A factory receives power at 480 Vrms @ 60 Hz. from the electric utility company. The factory’s electrical load can be simply represented by 2 loads. LOAD1 describes the manufacturing equipment on the assembly line. LOAD2 describes the power used in office rooms. From time to time, the assembly line shuts down thereby removing LOAD1 from the grid. SWITCH1 accounts for this effect in the equivalent circuit model shown above. Note that the 2 dependent sources represent a device called a “transformer” that steps the 480 Vrms down to 120 Vrms for use in the offices. (But don’t take my word for it; circuit analysis calculations will confirm this.) Given: Receiving End Voltage (with SWITCH1 closed): RV = 480 Vrms Wiring parameters: RW = 0.005 Ω, LW = 0.52052 mH Find: a) With SWITCH1 closed, find the value of C (in Farads) so that the total LOADt at the Receiving End has unity pf. Find the magnitude of the Sending End Voltage SV , and the magnitude of the “Office” load voltage, 2V. Note that RMS480VRV= for this case. b) With SWITCH1 open, using the value of C and SV found in part a), find the new values of the magnitudes of the Receiving End Voltage RV and Office Voltage 2V. Why will this be a problem for the office? How could you change the capacitor connection to avoid this problem? Hints: Note that no phase angles were given, and only magnitudes were asked for. You can choose one voltage or current to have 0 degree phase angle and then allow the calculations of any other voltages and currents be relative to that. In part b) RMS480VRV≠.

A factory receives power at 480 Vrms @ 60 Hz. from the electric utility company. The factory’s electrical load can be simply represented by 2 loads. LOAD1 describes the manufacturing equipment on the assembly line. LOAD2 describes the power used in office rooms. From time to time, the assembly line shuts down thereby removing LOAD1 from the grid. SWITCH1 accounts for this effect in the equivalent circuit model shown above. Note that the 2 dependent sources represent a device called a “transformer” that steps the 480 Vrms down to 120 Vrms for use in the offices. (But don’t take my word for it; circuit analysis calculations will confirm this.) Given: Receiving End Voltage (with SWITCH1 closed): RV = 480 Vrms Wiring parameters: RW = 0.005 Ω, LW = 0.52052 mH Find: a) With SWITCH1 closed, find the value of C (in Farads) so that the total LOADt at the Receiving End has unity pf. Find the magnitude of the Sending End Voltage SV , and the magnitude of the “Office” load voltage, 2V. Note that RMS480VRV= for this case. b) With SWITCH1 open, using the value of C and SV found in part a), find the new values of the magnitudes of the Receiving End Voltage RV and Office Voltage 2V. Why will this be a problem for the office? How could you change the capacitor connection to avoid this problem? Hints: Note that no phase angles were given, and only magnitudes were asked for. You can choose one voltage or current to have 0 degree phase angle and then allow the calculations of any other voltages and currents be relative to that. In part b) RMS480VRV≠.

A factory receives power at 480 Vrms @ 60 Hz. … Read More...

info@checkyourstudy.com 2/24/2015 Assignment 2 =3484333 1/22 Assignment 2 Due: 6:43pm … Read More...
Materials and process selection for a bicycle frame Background The principle components of the bike are familiar and their function needs no explanation. The largest of these is the frame. Frames can be made from a remarkable diversity of materials: CFRP, carbon steel, GFRP, nylon, wood, aluminium, titanium etc… How is it that such a diversity of materials can co-exist in a free market in which competition favours the fittest – sure there must be a single “best” material for the job? The mistake here is to assume that all bikes have the same purpose. The specification of a “shopping” or “uni” bike is very different from that of one for speed or for the mountain, as are the objectives of the purchaser. The Project Explore materials and process selection for bike frames (illustrated below) or for any other component of the bike: forks, handle bars, cranks, wheels, brake or gear cables…. 1) Analyse your chosen component, listing its function, the constraints it must meet and the objectives for the bike – This will require a decision about the type of bike you are designing (shopping (booze cruiser), speed / road / track bike, mountain bike, folding, children’s etc). Remember to include a lower cut-off constraint on fracture toughness (K1C > 15MPa √m is a good approximation to start at) – a brittle bike would be a bad idea! 2) List the requirements as Functions, Constraints, Objectives and Free Variables. 3) Identify the materials indices you will use to rank / select your materials. 4) Identify a promising material for the component. 5) Make a choice of material and then use CES EduPack Joining database to select ways of joining the frame. 6) Present the case study for your choice of material and process as a report. Use the charts from CES EduPack and other sources to explain your reasoning. For the purposes of simplicity it is suggested that you avoid accounting for shape in your selection criteria / indices identification. However, you should still consider the form of your component when considering an appropriate manufacturing process. To make the right choices you will need to source some information on typical service conditions for you selected bike type, these might be mechanical, physical or environmental focussed properties. You will also need to consider the type of conditions experienced by the component e.g. bending, tension, torsion, abrasion etc. Assignments will be assessed on the basis of the quality and clarity of the problem construction, the selection of indices, appropriate use of charts / figures and crucially the analysis and interpretation of the results presented.

Materials and process selection for a bicycle frame Background The principle components of the bike are familiar and their function needs no explanation. The largest of these is the frame. Frames can be made from a remarkable diversity of materials: CFRP, carbon steel, GFRP, nylon, wood, aluminium, titanium etc… How is it that such a diversity of materials can co-exist in a free market in which competition favours the fittest – sure there must be a single “best” material for the job? The mistake here is to assume that all bikes have the same purpose. The specification of a “shopping” or “uni” bike is very different from that of one for speed or for the mountain, as are the objectives of the purchaser. The Project Explore materials and process selection for bike frames (illustrated below) or for any other component of the bike: forks, handle bars, cranks, wheels, brake or gear cables…. 1) Analyse your chosen component, listing its function, the constraints it must meet and the objectives for the bike – This will require a decision about the type of bike you are designing (shopping (booze cruiser), speed / road / track bike, mountain bike, folding, children’s etc). Remember to include a lower cut-off constraint on fracture toughness (K1C > 15MPa √m is a good approximation to start at) – a brittle bike would be a bad idea! 2) List the requirements as Functions, Constraints, Objectives and Free Variables. 3) Identify the materials indices you will use to rank / select your materials. 4) Identify a promising material for the component. 5) Make a choice of material and then use CES EduPack Joining database to select ways of joining the frame. 6) Present the case study for your choice of material and process as a report. Use the charts from CES EduPack and other sources to explain your reasoning. For the purposes of simplicity it is suggested that you avoid accounting for shape in your selection criteria / indices identification. However, you should still consider the form of your component when considering an appropriate manufacturing process. To make the right choices you will need to source some information on typical service conditions for you selected bike type, these might be mechanical, physical or environmental focussed properties. You will also need to consider the type of conditions experienced by the component e.g. bending, tension, torsion, abrasion etc. Assignments will be assessed on the basis of the quality and clarity of the problem construction, the selection of indices, appropriate use of charts / figures and crucially the analysis and interpretation of the results presented.

No expert has answered this question yet.   You can … Read More...
Lab Assignment-09 Note: Create and save m-files for each problem individually. Copy all the m-files into a ‘single’ folder and upload the folder to D2L. Read chapters 2 and chapter 3.1-3.3 of the textbook (Introduction to MATLAB 7 for Engineers), solve the following problems in MATLAB. Given A= [■(3&-2&1@6&8&-5@7&9&10)] ; B= [■(6&9&-4@7&5&3@-8&2&1)] ; C= [■(-7&-5&2@10&6&1@3&-9&8)] ; Find the following A+B+C Verify the associative law (A+B)+C=A+ (B+C) D=Transpose(AB) E=A4 + B2 – C3 Find F, given that F = E-1 * D-1 – (AT) -1 Use MATLAB to solve the following set of equations 5x+7y + 9z = 12 7x- 4y + 8z = 86 15x- 9y – 6z = -57 Write a function that accepts temperature in degrees F and computes the corresponding value in degree C. The relation between the two is Aluminum alloys are made by adding other elements to aluminum to improve its properties, such as hardness or tensile strength. The following table shows the composition of five commonly used alloys, which are known by their alloy numbers ( 2024, 6061, and so on) [Kutz, 1999]. Obtain a matrix algorithm to compute the amounts of raw materials needed to produce a given amount of each alloy. Use MATLAB to determine how much raw material each type is needed to produce 1000tons of each alloy. Composition of aluminum alloys Alloy % Cu % Mg % Mn % Si % Zn 2024 4.4 1.5 0.6 0 0 6061 0 1 0 0.6 0 7005 0 1.4 0 0 4.5 7075 1.6 2.5 0 0 5.6 356.0 0 0.3 0 7 0

Lab Assignment-09 Note: Create and save m-files for each problem individually. Copy all the m-files into a ‘single’ folder and upload the folder to D2L. Read chapters 2 and chapter 3.1-3.3 of the textbook (Introduction to MATLAB 7 for Engineers), solve the following problems in MATLAB. Given A= [■(3&-2&1@6&8&-5@7&9&10)] ; B= [■(6&9&-4@7&5&3@-8&2&1)] ; C= [■(-7&-5&2@10&6&1@3&-9&8)] ; Find the following A+B+C Verify the associative law (A+B)+C=A+ (B+C) D=Transpose(AB) E=A4 + B2 – C3 Find F, given that F = E-1 * D-1 – (AT) -1 Use MATLAB to solve the following set of equations 5x+7y + 9z = 12 7x- 4y + 8z = 86 15x- 9y – 6z = -57 Write a function that accepts temperature in degrees F and computes the corresponding value in degree C. The relation between the two is Aluminum alloys are made by adding other elements to aluminum to improve its properties, such as hardness or tensile strength. The following table shows the composition of five commonly used alloys, which are known by their alloy numbers ( 2024, 6061, and so on) [Kutz, 1999]. Obtain a matrix algorithm to compute the amounts of raw materials needed to produce a given amount of each alloy. Use MATLAB to determine how much raw material each type is needed to produce 1000tons of each alloy. Composition of aluminum alloys Alloy % Cu % Mg % Mn % Si % Zn 2024 4.4 1.5 0.6 0 0 6061 0 1 0 0.6 0 7005 0 1.4 0 0 4.5 7075 1.6 2.5 0 0 5.6 356.0 0 0.3 0 7 0

info@checkyourstudy.com Whatsapp +919911743277
Problem 3: Research a product that is made from sand casting and tell me step by step how the product is made.

Problem 3: Research a product that is made from sand casting and tell me step by step how the product is made.

Fire Hydrant fittings can be made through the sand casting … Read More...
AUCS 340: Ethics in the Professions Medical Ethics Case Study You work as a registered nurse in a busy urban emergency department. Today you are caring for an adorable four-year old female patient who presents with a broken right arm and several bruises around her abdomen. You suspect that this patient is a victim of accidental trauma (child abuse). If you report your suspicions to the proper authorities, your state laws mandate that the child be removed from the care of the parents until an investigation of the allegation is complete. You know that this may take up to a week. Answer the following questions. 1) What type of ethical problem is this professional facing and why? 2) What steps should this medical professional take and why? 3) What would be the result of the nurse’s actions if this child is found to have a genetic problem and it is not a case of child abuse? 4) Are there other types of professionals who may also be required to report cases of suspected child abuse? If yes, what type of professional would that be? 5) What would you do in this situation?

AUCS 340: Ethics in the Professions Medical Ethics Case Study You work as a registered nurse in a busy urban emergency department. Today you are caring for an adorable four-year old female patient who presents with a broken right arm and several bruises around her abdomen. You suspect that this patient is a victim of accidental trauma (child abuse). If you report your suspicions to the proper authorities, your state laws mandate that the child be removed from the care of the parents until an investigation of the allegation is complete. You know that this may take up to a week. Answer the following questions. 1) What type of ethical problem is this professional facing and why? 2) What steps should this medical professional take and why? 3) What would be the result of the nurse’s actions if this child is found to have a genetic problem and it is not a case of child abuse? 4) Are there other types of professionals who may also be required to report cases of suspected child abuse? If yes, what type of professional would that be? 5) What would you do in this situation?

The type of ethical problem that is faced by the … Read More...
MA 3351 – Fall 2015 Homework #3 Due Friday 18 September 1. Find eigenvalues and eigenvectors of the following matrices  1 2 2 4   3 1 1 2   3 0 0 4   1 2 1 3   0 −1 1 0   −2 1 0 1 −2 0 0 0 1   0 1 0 −1 0 0 0 0 1  . Do calculations by hand, though you can use Mathematica to check your results. 2. Find eigenvectors and eigenvalues of A =  2 0 1 1 2 −1 0 0 3  . Show that one of the eigenvalues is defective. Do calculations by hand, though you can use Mathematica to check your results. 3. Solve the initial value problem y′ = Ay, y (0) = y0 for the following cases (a) A =  −4 1 1 −4  y0 =  1 2  (b) A =  −1 1 0 −2  y0 =  −1 3  (c) A =  1 0 0 0 −2 1 0 1 −2  y0 =  1 0 2  Do all calculations by hand. 4. Repeat problem 3 using Mathematica to do all calculations. MORE PROBLEMS ON BACK OF PAGE 1 5. Use Mathematica’s Eigensystem function to find eigenvalues and eigenvectors of A =  −2 1 0 0 0 1 −2 1 0 0 0 1 −2 1 0 0 0 1 −2 1 0 0 0 1 −2  . Suppose you are interested in solutions to y′ = Ay. Without constructing the full solution, answer the following questions: (a) Does the solution grow or decay in time (or a mix of both)? (b) What is the smallest (in magnitude) rate constant? (c) What is the largest (in magnitude) rate constant? (d) As t → ¥, the solution will be dominated by one eigenvector times an exponen- tial. Which eigenvector, and what is the rate constant of the exponential? 6. Use diagonalization to compute (Is − A)−1, where A =  −2 1 0 1 −2 1 0 1 −2  . You may use Mathematica. I suggest running FullSimplify on your result. 2

MA 3351 – Fall 2015 Homework #3 Due Friday 18 September 1. Find eigenvalues and eigenvectors of the following matrices  1 2 2 4   3 1 1 2   3 0 0 4   1 2 1 3   0 −1 1 0   −2 1 0 1 −2 0 0 0 1   0 1 0 −1 0 0 0 0 1  . Do calculations by hand, though you can use Mathematica to check your results. 2. Find eigenvectors and eigenvalues of A =  2 0 1 1 2 −1 0 0 3  . Show that one of the eigenvalues is defective. Do calculations by hand, though you can use Mathematica to check your results. 3. Solve the initial value problem y′ = Ay, y (0) = y0 for the following cases (a) A =  −4 1 1 −4  y0 =  1 2  (b) A =  −1 1 0 −2  y0 =  −1 3  (c) A =  1 0 0 0 −2 1 0 1 −2  y0 =  1 0 2  Do all calculations by hand. 4. Repeat problem 3 using Mathematica to do all calculations. MORE PROBLEMS ON BACK OF PAGE 1 5. Use Mathematica’s Eigensystem function to find eigenvalues and eigenvectors of A =  −2 1 0 0 0 1 −2 1 0 0 0 1 −2 1 0 0 0 1 −2 1 0 0 0 1 −2  . Suppose you are interested in solutions to y′ = Ay. Without constructing the full solution, answer the following questions: (a) Does the solution grow or decay in time (or a mix of both)? (b) What is the smallest (in magnitude) rate constant? (c) What is the largest (in magnitude) rate constant? (d) As t → ¥, the solution will be dominated by one eigenvector times an exponen- tial. Which eigenvector, and what is the rate constant of the exponential? 6. Use diagonalization to compute (Is − A)−1, where A =  −2 1 0 1 −2 1 0 1 −2  . You may use Mathematica. I suggest running FullSimplify on your result. 2

info@checkyourstudy.com