas to a form that can be used by plants (and other organisms). Part C Assimilation is indicated by the letter(s) _____. nitrogen gas … ammonium nitrogen gas … nitrates ammonium … nitrites nitrates … nitrogen gas ammonium … nitrogen gas Denitrification Nitrification Mineralization Nitrogen fixation Assimilation Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 3 of 7 5/21/2014 8:02 PM ANSWER: Correct Assimilation is the uptake of nutrients into an organism. Part D Nitrogen-fixing bacteria is(are) indicated by the letter(s) _____. ANSWER: Correct Both of these pointers are indicating nitrogen-fixing bacteria. Nitrogen fixation is the conversion of nitrogen to a form that plants can use. Part E Nitrification is indicated by the letter(s) _____. ANSWER: C B A D and E C and D B and C A and B D and E C and D A Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 4 of 7 5/21/2014 8:02 PM Correct Nitrification is the conversion of organic nitrogen-containing compounds to nitrites and nitrates. Part F Denitrifying bacteria convert _____ to _____. ANSWER: Correct Denitrifying bacteria convert nitrates to nitrogen gas. Part G Which one of these is a nitrate? ANSWER: Correct NO3 – is a nitrate. Part H Which one of these is a nitrite? ANSWER: Correct This is a nitrite. GeoScience: Earth’s Water and the Hydrologic Cycle A B B and C D and E B and E nitrogen gas … nitrites nitrogen gas … ammonium nitrates … nitrogen gas ammonium … nitrogen gas nitrogen gas … nitrates NO2 – NH4 – NH2 SH NO3 – PO4 – NH2 NH4 – NO2 – NO3 – Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 5 of 7 5/21/2014 8:02 PM When you have finished, answer the questions. Part A The largest percentage of fresh water today is located in: ANSWER: Correct Ice sheets and glaciers are the greatest single repository of fresh water: they contain 77.3% of all Earth’s fresh water and 99.357% of all Earth’s surface fresh water. Part B Earth’s oceans hold: ANSWER: Correct The oceans contain 97.22% of all water, comprising about 1.321 billion cubic kilometers of salt water. This leaves only 2.78% of all of Earth’s water as fresh water (non-oceanic). Part C Which of the following is true of the hydrologic cycle? ANSWER: Correct About 20% of the moisture evaporated from the ocean combines with 2% of land-derived moisture to produce 22% of all precipitation that falls over land. Clearly, the bulk of continental precipitation comes from the oceanic portion of the cycle. Concept Review: Eutrophication Can you sequence the steps in the eutrophication process that occurs in a body of water? Part A Drag each statement to the appropriate location in the flowchart of the eutrophication process. ANSWER: soil. ice sheets and glaciers. the rivers and lakes of the world. groundwater resources. about the same amount of water as all groundwater sources combined. most of the fresh water on Earth. the bulk of all of the water found on Earth. about the same amount of water as all Earth’s rivers and lakes combined. Atmospheric water and surface water do not mix. Most evaporation on Earth occurs over the continents. The bulk of the precipitation occurs over land. Most of the water that falls on the continents is derived from the oceans. Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 6 of 7 5/21/2014 8:02 PM Concept Review: Biogeochemical Cycles Can you sort the items by which biogeochemical cycle they apply to? Part A Drag each description to the appropriate bin. ANSWER: Score Summary: Your score on this assignment is 62.3%. You received 12.45 out of a possible total of 20 points. Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 7 of 7 5/21/2014 8:02 PM

Chapter 07 Homework Due: 11:59pm on Friday, May 23, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy BioFlix Quiz: The Carbon Cycle Watch the animation at left before answering the questions below. Part A An organism gets carbon by using carbon dioxide in the atmosphere to make sugar molecules. This organism is a Hint 1. Review the animation or your Study Sheet for The Carbon Cycle. ANSWER: Correct During photosynthesis, producers use carbon dioxide to make sugar molecules. Part B Which organisms play a role in returning carbon to the atmosphere? Hint 1. Review the animation or your Study Sheet for The Carbon Cycle. ANSWER: higher-level consumer. producer. primary consumer. decomposer. None of the above Consumers and decomposers, but not producers. Producers only. Decomposers only. Consumers only. Producers, consumers, and decomposers. Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 1 of 7 5/21/2014 8:02 PM Correct Producers, consumers, and decomposers all return carbon dioxide to the atmosphere during cellular respiration. Part C Every carbon atom in the organic molecules that make up your body MUST recently have been part of Hint 1. Review the animation or your Study Sheet for The Carbon Cycle. ANSWER: Correct You are a consumer, and all your carbon comes ultimately from plants and other producers. Part D Imagine following a single carbon atom through the carbon cycle. Which of the following is a possible path for the carbon atom to take? Hint 1. Review the animation or your Study Sheet for The Carbon Cycle. ANSWER: Correct Carbon moves from the atmosphere into a producer (such as a plant), up the food chain, and then back to the atmosphere during cellular respiration. Part E Which process or processes return carbon to the atmosphere? Hint 1. Review the animation. ANSWER: Correct Cellular respiration results in the release of carbon dioxide to the atmosphere. a higher-level consumer. a primary consumer. a decomposer. a producer. a sugar molecule made in one of your chloroplasts. The atmosphere; a plant; a higher-level consumer; then back to the atmosphere. The atmosphere; a plant; an herbivore; another plant; then back to the atmosphere. The atmosphere, a plant, a herbivore, a decomposer, then back to the atmosphere The atmosphere; a decomposer; a higher-level consumer; then back to the atmosphere. The atmosphere; a decomposer; then back to the atmosphere. Cellular respiration only Photosynthesis only Cellular respiration and photosynthesis Breakdown of large organic molecules into smaller organic molecules Cellular respiration and the breakdown of large organic molecules into smaller organic molecules Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 2 of 7 5/21/2014 8:02 PM Activity: The Nitrogen Cycle Click here to complete this activity. Then answer the questions. Part A Nitrifying bacteria convert _____ to _____. ANSWER: Correct Nitrifying bacteria convert ammonium to nitrites. Part B _____ removes nitrogen from the atmosphere. ANSWER: Correct Nitrogen fixation is the conversion of nitrogen gas to a form that can be used by plants (and other organisms). Part C Assimilation is indicated by the letter(s) _____. nitrogen gas … ammonium nitrogen gas … nitrates ammonium … nitrites nitrates … nitrogen gas ammonium … nitrogen gas Denitrification Nitrification Mineralization Nitrogen fixation Assimilation Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 3 of 7 5/21/2014 8:02 PM ANSWER: Correct Assimilation is the uptake of nutrients into an organism. Part D Nitrogen-fixing bacteria is(are) indicated by the letter(s) _____. ANSWER: Correct Both of these pointers are indicating nitrogen-fixing bacteria. Nitrogen fixation is the conversion of nitrogen to a form that plants can use. Part E Nitrification is indicated by the letter(s) _____. ANSWER: C B A D and E C and D B and C A and B D and E C and D A Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 4 of 7 5/21/2014 8:02 PM Correct Nitrification is the conversion of organic nitrogen-containing compounds to nitrites and nitrates. Part F Denitrifying bacteria convert _____ to _____. ANSWER: Correct Denitrifying bacteria convert nitrates to nitrogen gas. Part G Which one of these is a nitrate? ANSWER: Correct NO3 – is a nitrate. Part H Which one of these is a nitrite? ANSWER: Correct This is a nitrite. GeoScience: Earth’s Water and the Hydrologic Cycle A B B and C D and E B and E nitrogen gas … nitrites nitrogen gas … ammonium nitrates … nitrogen gas ammonium … nitrogen gas nitrogen gas … nitrates NO2 – NH4 – NH2 SH NO3 – PO4 – NH2 NH4 – NO2 – NO3 – Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 5 of 7 5/21/2014 8:02 PM When you have finished, answer the questions. Part A The largest percentage of fresh water today is located in: ANSWER: Correct Ice sheets and glaciers are the greatest single repository of fresh water: they contain 77.3% of all Earth’s fresh water and 99.357% of all Earth’s surface fresh water. Part B Earth’s oceans hold: ANSWER: Correct The oceans contain 97.22% of all water, comprising about 1.321 billion cubic kilometers of salt water. This leaves only 2.78% of all of Earth’s water as fresh water (non-oceanic). Part C Which of the following is true of the hydrologic cycle? ANSWER: Correct About 20% of the moisture evaporated from the ocean combines with 2% of land-derived moisture to produce 22% of all precipitation that falls over land. Clearly, the bulk of continental precipitation comes from the oceanic portion of the cycle. Concept Review: Eutrophication Can you sequence the steps in the eutrophication process that occurs in a body of water? Part A Drag each statement to the appropriate location in the flowchart of the eutrophication process. ANSWER: soil. ice sheets and glaciers. the rivers and lakes of the world. groundwater resources. about the same amount of water as all groundwater sources combined. most of the fresh water on Earth. the bulk of all of the water found on Earth. about the same amount of water as all Earth’s rivers and lakes combined. Atmospheric water and surface water do not mix. Most evaporation on Earth occurs over the continents. The bulk of the precipitation occurs over land. Most of the water that falls on the continents is derived from the oceans. Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 6 of 7 5/21/2014 8:02 PM Concept Review: Biogeochemical Cycles Can you sort the items by which biogeochemical cycle they apply to? Part A Drag each description to the appropriate bin. ANSWER: Score Summary: Your score on this assignment is 62.3%. You received 12.45 out of a possible total of 20 points. Chapter 07 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 7 of 7 5/21/2014 8:02 PM

info@checkyourstudy.com
1. Develop a thought experiment that attempts to uncover hidden assumptions about human freedom. 2. Find a paragraph from a book, magazine, ect. First, tell whether there are claims in the paragraph. If there are, identify the types of claims (descriptive, normative, a priori, a posteriori) in the paragraph

1. Develop a thought experiment that attempts to uncover hidden assumptions about human freedom. 2. Find a paragraph from a book, magazine, ect. First, tell whether there are claims in the paragraph. If there are, identify the types of claims (descriptive, normative, a priori, a posteriori) in the paragraph

Let us think of a thought experiment that wants to … Read More...
Assignment 2 Conditional Probability, Bayes Theorem, and Random Variables Conditional Probability and Bayes’ Theorem Problems 1-14 from Problem Set on Conditional Probability and Bayes’ Theorem I am including all the question here so that there is no confusion. Q1. Pair of six sided dices are rolled and the outcome is noted: What is the sample space? What is the size of the sample space? Suppose all we are interested in is the sum of the two outcomes. What is the probability that the sum of the two is 6? 7? 8? (Note: This can be solved using both enumeration and conditional probability method). Here, it makes more sense to use the enumeration approach than conditional probability. It is, however, listed here to set the stage for Q5. What is the probability that the sum of the two is above 5 and the two numbers are equal? Express this question in terms of events A, B, and set operators. What is the probability that the sum of the two is above 5 or the two numbers are equal? Express this question in terms of events A, B, and set operators. Q2. If P(A)=0.4, P(B)=0.5 and P(A∩B)=0.3 What is the value of (a) P(A|B) and (b) P(B|A) Q3. At a fair, a vendor has 25 helium balloons on strings: 10 balloons are yellow, 8 are red, and 7 are green. A balloon is selected at random and sold. Given that the balloon sold is yellow, what is the probability that the next balloon selected at random is also yellow? Q4. A bowl contains seven blue chips and three red chips. Two chips are to be drawn at random and without replacement. What is the probability that the fist chip is a red chip and the second a blue? Express this question in terms of events A, B, and set operators and use conditional probability. Q5. Three six sided dices are rolled and the outcome is noted: What is the size of the sample space? What is the probability that the sum of the three numbers is 6? 13? 18? Solve using conditional probability How does the concept of conditional probability help? Q6. A grade school boy has 5 blue and four white marbles in his left pocket and four blue and five white marbles in his right pocket. If he transfers one marble at random from his left pocket to his right pocket, what is the probability of his then drawing a blue marble from his right pocket? Q7. In a certain factory, machine I, II, and III are all producing springs of the same length. Of their production, machines I, II, and III produce 2%, 1%, and 3% defective springs respectively. Of the total production of springs in the factory, machine I produces 35%, machine II produces 25%, and machine III produces 40%. If one spring is selected at random from the total springs produced in a day, what is the probability that it is defective? Given that the selected spring is defective, what is the probability that it was produced on machine III? Q8. Bowl B1 contains 2 white chips, bowl B2 contains 2 red chips, bowl B3 contains 2 white and 2 red chips, and Bowl B4 contains 3 white chips and 1 red chip. The probabilities of selecting bowl B1, B2, B3, and B4 are 1/2, 1/4, 1/8, and 1/8 respectively. A bowl is selected using these probabilities, and a chip is then drawn at random. Find P(W), the probability of drawing a white chip P(B1|W): the probability that bowl B1 was selected, given that a white chip was drawn. Q9. A pap smear is a screening procedure used to detect cervical cancer. For women with this cancer, there are about 16% false negative. For women without cervical cancer, there are about 19% false positive. In the US, there are about 8 women in 100,000 who have this cancer. What is the probability that a woman who has been tested positive actually has cervical cancer? Q10. There is a new diagnostic test for a disease that occurs in about 0.05% of the population. The test is not perfect but will detect a person with the disease 99% of the time. It will, however, say that a person without the disease has the disease about 3% of the time. A person is selected at random from the population and the test indicates that this person has the disease. What are the conditional probabilities that The person has the disease The person does not have the disease Q11. Consider two urns: the first contains two white and seven black balls, and the second contains five white and six black balls. We flip a fair coin and then draw a ball from the first urn or the second urn depending on whether the outcome was a head or a tails. What is the conditional probability that the outcome of the toss was heads given that a white ball was selected? Q12. In answering a question on a multiple-choice test a student either knows the answer or guesses. Let p be the probability that she knows the answer. Assume that a student who guesses at the answer will be correct with probability 1/m where m is the number of multiple choice alternatives. What is the conditional probability that a student knew the answer given that she answered it correctly? Q13. A laboratory blood test is 95% effective in detecting a certain disease when it is, in fact, present. However, the test also yields a “false positive” result for 1% of the healthy persons tested (i.e., if a healthy person is tested, then, with probability 0.01, the test result will imply that he has the disease.). If 0.5% of the population actually have the disease, what is the probability a person has the disease given that his test results are positive? Q14. An urn contains b black balls and r red balls. One of the balls is drawn at random, but when it is put back in the urn, c additional balls of the same color are put in it with it. Now suppose that we draw another ball. What is the probability that the first ball drawn was black given that the second ball drawn was red? Random Variables Q15. Suppose an experiment consists of tossing two six sided fair dice and observing the outcomes. What is the sample space? Let Y denote the sum of the two numbers that appear on the dice. Define Y to be a random variable. What are the values that the random variable Y can take? What does it mean if we say Y=7? What does it mean if I say that Y<7? Q16. Suppose an experiment consists of picking a sample of size n from a population of size N. Assume that n≪N. Also, assume that the population contains D defective parts and N-D non defective parts, where n<D≪N. What is the sample space? If we are interested in knowing the number (count) of defective parts in the sample space, describe how, the concept of a random variable could help. Define a random variable Y and describe what values the random variable Y can take? What does it mean if we say Y=5? Q17. Suppose an experiment consists of tossing two fair coins. Let Y denote the number of heads appearing. Define Y to be a random variable. What are the values that the random variable Y can take? What does it mean if we say Y=1? What are the probabilities associated with each outcome? What is the sum of the probabilities associated with all possible values that Y can take? Q18. A lot, consisting of 100 fuses, is inspected by the following procedure. Five fuses are chosen at random and tested: if all 5 fuses pass the inspection, the lot is accepted. Suppose that the lot contains 20 defective fuses. What is the probability of accepting the lot? Define the random variable, its purpose, and the formula/concept that you would use. Q19. In a small pond there are 50 fish, 10 of which have been tagged. If a fisherman’s catch consists of 7 fish, selected at random and without replacement. Give an example of a random variable that can be defined if we are interested in knowing the number of tagged fish that are caught? What is the probability that exactly 2 tagged fish are caught? Define the random variable, its purpose, and the formula/concept that you would use. Applied to Quality Control Q20. My manufacturing firm makes 100 cars every day out of which 10 are defective; the quality control inspector tests drives 5 different cars. Based on the sample, the quality control inspector will make a generalization about the whole batch of 100 cars that I have on that day. Let d denote the number of defective cars in the sample What are the values that d can take (given the information provided above)? What is the probability that the quality control inspector will conclude that: (a) 0% of the cars are defective- call this P(d=0); (b) 20% of the cars are defective- call this P(d=1); (c) 40% of the cars are defective- call this P(d=2); (d) 60% of the cars are defective- call this P(d=3),(e) 80% of the cars are defective- call this P(d=4), and (f) 100% of the cars are defective- call this P(d=5) What is P(d=0)+ P(d=1)+ P(d=2)+ P(d=3)+ P(d=4)+ P(d=5) Let’s assume that the quality control inspector has been doing the testing for a while (say for the past 1000 days). What is the average # of defective cars that he found? Q21. Assume that the quality control inspector is selecting 1 car at a time and the car that he tested is put back in the pool of possible cars that he can test (sample with replacement). Let d denote the number of defective cars in the sample (n) What are the values that d can take (given the information provided above)? What is the probability that the quality control inspector will conclude that: (a) 0% of the cars are defective, (b) 20% of the cars are defective, (c) 40% of the cars are defective, (d) 60% of the cars are defective, (e) 80% of the cars are defective, and (f) 100% of the cars are defective. Let’s call these P(d=0)….P(d=5) What is P(d=0)+ P(d=1)+ P(d=2)+ P(d=3)+ P(d=4)+ P(d=5) Let’s assume that the quality control inspector has been doing the testing for a while (say for the past 1000 days). What is the average # of defective cars that he found? Interesting Problems Q22. A closet contains n pairs of shoes. If 2r shoes are chosen at random (2r<n), what is the probability that there will be no matching pair in the sample? Q23. In a draft lottery containing the 366 days of the leap year, what is the probability that the first 180 days drawn (without replacement) are evenly distributed among the 12 months? What is the probability that the first 30 days drawn contain none from September? Q25. You and I play a coin-tossing game. If the coin falls heads I score one, if tails, you score one. In the beginning, the score is zero. What is the probability that after 2n throws our scores are equal? What is the probability that after 2n+1 throws my score is three more than yours?

Assignment 2 Conditional Probability, Bayes Theorem, and Random Variables Conditional Probability and Bayes’ Theorem Problems 1-14 from Problem Set on Conditional Probability and Bayes’ Theorem I am including all the question here so that there is no confusion. Q1. Pair of six sided dices are rolled and the outcome is noted: What is the sample space? What is the size of the sample space? Suppose all we are interested in is the sum of the two outcomes. What is the probability that the sum of the two is 6? 7? 8? (Note: This can be solved using both enumeration and conditional probability method). Here, it makes more sense to use the enumeration approach than conditional probability. It is, however, listed here to set the stage for Q5. What is the probability that the sum of the two is above 5 and the two numbers are equal? Express this question in terms of events A, B, and set operators. What is the probability that the sum of the two is above 5 or the two numbers are equal? Express this question in terms of events A, B, and set operators. Q2. If P(A)=0.4, P(B)=0.5 and P(A∩B)=0.3 What is the value of (a) P(A|B) and (b) P(B|A) Q3. At a fair, a vendor has 25 helium balloons on strings: 10 balloons are yellow, 8 are red, and 7 are green. A balloon is selected at random and sold. Given that the balloon sold is yellow, what is the probability that the next balloon selected at random is also yellow? Q4. A bowl contains seven blue chips and three red chips. Two chips are to be drawn at random and without replacement. What is the probability that the fist chip is a red chip and the second a blue? Express this question in terms of events A, B, and set operators and use conditional probability. Q5. Three six sided dices are rolled and the outcome is noted: What is the size of the sample space? What is the probability that the sum of the three numbers is 6? 13? 18? Solve using conditional probability How does the concept of conditional probability help? Q6. A grade school boy has 5 blue and four white marbles in his left pocket and four blue and five white marbles in his right pocket. If he transfers one marble at random from his left pocket to his right pocket, what is the probability of his then drawing a blue marble from his right pocket? Q7. In a certain factory, machine I, II, and III are all producing springs of the same length. Of their production, machines I, II, and III produce 2%, 1%, and 3% defective springs respectively. Of the total production of springs in the factory, machine I produces 35%, machine II produces 25%, and machine III produces 40%. If one spring is selected at random from the total springs produced in a day, what is the probability that it is defective? Given that the selected spring is defective, what is the probability that it was produced on machine III? Q8. Bowl B1 contains 2 white chips, bowl B2 contains 2 red chips, bowl B3 contains 2 white and 2 red chips, and Bowl B4 contains 3 white chips and 1 red chip. The probabilities of selecting bowl B1, B2, B3, and B4 are 1/2, 1/4, 1/8, and 1/8 respectively. A bowl is selected using these probabilities, and a chip is then drawn at random. Find P(W), the probability of drawing a white chip P(B1|W): the probability that bowl B1 was selected, given that a white chip was drawn. Q9. A pap smear is a screening procedure used to detect cervical cancer. For women with this cancer, there are about 16% false negative. For women without cervical cancer, there are about 19% false positive. In the US, there are about 8 women in 100,000 who have this cancer. What is the probability that a woman who has been tested positive actually has cervical cancer? Q10. There is a new diagnostic test for a disease that occurs in about 0.05% of the population. The test is not perfect but will detect a person with the disease 99% of the time. It will, however, say that a person without the disease has the disease about 3% of the time. A person is selected at random from the population and the test indicates that this person has the disease. What are the conditional probabilities that The person has the disease The person does not have the disease Q11. Consider two urns: the first contains two white and seven black balls, and the second contains five white and six black balls. We flip a fair coin and then draw a ball from the first urn or the second urn depending on whether the outcome was a head or a tails. What is the conditional probability that the outcome of the toss was heads given that a white ball was selected? Q12. In answering a question on a multiple-choice test a student either knows the answer or guesses. Let p be the probability that she knows the answer. Assume that a student who guesses at the answer will be correct with probability 1/m where m is the number of multiple choice alternatives. What is the conditional probability that a student knew the answer given that she answered it correctly? Q13. A laboratory blood test is 95% effective in detecting a certain disease when it is, in fact, present. However, the test also yields a “false positive” result for 1% of the healthy persons tested (i.e., if a healthy person is tested, then, with probability 0.01, the test result will imply that he has the disease.). If 0.5% of the population actually have the disease, what is the probability a person has the disease given that his test results are positive? Q14. An urn contains b black balls and r red balls. One of the balls is drawn at random, but when it is put back in the urn, c additional balls of the same color are put in it with it. Now suppose that we draw another ball. What is the probability that the first ball drawn was black given that the second ball drawn was red? Random Variables Q15. Suppose an experiment consists of tossing two six sided fair dice and observing the outcomes. What is the sample space? Let Y denote the sum of the two numbers that appear on the dice. Define Y to be a random variable. What are the values that the random variable Y can take? What does it mean if we say Y=7? What does it mean if I say that Y<7? Q16. Suppose an experiment consists of picking a sample of size n from a population of size N. Assume that n≪N. Also, assume that the population contains D defective parts and N-D non defective parts, where n

What is meant by the statement that “male bees are fatherless”? The queen bee’s mate dies before the male eggs hatch. Male bees are produced by budding. Male bees develop from unfertilized eggs. Male bees don’t play a role in the rearing of bee youn

What is meant by the statement that “male bees are fatherless”? The queen bee’s mate dies before the male eggs hatch. Male bees are produced by budding. Male bees develop from unfertilized eggs. Male bees don’t play a role in the rearing of bee youn

Male bees develop from unfertilized eggs
Essay list

Essay list

      Some students have a background or story … Read More...
Name: ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬________________________________ HIST 2070 Reading Questions: Chapter 19, Source Reading Directions: Answer the following questions that pertain to chapter 19 and the Yangzhou Massacre source reading. Reading questions are due by 9:45a on Wednesday, September 16, 2015. Late submissions will not be accepted. Reading questions: 1. What were the sources of Spanish power in the sixteenth and seventeenth centuries? Why was Spain unable to sustain its supremacy in Europe? 2. What were the strengths and weaknesses in the Ottoman and Safavid empires? What role did religion play in the Ottoman and Safavid empires? 3. Why were the Manchus able to conquer China? What significance did the Yangzhou massacre (source reading) play in this conquest? How did some people survive the massacre? What were some actions taken by Manchu soldiers? 4. How did the early Qing dynasty attempt to unite China? 5. In what ways did Japanese society change in the change in the seventeenth century? 6. How did slave communities in the Americas create autonomous institutions? 7. How did the slave trade affect African stated during this period?

Name: ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬________________________________ HIST 2070 Reading Questions: Chapter 19, Source Reading Directions: Answer the following questions that pertain to chapter 19 and the Yangzhou Massacre source reading. Reading questions are due by 9:45a on Wednesday, September 16, 2015. Late submissions will not be accepted. Reading questions: 1. What were the sources of Spanish power in the sixteenth and seventeenth centuries? Why was Spain unable to sustain its supremacy in Europe? 2. What were the strengths and weaknesses in the Ottoman and Safavid empires? What role did religion play in the Ottoman and Safavid empires? 3. Why were the Manchus able to conquer China? What significance did the Yangzhou massacre (source reading) play in this conquest? How did some people survive the massacre? What were some actions taken by Manchu soldiers? 4. How did the early Qing dynasty attempt to unite China? 5. In what ways did Japanese society change in the change in the seventeenth century? 6. How did slave communities in the Americas create autonomous institutions? 7. How did the slave trade affect African stated during this period?

info@checkyourstudy.com
SUPPLY CHAIN MANAGEMENT AT BOSE CORPORATION Bose Corporation, headquartered in Framingham, Massachusetts, offers an excellent example of integrated supply chain management. Bose, a producer of audio premium speakers used in automobiles, high-fidelity systems, and consumer and commercial broadcasting systems, was founded in 1964 by Dr. Bose of MIT. Bose currently maintains plants in Massachusetts and Michigan as well as Canada, Mexico, and Ireland. Its purchasing organization, while decentralized, has some overlap that requires coordination between sites. It manages this coordination by using conference calls between managers, electronic communication, and joint problem solving. The company is moving toward single sourcing many of its 800 to 1,000 parts, which include corrugated paper, particle board and wood, plastic injected molded parts, fasteners, glues, woofers, and fabric. Some product components, such as woofers, are sourced overseas. For example, at the Hillsdale, Michigan, plant, foreign sourcing accounts for 20% of purchases, with the remainder of suppliers located immediately within the state of Michigan. About 35% of the parts purchased at this site are single sourced, with approximately half of the components arriving with no incoming inspection performed. In turn, Bose ships finished products directly to Delco, Honda, and Nissan and has a record of no missed deliveries. Normal lead time to customers is 60 working days, but Bose can expedite shipments in one week and airfreight them if necessary. The company has developed a detailed supplier performance system that measures on-time delivery, quality performance, technical improvements, and supplier suggestions. A report is generated twice a month from this system and sent to the supplier providing feedback about supplier performance. If there is a three-week trend of poor performance, Bose will usually establish a specific goal for improvement that the supplier must attain. Examples include 10% delivery improvement every month until 100% conformance is achieved, or 5% quality improvement until a 1% defect level is reached over a four-month period. In one case, a supplier sent a rejected shipment back to Bose without explanation and with no corrective action taken. When no significant improvement occurred, another supplier replaced the delinquent supplier. Bose has few written contracts with suppliers. After six months of deliveries without rejects, Bose encourages suppliers to apply for a certificate of achievement form, signifying that they are qualified suppliers. One of the primary criteria for gaining certification involves how well the supplier responds to corrective action requests. One of the biggest problems observed is that suppliers often correct problems on individual parts covered by a corrective action form without extending these corrective actions to other part families and applicable parts. Bose has adopted a unique system of marrying just-in-time (JIT) purchasing with global sourcing. Approximately half of the dollar value of Bose’s total purchases are made overseas, with the majority of the sourcing done in Asia. Because foreign sourcing does not support just-in-time deliveries, Bose “had to find a way to blend low inventory with buying from distant sources,” says the director of purchasing and logistics for Bose. Visualizing itself as a customer-driven organization, Bose now uses a sophisticated transportation system—what Bose’s manager of logistics calls “the best EDI system in the country.” Working closely with a national less-than-truckload carrier for the bulk of its domestic freight movements, including shipments arriving at a U.S. port from oversees, Bose implemented an electronic data interchange (EDI) system that does much more than simple tracking. The system operates close to real time and allows two-way communication between every one of the freight handler’s 230 terminals and Bose. Information is updated several times daily and is downloaded automatically, enabling Bose to perform shipping analysis and distribution channel modeling to achieve reliable lowest total cost scenarios. The company can also request removal from a terminal of any shipment that it must expedite with an air shipment. This state-of-the-art system provides a snapshot of what is happening on a daily basis and keeps Bose’s managers on top of everyday occurrences and decisions. Management proactively manages logistics time elements in pursuit of better customer service. The next step is to implement this system with all major suppliers rather than just with transportation suppliers. In the future, Bose plans to automate its entire materials system. Perhaps one of the most unique features of Bose’s procurement and logistics system is the development of JIT II. The basic premise of JIT II is simple: The person who can do the best job of ordering and managing inventory of a particular item is the supplier himself. Bose negotiated with each supplier to provide a full-time employee at the Bose plant who was responsible for ordering, shipping, and receiving materials from that plant, as well as managing on-site inventories of the items. This was done through an EDI connection between Bose’s plant and the supplier’s facility. Collocating suppliers and buyers was so successful that Bose is now implementing it at all plant locations. In fact, many other companies have also begun to implement collocation of suppliers. Assignment Questions The following assignment questions relate to ideas and concepts presented throughout this text. Answer some or all of the questions as directed by your instructor. 1. Discuss how the strategy development process might work at a company like Bose. 2. What should be the relationship between Bose’s supply management strategy and the development of its performance measurement system? 3. Why is purchased quality so important to Bose? 4. Can a just-in-time purchase system operate without total quality from suppliers? 5. Why can some components arrive at the Hillsdale, Michigan, plant with no incoming inspection required? 6. Discuss the reasons why Bose has a certificate of achievement program for identifying qualified suppliers. 7. Bose is moving toward single sourcing many of its purchased part requirements. Discuss why the company might want to do this. Are there any risks to that approach? 8. Discuss some of the difficulties a company like Bose might experience when trying to implement just-in-time purchasing with international suppliers. 9. Why does Bose have to source so much of its purchase requirements from offshore suppliers? 10. What makes the JIT II system at Bose unique? Why would a company pursue this type of system? 11. Why is it necessary to enter into a longer-term contractual arrangement when pursuing arrangements like the one Bose has with its domestic transportation carrier? 12. Why is it important to manage logistics time elements proactively when pursuing higher levels of customer service? 13. What role does information technology play at Bose? 14. What advantages do information technology systems provide to Bose that might not be available to a company that does not have these systems? 15. Why has Bose developed its supplier performance measurement system? 16. Do you think the performance measurement systems at Bose are computerized or manual? Why?

SUPPLY CHAIN MANAGEMENT AT BOSE CORPORATION Bose Corporation, headquartered in Framingham, Massachusetts, offers an excellent example of integrated supply chain management. Bose, a producer of audio premium speakers used in automobiles, high-fidelity systems, and consumer and commercial broadcasting systems, was founded in 1964 by Dr. Bose of MIT. Bose currently maintains plants in Massachusetts and Michigan as well as Canada, Mexico, and Ireland. Its purchasing organization, while decentralized, has some overlap that requires coordination between sites. It manages this coordination by using conference calls between managers, electronic communication, and joint problem solving. The company is moving toward single sourcing many of its 800 to 1,000 parts, which include corrugated paper, particle board and wood, plastic injected molded parts, fasteners, glues, woofers, and fabric. Some product components, such as woofers, are sourced overseas. For example, at the Hillsdale, Michigan, plant, foreign sourcing accounts for 20% of purchases, with the remainder of suppliers located immediately within the state of Michigan. About 35% of the parts purchased at this site are single sourced, with approximately half of the components arriving with no incoming inspection performed. In turn, Bose ships finished products directly to Delco, Honda, and Nissan and has a record of no missed deliveries. Normal lead time to customers is 60 working days, but Bose can expedite shipments in one week and airfreight them if necessary. The company has developed a detailed supplier performance system that measures on-time delivery, quality performance, technical improvements, and supplier suggestions. A report is generated twice a month from this system and sent to the supplier providing feedback about supplier performance. If there is a three-week trend of poor performance, Bose will usually establish a specific goal for improvement that the supplier must attain. Examples include 10% delivery improvement every month until 100% conformance is achieved, or 5% quality improvement until a 1% defect level is reached over a four-month period. In one case, a supplier sent a rejected shipment back to Bose without explanation and with no corrective action taken. When no significant improvement occurred, another supplier replaced the delinquent supplier. Bose has few written contracts with suppliers. After six months of deliveries without rejects, Bose encourages suppliers to apply for a certificate of achievement form, signifying that they are qualified suppliers. One of the primary criteria for gaining certification involves how well the supplier responds to corrective action requests. One of the biggest problems observed is that suppliers often correct problems on individual parts covered by a corrective action form without extending these corrective actions to other part families and applicable parts. Bose has adopted a unique system of marrying just-in-time (JIT) purchasing with global sourcing. Approximately half of the dollar value of Bose’s total purchases are made overseas, with the majority of the sourcing done in Asia. Because foreign sourcing does not support just-in-time deliveries, Bose “had to find a way to blend low inventory with buying from distant sources,” says the director of purchasing and logistics for Bose. Visualizing itself as a customer-driven organization, Bose now uses a sophisticated transportation system—what Bose’s manager of logistics calls “the best EDI system in the country.” Working closely with a national less-than-truckload carrier for the bulk of its domestic freight movements, including shipments arriving at a U.S. port from oversees, Bose implemented an electronic data interchange (EDI) system that does much more than simple tracking. The system operates close to real time and allows two-way communication between every one of the freight handler’s 230 terminals and Bose. Information is updated several times daily and is downloaded automatically, enabling Bose to perform shipping analysis and distribution channel modeling to achieve reliable lowest total cost scenarios. The company can also request removal from a terminal of any shipment that it must expedite with an air shipment. This state-of-the-art system provides a snapshot of what is happening on a daily basis and keeps Bose’s managers on top of everyday occurrences and decisions. Management proactively manages logistics time elements in pursuit of better customer service. The next step is to implement this system with all major suppliers rather than just with transportation suppliers. In the future, Bose plans to automate its entire materials system. Perhaps one of the most unique features of Bose’s procurement and logistics system is the development of JIT II. The basic premise of JIT II is simple: The person who can do the best job of ordering and managing inventory of a particular item is the supplier himself. Bose negotiated with each supplier to provide a full-time employee at the Bose plant who was responsible for ordering, shipping, and receiving materials from that plant, as well as managing on-site inventories of the items. This was done through an EDI connection between Bose’s plant and the supplier’s facility. Collocating suppliers and buyers was so successful that Bose is now implementing it at all plant locations. In fact, many other companies have also begun to implement collocation of suppliers. Assignment Questions The following assignment questions relate to ideas and concepts presented throughout this text. Answer some or all of the questions as directed by your instructor. 1. Discuss how the strategy development process might work at a company like Bose. 2. What should be the relationship between Bose’s supply management strategy and the development of its performance measurement system? 3. Why is purchased quality so important to Bose? 4. Can a just-in-time purchase system operate without total quality from suppliers? 5. Why can some components arrive at the Hillsdale, Michigan, plant with no incoming inspection required? 6. Discuss the reasons why Bose has a certificate of achievement program for identifying qualified suppliers. 7. Bose is moving toward single sourcing many of its purchased part requirements. Discuss why the company might want to do this. Are there any risks to that approach? 8. Discuss some of the difficulties a company like Bose might experience when trying to implement just-in-time purchasing with international suppliers. 9. Why does Bose have to source so much of its purchase requirements from offshore suppliers? 10. What makes the JIT II system at Bose unique? Why would a company pursue this type of system? 11. Why is it necessary to enter into a longer-term contractual arrangement when pursuing arrangements like the one Bose has with its domestic transportation carrier? 12. Why is it important to manage logistics time elements proactively when pursuing higher levels of customer service? 13. What role does information technology play at Bose? 14. What advantages do information technology systems provide to Bose that might not be available to a company that does not have these systems? 15. Why has Bose developed its supplier performance measurement system? 16. Do you think the performance measurement systems at Bose are computerized or manual? Why?

info@checkyourstudy.com