1-Two notions serve as the basis for all torts: wrongs and compensation. True False 2-The goal of tort law is to put a defendant in the position that he or she would have been in had the tort occurred to the defendant. True False 3-Hayley is injured in an accident precipitated by Isolde. Hayley files a tort action against Isolde, seeking to recover for the damage suffered. Damages that are intended to compensate or reimburse a plaintiff for actual losses are: compensatory damages. reimbursement damages. actual damages. punitive damages. 4-Ladd throws a rock intending to hit Minh but misses and hits Nasir instead. On the basis of the tort of battery, Nasir can sue: Ladd. Minh. the rightful owner of the rock. no one. 4-Luella trespasses on Merchandise Mart’s property. Through the use of reasonable force, Merchandise Mart’s security guard detains Luella until the police arrive. Merchandise Mart is liable for: assault. battery. false imprisonment. none of the choice 6-The extreme risk of an activity is a defense against imposing strict liability. True False 7-Misrepresentation in an ad is enough to show an intent to induce the reliance of anyone who may use the product. True False 8-Luke is playing a video game on a defective disk that melts in his game player, starting a fire that injures his hands. Luke files a suit against Mystic Maze, Inc., the game’s maker under the doctrine of strict liability. A significant application of this doctrine is in the area of: cyber torts. intentional torts. product liability. unintentional torts 9-More than two hundred years ago, the Declaration of Independence recognized the importance of protecting creative works. True False 10-n 2014, Cloud Computing Corporation registers its trademark as provided by federal law. After the first renewal, this registration: is renewable every ten years. is renewable every twenty years. runs for life of the corporation plus seventy years. runs forever. 11-Wendy works as a weather announcer for a TV station under the character name Weather Wendy. Wendy can register her character’s name as: a certification mark. a trade name. a service mark. none of the choices 12-Much of the material on the Internet, including software and database information, is not copyrighted. True False 13-In a criminal case, the state must prove its case by a preponderance of the evidence. True False 14-Under the Fourth Amendmentt, general searches through a person’s belongings are permissible. True False 15-Maura enters a gas station and points a gun at the clerk Nate. She then forces Nate to open the cash register and give her all the money. Maura can be charged with: burglary. robbery. larceny. receiving stolen property. 16-Reno, driving while intoxicated, causes a car accident that results in the death of Santo. Reno is arrested and charged with a felony. A felony is a crime punishable by death or imprisonment for: any period of time. more than one year. more than six months. more than ten days. 17-Corporate officers and directors may be held criminally liable for the actions of employees under their supervision. True False 18-Sal assures Tom that she will deliver a truckload of hay to his cattle ranch. A person’s declaration to do a certain act is part of the definition of: an expectation. a moral obligation. a prediction. a promise. 19-Lark promises to buy Mac’s used textbook for $60. Lark is: an offeror. an offeree a promisee. a promisor. 20-Casey offers to sell a certain used forklift to DIY Lumber Outlet, but Casey dies before DIY accepts. Most likely, Casey’s death: did not affect the offer. shortened the time of the offer but did not terminated it. extended the time of the offer. terminated the offer.

1-Two notions serve as the basis for all torts: wrongs and compensation. True False 2-The goal of tort law is to put a defendant in the position that he or she would have been in had the tort occurred to the defendant. True False 3-Hayley is injured in an accident precipitated by Isolde. Hayley files a tort action against Isolde, seeking to recover for the damage suffered. Damages that are intended to compensate or reimburse a plaintiff for actual losses are: compensatory damages. reimbursement damages. actual damages. punitive damages. 4-Ladd throws a rock intending to hit Minh but misses and hits Nasir instead. On the basis of the tort of battery, Nasir can sue: Ladd. Minh. the rightful owner of the rock. no one. 4-Luella trespasses on Merchandise Mart’s property. Through the use of reasonable force, Merchandise Mart’s security guard detains Luella until the police arrive. Merchandise Mart is liable for: assault. battery. false imprisonment. none of the choice 6-The extreme risk of an activity is a defense against imposing strict liability. True False 7-Misrepresentation in an ad is enough to show an intent to induce the reliance of anyone who may use the product. True False 8-Luke is playing a video game on a defective disk that melts in his game player, starting a fire that injures his hands. Luke files a suit against Mystic Maze, Inc., the game’s maker under the doctrine of strict liability. A significant application of this doctrine is in the area of: cyber torts. intentional torts. product liability. unintentional torts 9-More than two hundred years ago, the Declaration of Independence recognized the importance of protecting creative works. True False 10-n 2014, Cloud Computing Corporation registers its trademark as provided by federal law. After the first renewal, this registration: is renewable every ten years. is renewable every twenty years. runs for life of the corporation plus seventy years. runs forever. 11-Wendy works as a weather announcer for a TV station under the character name Weather Wendy. Wendy can register her character’s name as: a certification mark. a trade name. a service mark. none of the choices 12-Much of the material on the Internet, including software and database information, is not copyrighted. True False 13-In a criminal case, the state must prove its case by a preponderance of the evidence. True False 14-Under the Fourth Amendmentt, general searches through a person’s belongings are permissible. True False 15-Maura enters a gas station and points a gun at the clerk Nate. She then forces Nate to open the cash register and give her all the money. Maura can be charged with: burglary. robbery. larceny. receiving stolen property. 16-Reno, driving while intoxicated, causes a car accident that results in the death of Santo. Reno is arrested and charged with a felony. A felony is a crime punishable by death or imprisonment for: any period of time. more than one year. more than six months. more than ten days. 17-Corporate officers and directors may be held criminally liable for the actions of employees under their supervision. True False 18-Sal assures Tom that she will deliver a truckload of hay to his cattle ranch. A person’s declaration to do a certain act is part of the definition of: an expectation. a moral obligation. a prediction. a promise. 19-Lark promises to buy Mac’s used textbook for $60. Lark is: an offeror. an offeree a promisee. a promisor. 20-Casey offers to sell a certain used forklift to DIY Lumber Outlet, but Casey dies before DIY accepts. Most likely, Casey’s death: did not affect the offer. shortened the time of the offer but did not terminated it. extended the time of the offer. terminated the offer.

1-Two notions serve as the basis for all torts: wrongs … Read More...
Chapter 15 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Fluid Pressure in a U-Tube A U-tube is filled with water, and the two arms are capped. The tube is cylindrical, and the right arm has twice the radius of the left arm. The caps have negligible mass, are watertight, and can freely slide up and down the tube. Part A A one-inch depth of sand is poured onto the cap on each arm. After the caps have moved (if necessary) to reestablish equilibrium, is the right cap higher, lower, or the same height as the left cap? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Pressure in the Ocean The pressure at 10 below the surface of the ocean is about 2.00×105 . Part A higher lower the same height m Pa Which of the following statements is true? You did not open hints for this part. ANSWER: Part B Now consider the pressure 20 below the surface of the ocean. Which of the following statements is true? You did not open hints for this part. ANSWER: Relating Pressure and Height in a Container Learning Goal: To understand the derivation of the law relating height and pressure in a container. The weight of a column of seawater 1 in cross section and 10 high is about 2.00×105 . The weight of a column of seawater 1 in cross section and 10 high plus the weight of a column of air with the same cross section extending up to the top of the atmosphere is about 2.00×105 . The weight of 1 of seawater at 10 below the surface of the ocean is about 2.00×105 . The density of seawater is about 2.00×105 times the density of air at sea level. m2 m N m2 m N m3 m N m The pressure is twice that at a depth of 10 . The pressure is the same as that at a depth of 10 . The pressure is equal to that at a depth of 10 plus the weight per 1 cross sectional area of a column of seawater 10 high. The pressure is equal to the weight per 1 cross sectional area of a column of seawater 20 high. m m m m2 m m2 m In this problem, you will derive the law relating pressure to height in a container by analyzing a particular system. A container of uniform cross-sectional area is filled with liquid of uniform density . Consider a thin horizontal layer of liquid (thickness ) at a height as measured from the bottom of the container. Let the pressure exerted upward on the bottom of the layer be and the pressure exerted downward on the top be . Assume throughout the problem that the system is in equilibrium (the container has not been recently shaken or moved, etc.). Part A What is , the magnitude of the force exerted upward on the bottom of the liquid? You did not open hints for this part. ANSWER: Part B What is , the magnitude of the force exerted downward on the top of the liquid? A  dy y p p + dp Fup Fup = Fdown You did not open hints for this part. ANSWER: Part C What is the weight of the thin layer of liquid? Express your answer in terms of quantities given in the problem introduction and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Part D Since the liquid is in equilibrium, the net force on the thin layer of liquid is zero. Complete the force equation for the sum of the vertical forces acting on the liquid layer described in the problem introduction. Express your answer in terms of quantities given in the problem introduction and taking upward forces to be positive. You did not open hints for this part. ANSWER: Fdown = wlayer g wlayer = Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Submerged Ball A ball of mass and volume is lowered on a string into a fluid of density . Assume that the object would sink to the bottom if it were not supported by the string. Part A  = = i Fy,i mb V f What is the tension in the string when the ball is fully submerged but not touching the bottom, as shown in the figure? Express your answer in terms of any or all of the given quantities and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Archimedes’ Principle Learning Goal: To understand the applications of Archimedes’ principle. Archimedes’ principle is a powerful tool for solving many problems involving equilibrium in fluids. It states the following: When a body is partially or completely submerged in a fluid (either a liquid or a gas), the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body. As a result of the upward Archimedes force (often called the buoyant force), some objects may float in a fluid, and all of them appear to weigh less. This is the familiar phenomenon of buoyancy. Quantitatively, the buoyant force can be found as , where is the force, is the density of the fluid, is the magnitude of the acceleration due to gravity, and is the volume of the displaced fluid. In this problem, you will be asked several qualitative questions that should help you develop a feel for Archimedes’ principle. An object is placed in a fluid and then released. Assume that the object either floats to the surface (settling so that the object is partly above and partly below the fluid surface) or sinks to the bottom. (Note that for Parts A through D, you should assume that the object has settled in equilibrium.) Part A Consider the following statement: The magnitude of the buoyant force is equal to the weight of fluid displaced by the object. Under what circumstances is this statement true? T g T = Fbuoyant = fluidgV Fbuoyant fluid g V You did not open hints for this part. ANSWER: Part B Consider the following statement: The magnitude of the buoyant force is equal to the weight of the amount of fluid that has the same total volume as the object. Under what circumstances is this statement true? You did not open hints for this part. ANSWER: Part C Consider the following statement: The magnitude of the buoyant force equals the weight of the object. Under what circumstances is this statement true? for every object submerged partially or completely in a fluid only for an object that floats only for an object that sinks for no object submerged in a fluid for an object that is partially submerged in a fluid only for an object that floats for an object completely submerged in a fluid for no object partially or completely submerged in a fluid You did not open hints for this part. ANSWER: Part D Consider the following statement: The magnitude of the buoyant force is less than the weight of the object. Under what circumstances is this statement true? ANSWER: Now apply what you know to some more complicated situations. Part E An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a denser liquid. What would you observe? You did not open hints for this part. ANSWER: for every object submerged partially or completely in a fluid for an object that floats only for an object that sinks for no object submerged in a fluid for every object submerged partially or completely in a fluid for an object that floats for an object that sinks for no object submerged in a fluid Part F An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a less dense liquid. What would you observe? You did not open hints for this part. ANSWER: Part G Two objects, T and B, have identical size and shape and have uniform density. They are carefully placed in a container filled with a liquid. Both objects float in equilibrium. Less of object T is submerged than of object B, which floats, fully submerged, closer to the bottom of the container. Which of the following statements is true? ANSWER: The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. Object T has a greater density than object B. Object B has a greater density than object T. Both objects have the same density. ± Buoyant Force Conceptual Question A rectangular wooden block of weight floats with exactly one-half of its volume below the waterline. Part A What is the buoyant force acting on the block? You did not open hints for this part. ANSWER: Part B W The buoyant force cannot be determined. 2W W 1 W 2 The density of water is 1.00 . What is the density of the block? You did not open hints for this part. ANSWER: Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). g/cm3 2.00 between 1.00 and 2.00 1.00 between 0.50 and 1.00 0.50 The density cannot be determined. g/cm3 g/cm3 g/cm3 g/cm3 g/cm3 Flow Velocity of Blood Conceptual Question Arteriosclerotic plaques forming on the inner walls of arteries can decrease the effective cross-sectional area of an artery. Even small changes in the effective area of an artery can lead to very large changes in the blood pressure in the artery and possibly to the collapse of the blood vessel. Imagine a healthy artery, with blood flow velocity of and mass per unit volume of . The kinetic energy per unit volume of blood is given by Imagine that plaque has narrowed an artery to one-fifth of its normal cross-sectional area (an 80% blockage). Part A Compared to normal blood flow velocity, , what is the velocity of blood as it passes through this blockage? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C v0 = 0.14 m/s  = 1050 kg/m3 K0 =  . 1 2 v20 v0 80v0 20v0 5v0 v0/5 This question will be shown after you complete previous question(s). For parts D – F imagine that plaque has grown to a 90% blockage. Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). ± Playing with a Water Hose Two children, Ferdinand and Isabella, are playing with a water hose on a sunny summer day. Isabella is holding the hose in her hand 1.0 meters above the ground and is trying to spray Ferdinand, who is standing 10.0 meters away. Part A Will Isabella be able to spray Ferdinand if the water is flowing out of the hose at a constant speed of 3.5 meters per second? Assume that the hose is pointed parallel to the ground and take the magnitude of the acceleration due to gravity to be 9.81 meters per second, per second. You did not open hints for this part. v0 g ANSWER: Part B This question will be shown after you complete previous question(s). Tactics Box 15.2 Finding Whether an Object Floats or Sinks Learning Goal: To practice Tactics Box 15.2 Finding whether an object floats or sinks. If you hold an object underwater and then release it, it can float to the surface, sink, or remain “hanging” in the water, depending on whether the fluid density is larger than, smaller than, or equal to the object’s average density . These conditions are summarized in this Tactics Box. Yes No f avg TACTICS BOX 15.2 Finding whether an object floats or sinks Object sinks Object floats Object has neutral buoyancy An object sinks if it weighs more than the fluid it displaces, that is, if its average density is greater than the density of the fluid: . An object floats on the surface if it weighs less than the fluid it displaces, that is, if its average density is less than the density of the fluid: . An object hangs motionless in the fluid if it weighs exactly the same as the fluid it displaces. It has neutral buoyancy if its average density equals the density of the fluid: . Part A Ice at 0.0 has a density of 917 . A 3.00 ice cube is gently released inside a small container filled with oil and is observed to be neutrally buoyant. What is the density of the oil, ? Express your answer in kilograms per meter cubed to three significant figures. ANSWER: Part B Once the ice cube melts, what happens to the liquid water that it produces? You did not open hints for this part. ANSWER: avg > f avg < f avg = f 'C kg/m3 cm3 oil oil = kg/m3 Part C What happens if some ethyl alcohol of density 790 is poured into the container after the ice cube has melted? ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The liquid water sinks to the bottom of the container. The liquid water rises to the surface and floats on top of the oil. The liquid water is in static equilibrium at the location where the ice cube was originally placed. kg/m3 A layer of ethyl alcohol forms between the oil and the water. The layer of ethyl alcohol forms at the bottom of the container. The layer of ethyl alcohol forms on the surface.

Chapter 15 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Fluid Pressure in a U-Tube A U-tube is filled with water, and the two arms are capped. The tube is cylindrical, and the right arm has twice the radius of the left arm. The caps have negligible mass, are watertight, and can freely slide up and down the tube. Part A A one-inch depth of sand is poured onto the cap on each arm. After the caps have moved (if necessary) to reestablish equilibrium, is the right cap higher, lower, or the same height as the left cap? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Pressure in the Ocean The pressure at 10 below the surface of the ocean is about 2.00×105 . Part A higher lower the same height m Pa Which of the following statements is true? You did not open hints for this part. ANSWER: Part B Now consider the pressure 20 below the surface of the ocean. Which of the following statements is true? You did not open hints for this part. ANSWER: Relating Pressure and Height in a Container Learning Goal: To understand the derivation of the law relating height and pressure in a container. The weight of a column of seawater 1 in cross section and 10 high is about 2.00×105 . The weight of a column of seawater 1 in cross section and 10 high plus the weight of a column of air with the same cross section extending up to the top of the atmosphere is about 2.00×105 . The weight of 1 of seawater at 10 below the surface of the ocean is about 2.00×105 . The density of seawater is about 2.00×105 times the density of air at sea level. m2 m N m2 m N m3 m N m The pressure is twice that at a depth of 10 . The pressure is the same as that at a depth of 10 . The pressure is equal to that at a depth of 10 plus the weight per 1 cross sectional area of a column of seawater 10 high. The pressure is equal to the weight per 1 cross sectional area of a column of seawater 20 high. m m m m2 m m2 m In this problem, you will derive the law relating pressure to height in a container by analyzing a particular system. A container of uniform cross-sectional area is filled with liquid of uniform density . Consider a thin horizontal layer of liquid (thickness ) at a height as measured from the bottom of the container. Let the pressure exerted upward on the bottom of the layer be and the pressure exerted downward on the top be . Assume throughout the problem that the system is in equilibrium (the container has not been recently shaken or moved, etc.). Part A What is , the magnitude of the force exerted upward on the bottom of the liquid? You did not open hints for this part. ANSWER: Part B What is , the magnitude of the force exerted downward on the top of the liquid? A  dy y p p + dp Fup Fup = Fdown You did not open hints for this part. ANSWER: Part C What is the weight of the thin layer of liquid? Express your answer in terms of quantities given in the problem introduction and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Part D Since the liquid is in equilibrium, the net force on the thin layer of liquid is zero. Complete the force equation for the sum of the vertical forces acting on the liquid layer described in the problem introduction. Express your answer in terms of quantities given in the problem introduction and taking upward forces to be positive. You did not open hints for this part. ANSWER: Fdown = wlayer g wlayer = Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Submerged Ball A ball of mass and volume is lowered on a string into a fluid of density . Assume that the object would sink to the bottom if it were not supported by the string. Part A  = = i Fy,i mb V f What is the tension in the string when the ball is fully submerged but not touching the bottom, as shown in the figure? Express your answer in terms of any or all of the given quantities and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Archimedes’ Principle Learning Goal: To understand the applications of Archimedes’ principle. Archimedes’ principle is a powerful tool for solving many problems involving equilibrium in fluids. It states the following: When a body is partially or completely submerged in a fluid (either a liquid or a gas), the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body. As a result of the upward Archimedes force (often called the buoyant force), some objects may float in a fluid, and all of them appear to weigh less. This is the familiar phenomenon of buoyancy. Quantitatively, the buoyant force can be found as , where is the force, is the density of the fluid, is the magnitude of the acceleration due to gravity, and is the volume of the displaced fluid. In this problem, you will be asked several qualitative questions that should help you develop a feel for Archimedes’ principle. An object is placed in a fluid and then released. Assume that the object either floats to the surface (settling so that the object is partly above and partly below the fluid surface) or sinks to the bottom. (Note that for Parts A through D, you should assume that the object has settled in equilibrium.) Part A Consider the following statement: The magnitude of the buoyant force is equal to the weight of fluid displaced by the object. Under what circumstances is this statement true? T g T = Fbuoyant = fluidgV Fbuoyant fluid g V You did not open hints for this part. ANSWER: Part B Consider the following statement: The magnitude of the buoyant force is equal to the weight of the amount of fluid that has the same total volume as the object. Under what circumstances is this statement true? You did not open hints for this part. ANSWER: Part C Consider the following statement: The magnitude of the buoyant force equals the weight of the object. Under what circumstances is this statement true? for every object submerged partially or completely in a fluid only for an object that floats only for an object that sinks for no object submerged in a fluid for an object that is partially submerged in a fluid only for an object that floats for an object completely submerged in a fluid for no object partially or completely submerged in a fluid You did not open hints for this part. ANSWER: Part D Consider the following statement: The magnitude of the buoyant force is less than the weight of the object. Under what circumstances is this statement true? ANSWER: Now apply what you know to some more complicated situations. Part E An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a denser liquid. What would you observe? You did not open hints for this part. ANSWER: for every object submerged partially or completely in a fluid for an object that floats only for an object that sinks for no object submerged in a fluid for every object submerged partially or completely in a fluid for an object that floats for an object that sinks for no object submerged in a fluid Part F An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a less dense liquid. What would you observe? You did not open hints for this part. ANSWER: Part G Two objects, T and B, have identical size and shape and have uniform density. They are carefully placed in a container filled with a liquid. Both objects float in equilibrium. Less of object T is submerged than of object B, which floats, fully submerged, closer to the bottom of the container. Which of the following statements is true? ANSWER: The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. Object T has a greater density than object B. Object B has a greater density than object T. Both objects have the same density. ± Buoyant Force Conceptual Question A rectangular wooden block of weight floats with exactly one-half of its volume below the waterline. Part A What is the buoyant force acting on the block? You did not open hints for this part. ANSWER: Part B W The buoyant force cannot be determined. 2W W 1 W 2 The density of water is 1.00 . What is the density of the block? You did not open hints for this part. ANSWER: Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). g/cm3 2.00 between 1.00 and 2.00 1.00 between 0.50 and 1.00 0.50 The density cannot be determined. g/cm3 g/cm3 g/cm3 g/cm3 g/cm3 Flow Velocity of Blood Conceptual Question Arteriosclerotic plaques forming on the inner walls of arteries can decrease the effective cross-sectional area of an artery. Even small changes in the effective area of an artery can lead to very large changes in the blood pressure in the artery and possibly to the collapse of the blood vessel. Imagine a healthy artery, with blood flow velocity of and mass per unit volume of . The kinetic energy per unit volume of blood is given by Imagine that plaque has narrowed an artery to one-fifth of its normal cross-sectional area (an 80% blockage). Part A Compared to normal blood flow velocity, , what is the velocity of blood as it passes through this blockage? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C v0 = 0.14 m/s  = 1050 kg/m3 K0 =  . 1 2 v20 v0 80v0 20v0 5v0 v0/5 This question will be shown after you complete previous question(s). For parts D – F imagine that plaque has grown to a 90% blockage. Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). ± Playing with a Water Hose Two children, Ferdinand and Isabella, are playing with a water hose on a sunny summer day. Isabella is holding the hose in her hand 1.0 meters above the ground and is trying to spray Ferdinand, who is standing 10.0 meters away. Part A Will Isabella be able to spray Ferdinand if the water is flowing out of the hose at a constant speed of 3.5 meters per second? Assume that the hose is pointed parallel to the ground and take the magnitude of the acceleration due to gravity to be 9.81 meters per second, per second. You did not open hints for this part. v0 g ANSWER: Part B This question will be shown after you complete previous question(s). Tactics Box 15.2 Finding Whether an Object Floats or Sinks Learning Goal: To practice Tactics Box 15.2 Finding whether an object floats or sinks. If you hold an object underwater and then release it, it can float to the surface, sink, or remain “hanging” in the water, depending on whether the fluid density is larger than, smaller than, or equal to the object’s average density . These conditions are summarized in this Tactics Box. Yes No f avg TACTICS BOX 15.2 Finding whether an object floats or sinks Object sinks Object floats Object has neutral buoyancy An object sinks if it weighs more than the fluid it displaces, that is, if its average density is greater than the density of the fluid: . An object floats on the surface if it weighs less than the fluid it displaces, that is, if its average density is less than the density of the fluid: . An object hangs motionless in the fluid if it weighs exactly the same as the fluid it displaces. It has neutral buoyancy if its average density equals the density of the fluid: . Part A Ice at 0.0 has a density of 917 . A 3.00 ice cube is gently released inside a small container filled with oil and is observed to be neutrally buoyant. What is the density of the oil, ? Express your answer in kilograms per meter cubed to three significant figures. ANSWER: Part B Once the ice cube melts, what happens to the liquid water that it produces? You did not open hints for this part. ANSWER: avg > f avg < f avg = f 'C kg/m3 cm3 oil oil = kg/m3 Part C What happens if some ethyl alcohol of density 790 is poured into the container after the ice cube has melted? ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The liquid water sinks to the bottom of the container. The liquid water rises to the surface and floats on top of the oil. The liquid water is in static equilibrium at the location where the ice cube was originally placed. kg/m3 A layer of ethyl alcohol forms between the oil and the water. The layer of ethyl alcohol forms at the bottom of the container. The layer of ethyl alcohol forms on the surface.

please email info@checkyourstudy.com Chapter 15 Practice Problems (Practice – no … Read More...