Germ-line gene therapy is a potential genetic technology. It has not yet been used in humans. This type of gene therapy would involve altering a gene in an individual’s sex cells (egg or sperm cells) or in a newly conceived embryo (just after fertilization). The intent of gene therapy would be to remove an undesirable gene and replace it with a preferred gene. The sex cell or embryo resulting from gene therapy would possess the “new” gene and would be missing the “old” gene. We know that a person’s intelligence is controlled by a variety of factors including both environmental and genetic influences. It is likely that several genes contribute to a person’s intelligence. No single factor, whether genetic or environmental, could completely determine a person’s intelligence; however, it is conceivable that scientists could find a single gene that at least contributed to an individual’s intelligence. (Answer questions on next slide) 1. Should individuals who want to carry and have their own children be able to choose cloning as a reproductive option?

Germ-line gene therapy is a potential genetic technology. It has not yet been used in humans. This type of gene therapy would involve altering a gene in an individual’s sex cells (egg or sperm cells) or in a newly conceived embryo (just after fertilization). The intent of gene therapy would be to remove an undesirable gene and replace it with a preferred gene. The sex cell or embryo resulting from gene therapy would possess the “new” gene and would be missing the “old” gene. We know that a person’s intelligence is controlled by a variety of factors including both environmental and genetic influences. It is likely that several genes contribute to a person’s intelligence. No single factor, whether genetic or environmental, could completely determine a person’s intelligence; however, it is conceivable that scientists could find a single gene that at least contributed to an individual’s intelligence. (Answer questions on next slide) 1. Should individuals who want to carry and have their own children be able to choose cloning as a reproductive option?

Yes, I consider that could be an alternative that pairs … Read More...
3. Why does LSM tree have to set up a number of levels for holding SSTables (or what would be the potential problem if there was only one level of sorted and non-overlapping SSTables?) (Section 2.2)

3. Why does LSM tree have to set up a number of levels for holding SSTables (or what would be the potential problem if there was only one level of sorted and non-overlapping SSTables?) (Section 2.2)

Probing would be too sluggish or in other words, interprets, … Read More...
MAE 241 – Homework 2 Page 1 of 2 MAE 241 – Spring 2019 – Homework 2 Administered 1/18/2019 – Due 11PM, Sunday 1/27/2019 to Gradescope Problem 1 The average water head (vertical height of water column) maintained in Hoover dam reservoir is about 500 ft. Assume water density of 62.43 lb/ft3. a. Determine the maximum pressure at the bottom of reservoir. b. Find the power generation potential of the water at that pressure if the discharge rate is 500×103 ft3/s. Problem 2 The Vestas V164 is one of the largest wind turbines in the world, with diameter of 164 m. If the theoretical limit on the capacity of a wind turbine is 1/3rd of its power generation potential, determine the capacity of the turbine when it is placed in a location where the average wind speed is 10 m/s. Assume air density as 1.25 kg/m3. Problem 3 An automobile has a mass of 1200 kg. What is its kinetic energy, in kJ, relative to the road when traveling at a velocity of 50 km/h? If the vehicle accelerates to 100 km/h, what is the change in kinetic energy, in kJ? Problem 4 A 5 kg brick is dropped from a height of 12 m onto a spring with a spring constant 8 kN/m. If the spring has a unstretched length of 0.5m, find (a) the shortest length the spring will be compressed before recoil, and (b) the final length of spring once the whole system becomes static. Problem 5 A piping installation is used to transport 20 L/s of water from a reservoir (location 1) to a point of use (location 2) 20 meters above. The absolute pressure of water at the inlet of the installation is 110 kPa; the gauge pressure measured right before the point of use is 552 kPa. Determine the power input required, in kW. Assume that because the piping at locations (1) and (2) have the same diameter the average velocities of water are equal and the density of water is 1000 kg/m3. Problem 6 A system receives 10 MJ in the form of heat in a process and it produced 4 MJ of work. The system velocity changes from 10 m/s to 25 m/s. For a 50 kg mass of the system, determine the change in internal energy of the system. MAE 241 – Homework 2 Page 2 of 2 Problem 7 On a recent energy assessment performed to an industrial facility in Tempe by a team of ASU’s Industrial Assessment Center, the team evaluated a boiler whose rated input was 6 MBTUH (6 million BTU per hour). After measuring the composition of flue gases it was apparent that the boiler was not be operating at its best operating point; this suspicion was validated by determining that the combustion efficiency was equal to 0.65. As corrective measure the boiler received a tune up that increased the combustion efficiency to 0.8. The boiler operates 48 weeks per year continuously while the plant is in production. Taking the cost of energy to be $13 per MBTU, determine: a. The annual energy cost. b. The annual cost savings as a result of tuning up the boiler. c. List the assumptions used in your computations. Problem 8 Balloons are often filled with helium gas because it weighs only about one-seventh of what air weighs under identical conditions. The buoyancy force, which can be expressed as 𝐹𝑏 = 𝜌𝑎𝑖𝑟𝑔𝑉𝑏𝑎𝑙, will push the balloon upward. (a) If the balloon has a diameter of 15 m and carries eight people, 75 kg each, determine the acceleration of the balloon when it is first released. (b) The change in air density with altitude can be approximated up to 10km using a linear function 𝜌𝑎𝑖𝑟 = 1.173 − 8 × 10−5ℎ where ℎ is the altitude in m. At what theoretical altitude the balloon will stop climbing upwards? Assume the density of air is 1.173 kg/m3 at ground level, and neglect the weight of the ropes and the cage. Problem 9 A differential manometer is used to measure pressure difference between two fluid systems. Two parallel pipes carrying freshwater and seawater are connected to each other by a double U-tube differential manometer, as shown in Figure. (a) Determine the pressure difference between the two pipelines if ℎ = 10 cm. (b) If the pressure difference between the pipes is doubled, what will be the difference in heights (ℎ) of mercury? Take the density of seawater at that location to be 1035 kg/m3, and the specific gravity of the oil is 0.72. Assume all fluids are incompressible.

MAE 241 – Homework 2 Page 1 of 2 MAE 241 – Spring 2019 – Homework 2 Administered 1/18/2019 – Due 11PM, Sunday 1/27/2019 to Gradescope Problem 1 The average water head (vertical height of water column) maintained in Hoover dam reservoir is about 500 ft. Assume water density of 62.43 lb/ft3. a. Determine the maximum pressure at the bottom of reservoir. b. Find the power generation potential of the water at that pressure if the discharge rate is 500×103 ft3/s. Problem 2 The Vestas V164 is one of the largest wind turbines in the world, with diameter of 164 m. If the theoretical limit on the capacity of a wind turbine is 1/3rd of its power generation potential, determine the capacity of the turbine when it is placed in a location where the average wind speed is 10 m/s. Assume air density as 1.25 kg/m3. Problem 3 An automobile has a mass of 1200 kg. What is its kinetic energy, in kJ, relative to the road when traveling at a velocity of 50 km/h? If the vehicle accelerates to 100 km/h, what is the change in kinetic energy, in kJ? Problem 4 A 5 kg brick is dropped from a height of 12 m onto a spring with a spring constant 8 kN/m. If the spring has a unstretched length of 0.5m, find (a) the shortest length the spring will be compressed before recoil, and (b) the final length of spring once the whole system becomes static. Problem 5 A piping installation is used to transport 20 L/s of water from a reservoir (location 1) to a point of use (location 2) 20 meters above. The absolute pressure of water at the inlet of the installation is 110 kPa; the gauge pressure measured right before the point of use is 552 kPa. Determine the power input required, in kW. Assume that because the piping at locations (1) and (2) have the same diameter the average velocities of water are equal and the density of water is 1000 kg/m3. Problem 6 A system receives 10 MJ in the form of heat in a process and it produced 4 MJ of work. The system velocity changes from 10 m/s to 25 m/s. For a 50 kg mass of the system, determine the change in internal energy of the system. MAE 241 – Homework 2 Page 2 of 2 Problem 7 On a recent energy assessment performed to an industrial facility in Tempe by a team of ASU’s Industrial Assessment Center, the team evaluated a boiler whose rated input was 6 MBTUH (6 million BTU per hour). After measuring the composition of flue gases it was apparent that the boiler was not be operating at its best operating point; this suspicion was validated by determining that the combustion efficiency was equal to 0.65. As corrective measure the boiler received a tune up that increased the combustion efficiency to 0.8. The boiler operates 48 weeks per year continuously while the plant is in production. Taking the cost of energy to be $13 per MBTU, determine: a. The annual energy cost. b. The annual cost savings as a result of tuning up the boiler. c. List the assumptions used in your computations. Problem 8 Balloons are often filled with helium gas because it weighs only about one-seventh of what air weighs under identical conditions. The buoyancy force, which can be expressed as 𝐹𝑏 = 𝜌𝑎𝑖𝑟𝑔𝑉𝑏𝑎𝑙, will push the balloon upward. (a) If the balloon has a diameter of 15 m and carries eight people, 75 kg each, determine the acceleration of the balloon when it is first released. (b) The change in air density with altitude can be approximated up to 10km using a linear function 𝜌𝑎𝑖𝑟 = 1.173 − 8 × 10−5ℎ where ℎ is the altitude in m. At what theoretical altitude the balloon will stop climbing upwards? Assume the density of air is 1.173 kg/m3 at ground level, and neglect the weight of the ropes and the cage. Problem 9 A differential manometer is used to measure pressure difference between two fluid systems. Two parallel pipes carrying freshwater and seawater are connected to each other by a double U-tube differential manometer, as shown in Figure. (a) Determine the pressure difference between the two pipelines if ℎ = 10 cm. (b) If the pressure difference between the pipes is doubled, what will be the difference in heights (ℎ) of mercury? Take the density of seawater at that location to be 1035 kg/m3, and the specific gravity of the oil is 0.72. Assume all fluids are incompressible.

checkyourstudy.com Whatsapp +919911743277
CEE 260 / MIE 273 Probability & Statistics Name: Final Exam, version D — 100 points (120 minutes) PLEASE READ QUESTIONS CAREFULLY and SHOW YOUR WORK! CALCULATORS PERMITTED – ABSOLUTELY NO REFERENCES! 1. Suppose the waiting time (in minutes) for your 911 SC Targa to reach operating temperature in the morning is uniformly distributed on [0,10], while the waiting time in the evening is uniformly distributed on [0,5] independent of morning waiting time. a. (5%) If you drive your Targa each morning and evening for a week (5 morning and 5 evening rides), what is the variance of your total waiting time? b. (5%) What is the expected value of the difference between morning and evening waiting time on a given day? 2. (10%) Find the maximum likelihood estimator (MLE) of ϴ when Xi ~ Exponential(ϴ) and you have observed X1, X2, X3, …, Xn. 2 3. The waiting time for delivery of a new Porsche 911 Carrera at the local dealership is distributed exponentially with a population mean of 3.55 months and population standard deviation of 1.1 months. Recently, in an effort to reduce the waiting time, the dealership has experimented with an online ordering system. A sample of 100 customers during a recent sales promotion generated a mean waiting time of 3.18 months using the new system. Assume that the population standard deviation of the waiting time has not changed from 1.1 months. (hint: the source distribution is irrelevant, but its parameters are relevant) a. (15%) What is the probability that the average wait time is between 3.2 and 6.4 months? (hint: draw a sketch for full credit) b. (10%) At the 0.05 level of significance, using the critical values approach to hypothesis testing, is there evidence that the population mean waiting time to accept delivery is less than 3.55 months? c. (10%) At the 0.01 level of significance, using the p-value approach to hypothesis testing, is there evidence that the population mean waiting time to accept delivery is less than 3.55 months? 3 4. Porsche AG is a leading manufacturer of performance automobiles. The 911 Carrera model, Porsche’s premier sports car, reaches a top track speed of 180 miles per hour. Engineers claim the new advanced technology 911 GT2 automatically adjusts its top speed depending on the weather conditions. Suppose that in an effort to test this claim, Porsche selects a few 911 GT2 models to test drive on the company track in Stuttgart, Germany. The average top speed for the sample of 25 test drives is 182.36 mph, with a standard deviation of 7.24 mph. a. (5%) Without using complete sentences, what might be some problems with the sampling conducted above? Identify and explain at least 2. b. (15%) Using the critical values approach to hypothesis testing and a 0.10 level of significance, is there evidence that the mean top track speed is different for the 911 GT2? (hint: state the null and alternative hypotheses, draw a sketch, and show your work for full credit) c. (10%) Set up a 95% confidence interval estimate of the population mean top speed of the 911 GT2. d. (5%) Compare the results of (b) and (c). What conclusions do you reach about the top speed of the new 911 GT2? 4 5. (10%) Porsche USA believes that sales of the venerable 911 Carrera are a function of annual income (in thousands of dollars) and a risk tolerance index of the potential buyer. Determine the regression equation and provide a succinct analysis of Porsche’s conjecture using the following Excel results. SUMMARY OUTPUT Regression Stat istics Multiple R 0.805073 R Square 0.648142 Adjusted R Square 0.606747 Standard Error 7.76312 Observations 20 ANOVA df SS MS F Significance F Regression 2 1887.227445 943.6137225 15.65747206 0.000139355 Residual 17 1024.522555 60.26603265 Total 19 2911.75 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 23.50557 6.845545641 3.433702952 0.003167982 9.062731576 37.94840898 Income 0.613408 0.125421229 4.890786567 0.000137795 0.348792801 0.878024121 Risk Index -0.00126 0.004519817 -0.278357691 0.784095184 -0.010794106 0.008277854 BONUS (5 points) What is the probability that 2 or more students in our class of 22 have the same birthday?

CEE 260 / MIE 273 Probability & Statistics Name: Final Exam, version D — 100 points (120 minutes) PLEASE READ QUESTIONS CAREFULLY and SHOW YOUR WORK! CALCULATORS PERMITTED – ABSOLUTELY NO REFERENCES! 1. Suppose the waiting time (in minutes) for your 911 SC Targa to reach operating temperature in the morning is uniformly distributed on [0,10], while the waiting time in the evening is uniformly distributed on [0,5] independent of morning waiting time. a. (5%) If you drive your Targa each morning and evening for a week (5 morning and 5 evening rides), what is the variance of your total waiting time? b. (5%) What is the expected value of the difference between morning and evening waiting time on a given day? 2. (10%) Find the maximum likelihood estimator (MLE) of ϴ when Xi ~ Exponential(ϴ) and you have observed X1, X2, X3, …, Xn. 2 3. The waiting time for delivery of a new Porsche 911 Carrera at the local dealership is distributed exponentially with a population mean of 3.55 months and population standard deviation of 1.1 months. Recently, in an effort to reduce the waiting time, the dealership has experimented with an online ordering system. A sample of 100 customers during a recent sales promotion generated a mean waiting time of 3.18 months using the new system. Assume that the population standard deviation of the waiting time has not changed from 1.1 months. (hint: the source distribution is irrelevant, but its parameters are relevant) a. (15%) What is the probability that the average wait time is between 3.2 and 6.4 months? (hint: draw a sketch for full credit) b. (10%) At the 0.05 level of significance, using the critical values approach to hypothesis testing, is there evidence that the population mean waiting time to accept delivery is less than 3.55 months? c. (10%) At the 0.01 level of significance, using the p-value approach to hypothesis testing, is there evidence that the population mean waiting time to accept delivery is less than 3.55 months? 3 4. Porsche AG is a leading manufacturer of performance automobiles. The 911 Carrera model, Porsche’s premier sports car, reaches a top track speed of 180 miles per hour. Engineers claim the new advanced technology 911 GT2 automatically adjusts its top speed depending on the weather conditions. Suppose that in an effort to test this claim, Porsche selects a few 911 GT2 models to test drive on the company track in Stuttgart, Germany. The average top speed for the sample of 25 test drives is 182.36 mph, with a standard deviation of 7.24 mph. a. (5%) Without using complete sentences, what might be some problems with the sampling conducted above? Identify and explain at least 2. b. (15%) Using the critical values approach to hypothesis testing and a 0.10 level of significance, is there evidence that the mean top track speed is different for the 911 GT2? (hint: state the null and alternative hypotheses, draw a sketch, and show your work for full credit) c. (10%) Set up a 95% confidence interval estimate of the population mean top speed of the 911 GT2. d. (5%) Compare the results of (b) and (c). What conclusions do you reach about the top speed of the new 911 GT2? 4 5. (10%) Porsche USA believes that sales of the venerable 911 Carrera are a function of annual income (in thousands of dollars) and a risk tolerance index of the potential buyer. Determine the regression equation and provide a succinct analysis of Porsche’s conjecture using the following Excel results. SUMMARY OUTPUT Regression Stat istics Multiple R 0.805073 R Square 0.648142 Adjusted R Square 0.606747 Standard Error 7.76312 Observations 20 ANOVA df SS MS F Significance F Regression 2 1887.227445 943.6137225 15.65747206 0.000139355 Residual 17 1024.522555 60.26603265 Total 19 2911.75 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 23.50557 6.845545641 3.433702952 0.003167982 9.062731576 37.94840898 Income 0.613408 0.125421229 4.890786567 0.000137795 0.348792801 0.878024121 Risk Index -0.00126 0.004519817 -0.278357691 0.784095184 -0.010794106 0.008277854 BONUS (5 points) What is the probability that 2 or more students in our class of 22 have the same birthday?

info@checkyourstudy.com CEE 260 / MIE 273 Probability & Statistics Name: … Read More...
A 1000-turn loop (radius = 0.038 m) of wire is connected to a (25 ) resistor as shown in the figure. A magnetic field is directed perpendicular to the plane of the loop. The field points into the paper and has a magnitude that varies in time as B = gt, where g = 0.25 T/s. Neglect the resistance of the wire. What is the magnitude of the potential difference between points a and b?

A 1000-turn loop (radius = 0.038 m) of wire is connected to a (25 ) resistor as shown in the figure. A magnetic field is directed perpendicular to the plane of the loop. The field points into the paper and has a magnitude that varies in time as B = gt, where g = 0.25 T/s. Neglect the resistance of the wire. What is the magnitude of the potential difference between points a and b?

During deployment processing, soldiers undergo medical screening.After a wait, each soldier see same dicaltechnician who reviews his or her records.If the records review shows no problems—the soldier is physically qualified to deploy—then the soldier departs to the next step in deployment processing.It he records do reveal a potential medical issue,the soldier instead sees a doctor,who assesses the soldier’s condition and determines both deployability and for those who are medically disqualified, treatment needs.In rare cases ,the doctor in itiate a medical board to evaluate the soldier for retention in the military. Currently, 80 soldiers per hour arrive for deployment screening,and 80% of them pass there cords review.On average,20 people are waiting for the medical records review,which takes 6 minutes. When the records review indicates a soldier must see a doctor,the soldier reports to a waiting room,where an average of 8 soldiers are waiting. After a wait,the soldier sees a doctor, who reviews the soldier’s condition and either approves the soldier for deployment(75%of the time) or disapproves deployment and conducts a morein-deptxeam to determine treatment(20%of the time)or the need for a medical board(5%ofthetime).Each doctor’s exam takes,on average,6minutes if the solider is medically able to deploy(the doctor pretty much replicates the records review),15 minutes if the soldier requires some kind of treatment,and 30 minutes in those rare cases that require the doctor to initiate a medical review board. Assume the process is stable;that is,average inflow rate equals average outflow rate.[Finally,thisisNOTaqueuingproblem.] a. On average,how long does a soldier spend in the deployment process?

During deployment processing, soldiers undergo medical screening.After a wait, each soldier see same dicaltechnician who reviews his or her records.If the records review shows no problems—the soldier is physically qualified to deploy—then the soldier departs to the next step in deployment processing.It he records do reveal a potential medical issue,the soldier instead sees a doctor,who assesses the soldier’s condition and determines both deployability and for those who are medically disqualified, treatment needs.In rare cases ,the doctor in itiate a medical board to evaluate the soldier for retention in the military. Currently, 80 soldiers per hour arrive for deployment screening,and 80% of them pass there cords review.On average,20 people are waiting for the medical records review,which takes 6 minutes. When the records review indicates a soldier must see a doctor,the soldier reports to a waiting room,where an average of 8 soldiers are waiting. After a wait,the soldier sees a doctor, who reviews the soldier’s condition and either approves the soldier for deployment(75%of the time) or disapproves deployment and conducts a morein-deptxeam to determine treatment(20%of the time)or the need for a medical board(5%ofthetime).Each doctor’s exam takes,on average,6minutes if the solider is medically able to deploy(the doctor pretty much replicates the records review),15 minutes if the soldier requires some kind of treatment,and 30 minutes in those rare cases that require the doctor to initiate a medical review board. Assume the process is stable;that is,average inflow rate equals average outflow rate.[Finally,thisisNOTaqueuingproblem.] a. On average,how long does a soldier spend in the deployment process?

6+0.75*6+.2*15+.05*30 = 15 miutes     Timeindeploymentsystem:15 (minutes)
In Figure of an action potential, number 1 indicates the movement of Select one: a. Na+ to the inside. b. Na+ to the outside. c. K+ to the inside. d. K+ to the outside. e. Cl- to the outside.

In Figure of an action potential, number 1 indicates the movement of Select one: a. Na+ to the inside. b. Na+ to the outside. c. K+ to the inside. d. K+ to the outside. e. Cl- to the outside.

Info@checkyourstudy.com                                                                                                                                                                                       : Na+ to the inside.
Researchers recently investigated whether or not coffee prevented the development of high blood sugar (hyperglycemia) in laboratory mice. The mice used in this experiment have a mutation that makes them become diabetic. Read about this research study in this article published on the Science Daily web-site New Evidence That Drinking Coffee May Reduce the Risk of Diabetes as well as the following summary: A group of 11 mice was given water, and another group of 10 mice was supplied with diluted black coffee (coffee:water 1:1) as drinking fluids for five weeks. The composition of the diets and living conditions were similar for both groups of mice. Blood glucose was monitored weekly for all mice. After five weeks, there was no change in average body weight between groups. Results indicated that blood glucose concentrations increased significantly in the mice that drank water compared with those that were supplied with coffee. Finally, blood glucose concentration in the coffee group exhibited a 30 percent decrease compared with that in the water group. In the original paper, the investigators acknowledged that the coffee for the experiment was supplied as a gift from a corporation. Then answer the following questions in your own words: 1. Identify and describe the steps of the scientific method. Which observations do you think the scientists made leading up to this research study? Given your understanding of the experimental design, formulate a specific hypothesis that is being tested in this experiment. Describe the experimental design including control and treatment group(s), and dependent and independent variables. Summarize the results and the conclusion (50 points) 2. Criticize the research described. Things to consider: Were the test subjects and treatments relevant and appropriate? Was the sample size large enough? Were the methods used appropriate? Can you think of a potential bias in a research study like this? What are the limitations of the conclusions made in this research study? Address at least two of these questions in your critique of the research study (20 points). 3. Discuss the relevance of this type of research, both for the world in general and for you personally (20 points). 4. Write answers in your own words with proper grammar and spelling (10 points)

Researchers recently investigated whether or not coffee prevented the development of high blood sugar (hyperglycemia) in laboratory mice. The mice used in this experiment have a mutation that makes them become diabetic. Read about this research study in this article published on the Science Daily web-site New Evidence That Drinking Coffee May Reduce the Risk of Diabetes as well as the following summary: A group of 11 mice was given water, and another group of 10 mice was supplied with diluted black coffee (coffee:water 1:1) as drinking fluids for five weeks. The composition of the diets and living conditions were similar for both groups of mice. Blood glucose was monitored weekly for all mice. After five weeks, there was no change in average body weight between groups. Results indicated that blood glucose concentrations increased significantly in the mice that drank water compared with those that were supplied with coffee. Finally, blood glucose concentration in the coffee group exhibited a 30 percent decrease compared with that in the water group. In the original paper, the investigators acknowledged that the coffee for the experiment was supplied as a gift from a corporation. Then answer the following questions in your own words: 1. Identify and describe the steps of the scientific method. Which observations do you think the scientists made leading up to this research study? Given your understanding of the experimental design, formulate a specific hypothesis that is being tested in this experiment. Describe the experimental design including control and treatment group(s), and dependent and independent variables. Summarize the results and the conclusion (50 points) 2. Criticize the research described. Things to consider: Were the test subjects and treatments relevant and appropriate? Was the sample size large enough? Were the methods used appropriate? Can you think of a potential bias in a research study like this? What are the limitations of the conclusions made in this research study? Address at least two of these questions in your critique of the research study (20 points). 3. Discuss the relevance of this type of research, both for the world in general and for you personally (20 points). 4. Write answers in your own words with proper grammar and spelling (10 points)

The steps of the scientific method used in this research … Read More...
. What are the chief claims of Epicurus about life and how to live it? What is his definition of the “pleasurable life”? What is the proper role and value of philosophy?

. What are the chief claims of Epicurus about life and how to live it? What is his definition of the “pleasurable life”? What is the proper role and value of philosophy?

Epicurus also differentiates in between actual and also psychological excitement … Read More...
Which of the following does not impact an organism’s biotic potential? Select one: usual number of offspring per reproduction chances of survival until age of reproduction age at which reproduction begins how often each individual reproduces the rate of immigration into an area

Which of the following does not impact an organism’s biotic potential? Select one: usual number of offspring per reproduction chances of survival until age of reproduction age at which reproduction begins how often each individual reproduces the rate of immigration into an area

Which of the following does not impact an organism’s biotic … Read More...