PlotCycloidArc(8.5) Math98 HW4 The cylcoid is the plane curve traced out by a point on a circle as the circle rolls without slipping on a straight line.1 In this exercise we will use MATLAB to create an animation of a circle rolling on a straight line, while a point on the circle traces the cycloid. a. Implement a MATLAB function of the form function PlotCycloidArc(ArcLength). This function takes in a positive number ArcLength and displays a snapshot of the cirle rolling (without slipping) on the x-axis while a point on the cirlce traces the cycloid. The circle is initially centered at (0,1) and has radius 1, and the initial tracing point is taken to be (0, 0). An example output is shown in the above ?gure. As in the ?gure, plot the cycloid arc black, the circle blue, and use a red dot for the tracing point. Hint: If the circle has rolled for a length of arc t = 0, the coordinates of the tracing point are (t-sin t, 1-cos t). b. Implement a MATLAB function of the form function CycloidMovie(NumHumps,NumIntervals). This function will output an animation of the circle rolling along a line while a point on the circle traces the cycloid. This function inputs two natural numbers NumHumps and NumIntervals representing the number of periods (or humps) of the cycloid and the number or frames per hump that will be used to make the animation, respectively. Use the getframe command to save frames outputted from PlotCycloidArc and the movie command to play them back together as a movie. Use the axis command to view the frames on the rectan- gle [0, 2pNumHumps] × [0, 5/2]. Also label the ticks 0, 2p, . . . , 2pNumHumps on the x axis with the strings 1See Wikipedia for more on the cycloid. 0, 2p, . . . , 2pNumHumps and do the same for 1, 2 on the y axis (see the ?gure above). Label the movie ’Cycloid Animation’. Submit MATLAB code for both parts a and b and a printout the ?gures obtained by the commands PlotCycloidArc(8.5), PlotCycloidArc(12), and CycloidMovie(3,10)

## PlotCycloidArc(8.5) Math98 HW4 The cylcoid is the plane curve traced out by a point on a circle as the circle rolls without slipping on a straight line.1 In this exercise we will use MATLAB to create an animation of a circle rolling on a straight line, while a point on the circle traces the cycloid. a. Implement a MATLAB function of the form function PlotCycloidArc(ArcLength). This function takes in a positive number ArcLength and displays a snapshot of the cirle rolling (without slipping) on the x-axis while a point on the cirlce traces the cycloid. The circle is initially centered at (0,1) and has radius 1, and the initial tracing point is taken to be (0, 0). An example output is shown in the above ?gure. As in the ?gure, plot the cycloid arc black, the circle blue, and use a red dot for the tracing point. Hint: If the circle has rolled for a length of arc t = 0, the coordinates of the tracing point are (t-sin t, 1-cos t). b. Implement a MATLAB function of the form function CycloidMovie(NumHumps,NumIntervals). This function will output an animation of the circle rolling along a line while a point on the circle traces the cycloid. This function inputs two natural numbers NumHumps and NumIntervals representing the number of periods (or humps) of the cycloid and the number or frames per hump that will be used to make the animation, respectively. Use the getframe command to save frames outputted from PlotCycloidArc and the movie command to play them back together as a movie. Use the axis command to view the frames on the rectan- gle [0, 2pNumHumps] × [0, 5/2]. Also label the ticks 0, 2p, . . . , 2pNumHumps on the x axis with the strings 1See Wikipedia for more on the cycloid. 0, 2p, . . . , 2pNumHumps and do the same for 1, 2 on the y axis (see the ?gure above). Label the movie ’Cycloid Animation’. Submit MATLAB code for both parts a and b and a printout the ?gures obtained by the commands PlotCycloidArc(8.5), PlotCycloidArc(12), and CycloidMovie(3,10)

info@checkyourstudy.com Operations Team Whatsapp( +91 9911743277)

No expert has answered this question yet. You can browse … Read More...
Paper 1. Narrative Essay Overview: This first paper will be a narrative; in other words, it will be a story. As such it will have these essential items: characters, dialogue, plot, tension, and setting. You will write a story that can be fictional or autobiographical. Format: The first draft will be three typed pages, and you will bring to class 2 copies. It should have your name on every page. Ideally, it will be in MLA (Modern Language Association) format, though this is not important at that stage. See the format of the paper in the example below. Details: For your narrative, you must present a scenario wherein your character, or characters, must deal with and overcome adversity. Consider the essay “Have a Caltastic Day” as an example. In that essay, Streeter tells a success story—of a young man who springs from humble beginnings, overcomes difficult obstacles, and advances his place in the world. In your story, you too will write a story of a person who has faced difficulty. It can be any number of issues that your protagonist faces: a coming of age story involving school, friends, sports, family hardship, etc. You must have a well-developed character. You must have a plot, a clear setting, and use at least some dialogue. Again, it can be based on true events or entirely a work of the imagination. Assessment: In this story, I am looking for well-formed, clear sentences, unified and coherent paragraphs, as well as use of standard grammar, diction, and mechanics of American English. Superior essays will have a clear plot, descriptive language and have material arranged with good supporting details. Sample Paper Format Last Name 1 Your Full Name Dr. Riley-Brown ENG 110: Composition Narrative #1–Draft #1 Date Title of Paper Centered This is where the first line of your paper will go. Double space beneath your title and indent the first line of each paragraph five (5) spaces. The essay should have margins that are one each on each side. You should use Times New Roman font in 12 point font size.

## Paper 1. Narrative Essay Overview: This first paper will be a narrative; in other words, it will be a story. As such it will have these essential items: characters, dialogue, plot, tension, and setting. You will write a story that can be fictional or autobiographical. Format: The first draft will be three typed pages, and you will bring to class 2 copies. It should have your name on every page. Ideally, it will be in MLA (Modern Language Association) format, though this is not important at that stage. See the format of the paper in the example below. Details: For your narrative, you must present a scenario wherein your character, or characters, must deal with and overcome adversity. Consider the essay “Have a Caltastic Day” as an example. In that essay, Streeter tells a success story—of a young man who springs from humble beginnings, overcomes difficult obstacles, and advances his place in the world. In your story, you too will write a story of a person who has faced difficulty. It can be any number of issues that your protagonist faces: a coming of age story involving school, friends, sports, family hardship, etc. You must have a well-developed character. You must have a plot, a clear setting, and use at least some dialogue. Again, it can be based on true events or entirely a work of the imagination. Assessment: In this story, I am looking for well-formed, clear sentences, unified and coherent paragraphs, as well as use of standard grammar, diction, and mechanics of American English. Superior essays will have a clear plot, descriptive language and have material arranged with good supporting details. Sample Paper Format Last Name 1 Your Full Name Dr. Riley-Brown ENG 110: Composition Narrative #1–Draft #1 Date Title of Paper Centered This is where the first line of your paper will go. Double space beneath your title and indent the first line of each paragraph five (5) spaces. The essay should have margins that are one each on each side. You should use Times New Roman font in 12 point font size.

info@checkyourstudy.com Whatsapp +919711743277
For the second problem of this assignment we’ll try out a fun and useful statistics software package. It’s called “R,” is professional quality, and is available for free on multiple platforms at http://www.r-project.org. Install it on your computer. Note, however, that I didn’t get everything to work right on Linux, so you might want to try Windows or Mac OS/X. We’ll now do linear regression and plotting in 3D using R and R-Commander, as follows: Here’s the really fun part with a rotating 3D graph! Install R-Commander using the menu system in R. Also install the Scatterplot3D package. Make a new dataset using the first 10 rows of Table of chip wirebond pull strength on page 13 in the book. Then ask for a 3D scatter plot of the new data, and include a multiple linear regression with the pull strength as the dependent variable. Submit a screen shot of the graph. Comment on the goodness of fit.

## For the second problem of this assignment we’ll try out a fun and useful statistics software package. It’s called “R,” is professional quality, and is available for free on multiple platforms at http://www.r-project.org. Install it on your computer. Note, however, that I didn’t get everything to work right on Linux, so you might want to try Windows or Mac OS/X. We’ll now do linear regression and plotting in 3D using R and R-Commander, as follows: Here’s the really fun part with a rotating 3D graph! Install R-Commander using the menu system in R. Also install the Scatterplot3D package. Make a new dataset using the first 10 rows of Table of chip wirebond pull strength on page 13 in the book. Then ask for a 3D scatter plot of the new data, and include a multiple linear regression with the pull strength as the dependent variable. Submit a screen shot of the graph. Comment on the goodness of fit.

For solutions email info@checkyourstudy.com
ENGR 3300: Fluid Mechanics, Fall 2015 Assignment 3 Due: Friday, Oct. 2, 2015 Topics: Chapter 3 & 4 Solutions must be neatly written and must include the following steps (if applicable) to receive full credit. 1. Given: List all known parameters in the problem. 2. Find: List what parameters the problem is asking you to find. 3. Solution: List all equations needed to solve the problem, and show all your work. Draw any necessary sketches or free body diagrams. Circle or box your final answer, and make sure to include appropriate units in your final answer. Grading: 15 total points (10 points for completeness + 5 points for one randomly chosen problem graded for correctness) 1. Water flows at a steady rate up a vertical pipe and out a nozzle into open air. The pipe diameter is 1 inch and the nozzle diameter is 0.5 inches. (a) Determine the minimum pressure that would be required at section 1 (shown in the figure below) to produce a fluid velocity of 30 ft/s at the nozzle (section 2). (b) If the pipe was inverted, determine the minimum pressure that would be required at section 1 to maintain the 30 ft/s velocity at the nozzle. 2. Water flows from a large tank through a small pipe with a diameter of 5 cm. A mercury manometer is placed along the pipe. Assuming the flow is frictionless, (a) estimate the velocity of the water in the pipe and (b) determine the rate of discharge (i.e. volumetric flow rate) from the tank. 3. An engineer is designing a suit for a race car driver and wants to supply cooling air to the suit from an air inlet on the body of the race car. The air speed at the inlet location must be 65 mph when the race car is traveling at 230 mph. Under these conditions, what would be the static pressure at the proposed inlet location? 4. Air flows downward toward a horizontal flat plate. The velocity field is given by ? = (??! − ??!)(2 + cos ??) where a = 5 s-1, ω = 2π s-1, and x and y (measured in meters) are horizontal and vertically upward, respectively, and t is in seconds. (a) Obtain an algebraic equation for a streamline at t = 0. (b) Plot the streamline that passes through point (x,y) = (3,3) at this instant.

## ENGR 3300: Fluid Mechanics, Fall 2015 Assignment 3 Due: Friday, Oct. 2, 2015 Topics: Chapter 3 & 4 Solutions must be neatly written and must include the following steps (if applicable) to receive full credit. 1. Given: List all known parameters in the problem. 2. Find: List what parameters the problem is asking you to find. 3. Solution: List all equations needed to solve the problem, and show all your work. Draw any necessary sketches or free body diagrams. Circle or box your final answer, and make sure to include appropriate units in your final answer. Grading: 15 total points (10 points for completeness + 5 points for one randomly chosen problem graded for correctness) 1. Water flows at a steady rate up a vertical pipe and out a nozzle into open air. The pipe diameter is 1 inch and the nozzle diameter is 0.5 inches. (a) Determine the minimum pressure that would be required at section 1 (shown in the figure below) to produce a fluid velocity of 30 ft/s at the nozzle (section 2). (b) If the pipe was inverted, determine the minimum pressure that would be required at section 1 to maintain the 30 ft/s velocity at the nozzle. 2. Water flows from a large tank through a small pipe with a diameter of 5 cm. A mercury manometer is placed along the pipe. Assuming the flow is frictionless, (a) estimate the velocity of the water in the pipe and (b) determine the rate of discharge (i.e. volumetric flow rate) from the tank. 3. An engineer is designing a suit for a race car driver and wants to supply cooling air to the suit from an air inlet on the body of the race car. The air speed at the inlet location must be 65 mph when the race car is traveling at 230 mph. Under these conditions, what would be the static pressure at the proposed inlet location? 4. Air flows downward toward a horizontal flat plate. The velocity field is given by ? = (??! − ??!)(2 + cos ??) where a = 5 s-1, ω = 2π s-1, and x and y (measured in meters) are horizontal and vertically upward, respectively, and t is in seconds. (a) Obtain an algebraic equation for a streamline at t = 0. (b) Plot the streamline that passes through point (x,y) = (3,3) at this instant.

ELEC153 Circuit Theory II M2A4 Lab: AC Parallel Circuits Introduction In this experiment we work with AC parallel circuits. As we did in the AC series circuits lab, the results obtained through Transient Analysis in MultiSim will be verified by manual calculations. Procedure 1. Figure 1 is the circuit we want to analyze.The voltage source is 24 volts peak at 1000 Hz. Figure 1: AC parallel circuit used for analysis using MultiSim Unlike the series circuit, there is no resistor in series with the voltage source that allows us to plot the current by taking advantage of its in-phase relationship. So, in order to measure the current produced by the source (total current) add a 1 Ohm resistor in series with the source. This small resistor will not affect the calculations. Figure 2: Arrangement for analyzing the current waveforms 2. Run the simulations and with the oscilloscope measure both the source voltage and the voltage across the resistor. You should get a plot similar to the following graph: Figure 3: Source voltage (red) and source current (blue) waveforms 3. From the resulting analysis plot, determine the peak current. Record it here. Measured Peak Current 4. Determine the peak current by calculation. Record it here. Does it match the measured peak current? Explain. Calculated Peak Current 5. Calculate the phase-shift. Using the method presented in the last lab, measure the time difference at the zero-crossing of the two signals. Record it here. Time difference 6. From the resulting calculation, determine the phase shift by using the following formula Record it here. Measured Phase Shift 7. Determine the phase shift by calculation. Record it here. Does it match the measured phase shift? Explain. Calculated Phase Shift 8. Change the frequency of the voltage source to 5000 Hz. Re-simulate and perform a Transient Analysis to find the new circuit current and phase angle. Measure them and record them here: Measured Current Measured Phase Shift 9. Perform the manual calculations needed to find the circuit current and phase shift. Record the calculated values here. Do they match the measured values within reason? What has happened to the circuit with an increase in frequency? Calculated Current Calculated Phase Shift 10. Replace the capacitor with a 0.8 H inductor. Set the source frequency back to 1000 Hz. Perform Transient Analysis and measure the current amplitude and phase shift. Record them here: Measured Current Measured Phase Shift 11. Perform the manual calculations needed to find the circuit current and phase shift. Record the calculated values here. Do they match the measured values within reason? Calculated Current Calculated Phase Shift 12. Change the frequency of the voltage source to 5000 Hz. Re-simulate and perform a Transient Analysis to find the new circuit current and phase angle. Measure them and record them here: Measured Current Measured Phase Shift 13. Perform the manual calculations needed to find the circuit current and phase shift. Record the calculated values here. Do they match the measured values within reason? What has happened to the circuit with an increase in frequency? Calculated Current Calculated Phase Shift Write-up and Submission In general, for each lab you do, you will be asked to setup certain circuits, simulate them, record the results, verify the results are correct by hand, and then discuss the solution. Your lab write-up should contain a one page, single spaced discussion of the lab experiment, what went right for you, what you had difficulty with, what you learned from the experiment, how it applies to our coursework, and any other comment you can think of. In addition, you should include screen shots from the MultiSim software and any other figure, table, or diagram as necessary.

## ELEC153 Circuit Theory II M2A4 Lab: AC Parallel Circuits Introduction In this experiment we work with AC parallel circuits. As we did in the AC series circuits lab, the results obtained through Transient Analysis in MultiSim will be verified by manual calculations. Procedure 1. Figure 1 is the circuit we want to analyze.The voltage source is 24 volts peak at 1000 Hz. Figure 1: AC parallel circuit used for analysis using MultiSim Unlike the series circuit, there is no resistor in series with the voltage source that allows us to plot the current by taking advantage of its in-phase relationship. So, in order to measure the current produced by the source (total current) add a 1 Ohm resistor in series with the source. This small resistor will not affect the calculations. Figure 2: Arrangement for analyzing the current waveforms 2. Run the simulations and with the oscilloscope measure both the source voltage and the voltage across the resistor. You should get a plot similar to the following graph: Figure 3: Source voltage (red) and source current (blue) waveforms 3. From the resulting analysis plot, determine the peak current. Record it here. Measured Peak Current 4. Determine the peak current by calculation. Record it here. Does it match the measured peak current? Explain. Calculated Peak Current 5. Calculate the phase-shift. Using the method presented in the last lab, measure the time difference at the zero-crossing of the two signals. Record it here. Time difference 6. From the resulting calculation, determine the phase shift by using the following formula Record it here. Measured Phase Shift 7. Determine the phase shift by calculation. Record it here. Does it match the measured phase shift? Explain. Calculated Phase Shift 8. Change the frequency of the voltage source to 5000 Hz. Re-simulate and perform a Transient Analysis to find the new circuit current and phase angle. Measure them and record them here: Measured Current Measured Phase Shift 9. Perform the manual calculations needed to find the circuit current and phase shift. Record the calculated values here. Do they match the measured values within reason? What has happened to the circuit with an increase in frequency? Calculated Current Calculated Phase Shift 10. Replace the capacitor with a 0.8 H inductor. Set the source frequency back to 1000 Hz. Perform Transient Analysis and measure the current amplitude and phase shift. Record them here: Measured Current Measured Phase Shift 11. Perform the manual calculations needed to find the circuit current and phase shift. Record the calculated values here. Do they match the measured values within reason? Calculated Current Calculated Phase Shift 12. Change the frequency of the voltage source to 5000 Hz. Re-simulate and perform a Transient Analysis to find the new circuit current and phase angle. Measure them and record them here: Measured Current Measured Phase Shift 13. Perform the manual calculations needed to find the circuit current and phase shift. Record the calculated values here. Do they match the measured values within reason? What has happened to the circuit with an increase in frequency? Calculated Current Calculated Phase Shift Write-up and Submission In general, for each lab you do, you will be asked to setup certain circuits, simulate them, record the results, verify the results are correct by hand, and then discuss the solution. Your lab write-up should contain a one page, single spaced discussion of the lab experiment, what went right for you, what you had difficulty with, what you learned from the experiment, how it applies to our coursework, and any other comment you can think of. In addition, you should include screen shots from the MultiSim software and any other figure, table, or diagram as necessary.

No expert has answered this question yet. You can browse … Read More...
MAE 384. Advanced Mathematical Methods for Engineers. The army is interested in characterizing the acoustic signature of a helicopter. The following data show measurements of acoustic pressure (made dimensionless) for a two-bladed helicopter rotor through 1 2 of a rotor revolution. The data points are equally spaced in time, and the period of the data collection is 1 6 of a second. p0 = [ 0 0.0004 0.0015 0.0028 0.0040 0.0048 0.0057 0.0071 0.0095 0.0134 . . . 0.0185 0.0242 0.0302 0.0364 0.0447 0.0577 0.0776 0.0955 0.0907 -0.0477 . . . -0.0812 -0.0563 -0.0329 -0.0127 0.0032 0.0147 0.0221 0.0256 0.0255 0.0222 . . . 0.0170 0.0112 0.0064 0.0035 0.0023 0.0020 0.0019 0.0016 0.0009 0.0002 ] (a) Find the real Discrete Fourier Transform for this data set. That is, nd the Fourier coe¢ cients (the Aks and Bks). (b) Any term in the Fourier series can be written: Ak cos(k!t) + Bk sin(k!t) = Ck cos(k!t + k) where Ck = q A2 k + B2 k and k = tan?1 ?Bk Ak Find the Cks and plot their amplitude vs. k to illustrate the relative size of each term in the series. (The amplitude should drop of with increasing k.) (c) Plot the function (Fourier series) and the original data on the same plot. (d) The actual loudness of the helicopter depends on the maximum peak-to-peak amplitude of the signal. Find the peak-to-peak amplitude by nding the maximum and minimum values of p0 as predicted by the Fourier series solution. Recall that a function has a maximum or a minimum when its derivative equals zero. (e) Extra Credit. Try nding Aks and Bks for k > N 2 (where N = the number of data points). Show that the resulting series does not represent the data.

## MAE 384. Advanced Mathematical Methods for Engineers. The army is interested in characterizing the acoustic signature of a helicopter. The following data show measurements of acoustic pressure (made dimensionless) for a two-bladed helicopter rotor through 1 2 of a rotor revolution. The data points are equally spaced in time, and the period of the data collection is 1 6 of a second. p0 = [ 0 0.0004 0.0015 0.0028 0.0040 0.0048 0.0057 0.0071 0.0095 0.0134 . . . 0.0185 0.0242 0.0302 0.0364 0.0447 0.0577 0.0776 0.0955 0.0907 -0.0477 . . . -0.0812 -0.0563 -0.0329 -0.0127 0.0032 0.0147 0.0221 0.0256 0.0255 0.0222 . . . 0.0170 0.0112 0.0064 0.0035 0.0023 0.0020 0.0019 0.0016 0.0009 0.0002 ] (a) Find the real Discrete Fourier Transform for this data set. That is, nd the Fourier coe¢ cients (the Aks and Bks). (b) Any term in the Fourier series can be written: Ak cos(k!t) + Bk sin(k!t) = Ck cos(k!t + k) where Ck = q A2 k + B2 k and k = tan?1 ?Bk Ak Find the Cks and plot their amplitude vs. k to illustrate the relative size of each term in the series. (The amplitude should drop of with increasing k.) (c) Plot the function (Fourier series) and the original data on the same plot. (d) The actual loudness of the helicopter depends on the maximum peak-to-peak amplitude of the signal. Find the peak-to-peak amplitude by nding the maximum and minimum values of p0 as predicted by the Fourier series solution. Recall that a function has a maximum or a minimum when its derivative equals zero. (e) Extra Credit. Try nding Aks and Bks for k > N 2 (where N = the number of data points). Show that the resulting series does not represent the data.

clear all; clc; period = 1/6; p = [0       0.0004 … Read More...