Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide: PbCO3 (s) PbO (s) + CO2 (g) __________ grams of carbondioxide will be produced by the decomposition of 7.50 g of lead (II) carbonate? A) 1.23 B) 2.50 C) 0.00936 D) 6.26 E) 7.83

Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide: PbCO3 (s) PbO (s) + CO2 (g) __________ grams of carbondioxide will be produced by the decomposition of 7.50 g of lead (II) carbonate? A) 1.23 B) 2.50 C) 0.00936 D) 6.26 E) 7.83

A) 1.23
CHM114: Exam #1 CHM 114, S2015 Exam #1, Version B Instructor: O. Graudejus Points: 100 Print Name Sign Name Student I.D. # 1. You are responsible for the information on this page. Please read it carefully. 2. If you enter your ASU ID incorrectly on the scantron, a 3 point penalty will be assessed. 3. Code your name and 10 digit affiliate identification number on the separate scantron answer sheet. Use only a #2 pencil 4. Do all calculations on the exam pages. Do not make any unnecessary marks on the answer sheet. 5. This exam consists of 25 multiple choice questions worth 4 points each and a periodic table. Make sure you have them all. 6. Choose the best answer to each of the questions and answer it on the computer-graded answer sheet. Read all responses before making a selection. 7. Read the directions carefully for each problem. 8. Avoid even casual glances at other students’ exams. 9. Stop writing and hand in your scantron answer sheet and your test promptly when instructed. LATE EXAMS MAY HAVE POINTS DEDUCTED. 10. You will have 50 minutes to complete the exam. 11. If you leave early, please do so quietly. 12. Work the easiest problems first. 13. A periodic table is attached as the last page to this exam. 14. Answers will be posted online this afternoon. Potentially useful information: K = ºC + 273.15 Avogadro’s Number = 6.022 × 1023 particles/mole 1amu = 1.66·10-24 g 1 cal=4.184 J \ -2- CHM 114: Exam #1 1) What volume (mL) of a concentrated solution of sodium hydroxide (6.00 M) must be diluted to 200.0 mL to make a 0.880 M solution of sodium hydroxide? A) 2.64 B) 176 C) 29.3 D) 26.4 E) 50.0 2) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride: S (s) + 3 F2 (g)  SF6 (g) The maximum amount of SF6 that can be produced from the reaction of 3.5 g of sulfur with 4.5 g of fluorine is __________ g. A) 5.8 B) 3.2 C) 12 D) 16 E) 8.0 3) Of the reactions below, only __________ is not spontaneous. A) 2 2 Mg (s) 2HCl + (aq)®MgCl (aq) + H (g) B) 2 4 2 4 2 2Ni (s) + H SO (aq) ®Ni SO (aq) + H (g) C) 3 2 2Al (s) + 6HBr (aq)®2AlBr (aq) + 3H (g) D) 3 3 2 2Ag (s) + 2HNO (aq) ®2AgNO (aq) + H (g) E) 2 2 Zn (s) + 2HI (aq) ®ZnI (aq) + H (g) 4) Which solution has the same number of moles of NaOH as 40.00 mL of 0.100M solution of NaOH? A) 20.00 mL of 0.200M solution of NaOH B) 25.00 mL of 0.175M solution of NaOH C) 30.00 mL of 0.145M solution of NaOH D) 50.00 mL of 0.125M solution of NaOH E) 100.00 mL of 0.0500M solution of NaOH 5) What is the concentration (M) of a NaCl solution prepared by dissolving 9.3 g of NaCl in sufficient water to give 450 mL of solution? A) 0.35 B) 0.16 C) 0.45 D) 27 E) -2 2.7×10 -3- CHM 114: Exam #1 6) In which reaction does the oxidation number of hydrogen change? A) 2 HCl (aq) NaOH (+ aq)® NaCl (aq) + H O (l) B) 2 2 CaO (s) + H O (l) ®Ca(OH) (s) C) 4 3 4 2 2 2 2 HClO (aq) + CaCO (s) ® Ca(ClO ) (aq) + H O (l) +CO (g) D) 2 2 2 3 SO (g) + H O (l)®H SO (aq) E) 2 2 2 Na (s) + 2H O (l) ® 2 NaOH (aq) + H (g) 7) Which atom has the smallest number of neutrons? A) phosphorus-30 B) chlorine-37 C) potassium-39 D) argon-40 E) calcium-40 8) The change in the internal energy of a system that absorbs 2,500 J of heat and that has received 7,655 J of work by the surroundings is __________ J. A) -10,155 B) -5,155 C) 7 −1.91×10 D) 10,155 E) 5,155 9) When a metal and a nonmetal react, the __________ tends to lose electrons and the __________ tends to gain electrons. A) metal, metal B) nonmetal, nonmetal C) metal, nonmetal D) nonmetal, metal E) None of the above, these elements share electrons. 10) What is the oxidation number of nitrogen in HNO2? A) -5 B) -3 C) 0 D) +3 E) +5 -4- CHM 114: Exam #1 11) Elements in Group 7A are known as the __________. A) chalcogens B) alkaline earth metals C) alkali metals D) halogens E) noble gases 12) The concentration of iodide ions in a 0.193 M solution of sodium iodide is __________. A) 0.193 M B) 0.386 M C) 0.0965 M D) 0.579 M E) 0.0643 M 13) Lithium and nitrogen react to produce lithium nitride: 6Li (s) + N2 (g)  2Li3N (s) How many moles of N2 are needed to react with 1.422 mol of lithium? A) 4.26 B) 0.710 C) 0.237 D) 2.13 E) 0.118 14) The balanced equation for the decomposition of sodium azide is __________. A) 2NaN3 (s)  Na2 (s) + 3 N2 (g) B) NaN3 (s)  Na (s) + N2 (g) C) 2NaN3 (s)  2Na (s) + 3 N2 (g) D) NaN3 (s)  Na (s) + N2 (g) + N (g) E) 2NaN3 (s)  2Na (s) + 2 N2 (g) 15) A sample of CH2F2 with a mass of 9.5 g contains __________ atoms of F. A) 2.2 × 1023 B) 38 C) 3.3 × 1024 D) 4.4 × 1023 E) 9.5 -5- CHM 114: Exam #1 16) An unknown element is found to have three naturally occurring isotopes with atomic masses of 35.9675 (0.337%), 37.9627 (0.063%), and 39.9624 (99.600%). Which of the following is the unknown element? A) Ar B) K C) Cl D) Ca E) None of the above could be the unknown element. 17) The value of DH° for the reaction below is -482 kJ. Calculate the heat (kJ) released to the surroundings when 24.0 g of CO (g) reacts completely. 2 2 2CO(g) +O (g)®2CO (g) A) 3 2.89×10 B) 207 C) 103 D) 65.7 E) -482 18) Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide: PbCO3 (s)  PbO (s) + CO2 (g) __________ grams of carbondioxide will be produced by the decomposition of 7.50 g of lead (II) carbonate? A) 1.23 B) 2.50 C) 0.00936 D) 6.26 E) 7.83 19) Combining aqueous solutions of BaCl2 and K2SO4 affords a precipitate of 4 BaSO . Which ion(s) is/are spectator ions in the reaction? A) 2 Ba only + B) K+ only C) 2 2 Ba and SO4 + − D) SO4 2- and Cl- E) K+ and Cl- 20) Which combination will produce a precipitate? A) Pb(NO3)2 (aq) and HCl (aq) B) Cu(NO3)2 (aq) and KCl (aq) C) KOH (aq) and HNO3 (aq) D) AgNO3 (aq) and HNO3 (aq) E) NaOH (aq) and Sr(NO3)2 (aq) -6- CHM 114: Exam #1 21) There are __________ sulfur atoms in 50 molecules of C4H4S2. A) 1.5 × 1025 B) 100 C) 3.0 × 1025 D) 50 E) 6.02 × 1023 22) A compound contains 38.7% K, 13.9% N, and 47.4% O by mass. What is the empirical formula of the compound? A) K2N2O3 B) KNO2 C) KNO3 D) K2NO3 E) K4NO5 23) Predict the empirical formula of the ionic compound that forms from sodium and fluorine. A) 2 Na F B) 2 NaF C) 2 3 Na F D) NaF E) 3 2 Na F 24) The mass % of Krypton in the binary compound KrF2 is __________. A) 18.48 B) 45.38 C) 68.80 D) 81.52 E) 31.20 25) The correct name for K2SO3 is __________. A) potassium sulfate B) potassium disulfide C) potassium sulfite D) potassium sulfide E) dipotassium sulfate -7- CHM 114: Exam #1

CHM114: Exam #1 CHM 114, S2015 Exam #1, Version B Instructor: O. Graudejus Points: 100 Print Name Sign Name Student I.D. # 1. You are responsible for the information on this page. Please read it carefully. 2. If you enter your ASU ID incorrectly on the scantron, a 3 point penalty will be assessed. 3. Code your name and 10 digit affiliate identification number on the separate scantron answer sheet. Use only a #2 pencil 4. Do all calculations on the exam pages. Do not make any unnecessary marks on the answer sheet. 5. This exam consists of 25 multiple choice questions worth 4 points each and a periodic table. Make sure you have them all. 6. Choose the best answer to each of the questions and answer it on the computer-graded answer sheet. Read all responses before making a selection. 7. Read the directions carefully for each problem. 8. Avoid even casual glances at other students’ exams. 9. Stop writing and hand in your scantron answer sheet and your test promptly when instructed. LATE EXAMS MAY HAVE POINTS DEDUCTED. 10. You will have 50 minutes to complete the exam. 11. If you leave early, please do so quietly. 12. Work the easiest problems first. 13. A periodic table is attached as the last page to this exam. 14. Answers will be posted online this afternoon. Potentially useful information: K = ºC + 273.15 Avogadro’s Number = 6.022 × 1023 particles/mole 1amu = 1.66·10-24 g 1 cal=4.184 J \ -2- CHM 114: Exam #1 1) What volume (mL) of a concentrated solution of sodium hydroxide (6.00 M) must be diluted to 200.0 mL to make a 0.880 M solution of sodium hydroxide? A) 2.64 B) 176 C) 29.3 D) 26.4 E) 50.0 2) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride: S (s) + 3 F2 (g)  SF6 (g) The maximum amount of SF6 that can be produced from the reaction of 3.5 g of sulfur with 4.5 g of fluorine is __________ g. A) 5.8 B) 3.2 C) 12 D) 16 E) 8.0 3) Of the reactions below, only __________ is not spontaneous. A) 2 2 Mg (s) 2HCl + (aq)®MgCl (aq) + H (g) B) 2 4 2 4 2 2Ni (s) + H SO (aq) ®Ni SO (aq) + H (g) C) 3 2 2Al (s) + 6HBr (aq)®2AlBr (aq) + 3H (g) D) 3 3 2 2Ag (s) + 2HNO (aq) ®2AgNO (aq) + H (g) E) 2 2 Zn (s) + 2HI (aq) ®ZnI (aq) + H (g) 4) Which solution has the same number of moles of NaOH as 40.00 mL of 0.100M solution of NaOH? A) 20.00 mL of 0.200M solution of NaOH B) 25.00 mL of 0.175M solution of NaOH C) 30.00 mL of 0.145M solution of NaOH D) 50.00 mL of 0.125M solution of NaOH E) 100.00 mL of 0.0500M solution of NaOH 5) What is the concentration (M) of a NaCl solution prepared by dissolving 9.3 g of NaCl in sufficient water to give 450 mL of solution? A) 0.35 B) 0.16 C) 0.45 D) 27 E) -2 2.7×10 -3- CHM 114: Exam #1 6) In which reaction does the oxidation number of hydrogen change? A) 2 HCl (aq) NaOH (+ aq)® NaCl (aq) + H O (l) B) 2 2 CaO (s) + H O (l) ®Ca(OH) (s) C) 4 3 4 2 2 2 2 HClO (aq) + CaCO (s) ® Ca(ClO ) (aq) + H O (l) +CO (g) D) 2 2 2 3 SO (g) + H O (l)®H SO (aq) E) 2 2 2 Na (s) + 2H O (l) ® 2 NaOH (aq) + H (g) 7) Which atom has the smallest number of neutrons? A) phosphorus-30 B) chlorine-37 C) potassium-39 D) argon-40 E) calcium-40 8) The change in the internal energy of a system that absorbs 2,500 J of heat and that has received 7,655 J of work by the surroundings is __________ J. A) -10,155 B) -5,155 C) 7 −1.91×10 D) 10,155 E) 5,155 9) When a metal and a nonmetal react, the __________ tends to lose electrons and the __________ tends to gain electrons. A) metal, metal B) nonmetal, nonmetal C) metal, nonmetal D) nonmetal, metal E) None of the above, these elements share electrons. 10) What is the oxidation number of nitrogen in HNO2? A) -5 B) -3 C) 0 D) +3 E) +5 -4- CHM 114: Exam #1 11) Elements in Group 7A are known as the __________. A) chalcogens B) alkaline earth metals C) alkali metals D) halogens E) noble gases 12) The concentration of iodide ions in a 0.193 M solution of sodium iodide is __________. A) 0.193 M B) 0.386 M C) 0.0965 M D) 0.579 M E) 0.0643 M 13) Lithium and nitrogen react to produce lithium nitride: 6Li (s) + N2 (g)  2Li3N (s) How many moles of N2 are needed to react with 1.422 mol of lithium? A) 4.26 B) 0.710 C) 0.237 D) 2.13 E) 0.118 14) The balanced equation for the decomposition of sodium azide is __________. A) 2NaN3 (s)  Na2 (s) + 3 N2 (g) B) NaN3 (s)  Na (s) + N2 (g) C) 2NaN3 (s)  2Na (s) + 3 N2 (g) D) NaN3 (s)  Na (s) + N2 (g) + N (g) E) 2NaN3 (s)  2Na (s) + 2 N2 (g) 15) A sample of CH2F2 with a mass of 9.5 g contains __________ atoms of F. A) 2.2 × 1023 B) 38 C) 3.3 × 1024 D) 4.4 × 1023 E) 9.5 -5- CHM 114: Exam #1 16) An unknown element is found to have three naturally occurring isotopes with atomic masses of 35.9675 (0.337%), 37.9627 (0.063%), and 39.9624 (99.600%). Which of the following is the unknown element? A) Ar B) K C) Cl D) Ca E) None of the above could be the unknown element. 17) The value of DH° for the reaction below is -482 kJ. Calculate the heat (kJ) released to the surroundings when 24.0 g of CO (g) reacts completely. 2 2 2CO(g) +O (g)®2CO (g) A) 3 2.89×10 B) 207 C) 103 D) 65.7 E) -482 18) Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide: PbCO3 (s)  PbO (s) + CO2 (g) __________ grams of carbondioxide will be produced by the decomposition of 7.50 g of lead (II) carbonate? A) 1.23 B) 2.50 C) 0.00936 D) 6.26 E) 7.83 19) Combining aqueous solutions of BaCl2 and K2SO4 affords a precipitate of 4 BaSO . Which ion(s) is/are spectator ions in the reaction? A) 2 Ba only + B) K+ only C) 2 2 Ba and SO4 + − D) SO4 2- and Cl- E) K+ and Cl- 20) Which combination will produce a precipitate? A) Pb(NO3)2 (aq) and HCl (aq) B) Cu(NO3)2 (aq) and KCl (aq) C) KOH (aq) and HNO3 (aq) D) AgNO3 (aq) and HNO3 (aq) E) NaOH (aq) and Sr(NO3)2 (aq) -6- CHM 114: Exam #1 21) There are __________ sulfur atoms in 50 molecules of C4H4S2. A) 1.5 × 1025 B) 100 C) 3.0 × 1025 D) 50 E) 6.02 × 1023 22) A compound contains 38.7% K, 13.9% N, and 47.4% O by mass. What is the empirical formula of the compound? A) K2N2O3 B) KNO2 C) KNO3 D) K2NO3 E) K4NO5 23) Predict the empirical formula of the ionic compound that forms from sodium and fluorine. A) 2 Na F B) 2 NaF C) 2 3 Na F D) NaF E) 3 2 Na F 24) The mass % of Krypton in the binary compound KrF2 is __________. A) 18.48 B) 45.38 C) 68.80 D) 81.52 E) 31.20 25) The correct name for K2SO3 is __________. A) potassium sulfate B) potassium disulfide C) potassium sulfite D) potassium sulfide E) dipotassium sulfate -7- CHM 114: Exam #1

BI 102 Lab 1 Writing Assignment How did the different concentrations of sucrose impact osmotic rate? This assignment requires you to evaluate a hypothesis and communicate the results of your experiment on the rate of osmosis into sucrose solutions of varying concentrations. The questions below are meant to guide you to reporting the key findings of your experiment and help you think through how to explain the findings and draw conclusions from them in a scientific manner. ASSIGNMENT: Please respond to the following questions to complete your laboratory write up. For this assignment you will only focus on the osmosis of water into sucrose concentrations of varying concentration. Make sure that your write up is accurate, and clearly written so that it is easily readable. A grading rubric is provided on the second page of this assignment. To earn full points on your write up, you must provide answers that align to the “meets” column of your grading rubric as well as meeting all “Quality of Writing and Mechanics” elements described in the rubric. There are also some tips on pages 3-4 of this assignment to help you succeed. FORMAT: • Type your responses, using 1.5 or double spacing. • Include the section headings (Hypothesis, Results, Analysis) and question number (example: 1, 2, 3, etc) in your answers but do not rewrite the question. • Graphs may be made with a computer program (example: Microsoft excel, Mac numbers, etc) or may be neatly produced with a ruler on graphing paper. • Print out the cover sheet on page 2 of this assignment, read and sign the academic honesty statement, and submit it with your write up. Your instructor WILL NOT accept a write up without the signed cover sheet. DUE DATE: Your write up is due at the beginning of class next week. Late assignments will have 1 point deducted per day up to 5 days, at which point the assignment will be assigned 0 points. Hypothesis and Prediction – Part 1 of Rubric 1. What did you think was going to happen in this experiment and why? You may find it helpful to state your answers to these questions as an “if-then” hypothesis-prediction. Be sure you have included a biological rationale that explains WHY you made this hypothesis/prediction. (You worked on this in question 2 on page 10 of this lab activity) Results – Part 2 of Rubric 2. How did the different concentrations of sucrose impact osmotic rate? Answer this question by creating a line graph that shows the results of your experiment. If you need assistance building a graph, there is a Guide to Graphing resource available on your Moodle lab course site. Analysis- Part 3 of Rubric 3. Explain why you think that the results shown in your graph support or refute your hypothesis (remember we never “prove” anything in science). Consider all your data and the overall data pattern as you answer this question. Don’t ignore unusual data that may not seem to fit into a specific patterns (“outliers”). Explain what you think might be behind these unusual data points. 4. What is the biological significance of your results? What biological concepts explain completely why these events happened in the experiment? How do these results help you understand the biology of the cell and how materials move back and forth across the cell membrane? (A hint: refer back to questions 1A-1F on page 10 of this lab activity). Think about giving a specific example. References- Mechanics Checklist 5. Provide at least one full citation (make sure you include an in-text citation that pinpoints where you used this resource) for a resource you made use of in performing the experiment, understanding the concepts and writing this assignment. (Perhaps your lab manual? Your textbook? A website?) If you used more than one resource, you need to cite each one! If you need help with citations, a Guide to Citing References is available on your Moodle lab course site. Please print out and submit this cover sheet with your lab writeup! Lab Writeup Assignment (1) Assessment Rubric-­‐ 10 points total Name: ________________________________________ Element Misses (1 point) Approaches (2 points) Meets (3 points) Hypothesis Clarity/Specificity Testability Rationale ___Hypothesis is unclear and hardto- understand ___Hypothesis is not testable ___No biological rationale for hypothesis or rationale is fully inaccurate ___Hypothesis included is clearly stated, but not specific or lacks specific details __Hypothesis is testable, but not in a feasible way in this lab ___Some foundation for hypothesis, but based in part on biological inaccuracy ___Hypothesis included is clearly stated and very specific ___Hypothesis is testable and could be tested within lab parameters ___Rationale for hypothesis is grounded in accurate biological information Graph Title Axes Variables Key Graph clarity Data accuracy ___Graph lacks a title ___Axes are not labeled ___Variables not addressed in graph ___No key or way to tell data points apart ___Graph is hard to read and comparisons cannot be made: Inappropriate graph type or use of scale ___Data graphed is inaccurate or does not relate to experiment ___Graph has a title that is not very descriptive ___Axes are either unlabeled, or units are unclear or wrong ___Variables addressed in graph, but not on correct axes ___Key included, but is hard to understand ___Graph is somewhat readable, comparisons can be made with difficulty: Appropriate graph type, but not scaled well ___Data graphed is partially accurate; some data is missing ___Graph has a concise, descriptive title ___Axes are labeled, including clarification of units used ___Variables on correct axes ___A clear, easy-to-use key to data points is included ___Graph is clearly readable and comparisons between treatments are easy to make: Graph type and scale are appropriate to data ___Data graphed is accurate and includes all relevant data, including controls (if needed) Analysis Hypothesis Scientific language Data addressed Explanation ___Hypothesis is not addressed ___Hypothesis is described using language like proven, true, or right ___No explanations for data patterns observed in graph or data does not support conclusions. ___No biological explanation for data trends or explanations are completely inaccurate ___Hypothesis is mentioned, but not linked well to data ___Hypothesis is not consistently described as supported or refuted ___Some data considered in conclusions but other data is ignored. Any unusual “outliers” are ignored ___Explanations include minimal or some inaccurate biological concepts ___Hypothesis is evaluated based upon data ___Hypothesis is consistently described as supported or refuted ___All data collected is considered and addressed by conclusions, including presence of outliers, ___Explanations include relevant and accurate biological concepts Quality of Writing and Mechanics: Worth 1 point. Writeup should meet all of the following criteria! Yes No ☐ ☐ Write up includes your name, the date, and your lab section ☐ ☐ Write up is free from spelling and grammatical errors (make sure you proofread!!) ☐ ☐ Write up is clear and easy-to-understand ☐ ☐ Write up includes full citation for at least one reference with corresponding in-text citation ☐ ☐ All portions of write up are clearly labeled, and question numbers are included Plagiarism refers to the use of original work, ideas, or text that are not your own. This includes cut-and-paste from websites, copying directly from texts, and copying the work of others, including fellow students. Telling someone your answers to the questions (including telling someone how to make their graph, question #2), or asking for the answers to any question, is cheating. (Asking someone how to make the graph for this assignment is NOT the same as asking for help learning excel or some other software). All forms of cheating, including plagiarism and copying of work will result in an immediate zero for the exam, quiz, or assignment. In the case of copying, all parties involved in the unethical behavior will earn zeros. Cheating students will be referred to the Student Conduct Committee for further action. You also have the right to appeal to the Student Conduct Committee. I have read and understand the plagiarism statement. ____________________________________________________ Signature Guidelines for Good Quality Scientific Reports Hypothesis and Prediction: The hypothesis is a tentative explanation for the phenomenon. Remember that: • A good hypothesis and prediction is testable (and should be testable under the conditions of our lab environment; For example, if your hypothesis requires shooting a rocket into space, then its not really testable under our laboratory conditions). • Your explanation can be ruled out through testing, or falsified. • A good hypothesis and prediction is detailed and specific in what it is testing. • A good hypothesis provides a rationale or explanation for why you think your prediction is reasonable and this rationale is based on what we know about biology. • A good prediction is specific and can be tested with a specific experiment. Examples*: I think that diet soda will float and regular soda will sink. {This hypothesis misses the goal. It is not specific as we don’t know where the sodas are floating and sinking, and it does not provide any explanation to explain why the hypothesis makes sense} Because diet soda does not contain sugar and regular soda does, the diet soda will float in a bucket of water, while regular soda will sink. {This hypothesis approaches the goal. It is more specific about the conditions, and it provides a partial explanation about why the hypothesis makes sense, but the connection between sugar and sinking is unclear} If diet soda does not contain sugar, then its density (mass/volume) is lower than that of regular soda which does contain sugar, and so diet soda will float in a bucket of water while regular soda sinks. {This hypothesis meets the goal. It is specific and the rationale- sugar affects density and density is what determines floating or sinking in water- is clearly articulated} *Note that these examples are for different experiments and investigations and NOT about your osmosis lab. They are provided only to help you think about what you need to include in your write up. Graph: The graph is a visual representation of the data you gathered while testing your hypothesis. Remember that: • A graph needs a concise title that clearly describes the data that it is showing. • Data must be put on the correct axes of the graph. In general, the data you collected (representing what you are trying to find out about) goes on the vertical (Y) axis. The supporting data that that describes how, when or under what conditions you collected your data goes on the horizontal (X) axis. (For this reason time nearly always goes on the X-axis). • Axes must be labeled, including the units in which data were recorded • Data points should be clearly marked and identified; a key is helpful if more than one group of data is included in the graph. • The scale of a graph is important. It should be consistent (there should be no change in the units or increments on a single axis) and appropriate to the data you collected Examples: {This graph misses the goal. There is no title, nor is there a key to help distinguish what the data points mean. The scale is too large- from 0 to 100 with an increment of 50, when the maximum number in the graph is 25- and makes it hard to interpret this graph. The x-axis is labeled, but without units (the months) and the y-axis has units, but the label is incomplete- number of what?} {This graph meets the goal. There is a descriptive title, and all of the axes are clearly labeled with units. There is a key so that we can distinguish what each set of data points represent. The dependent variable (number of individuals) is correctly placed on the y-axis with the independent variable of time placed on the x-axis. The scale of 0-30 is appropriate to the data, with each line on the x-axis representing an increment of 5.} 0 50 100 Number Month 0 5 10 15 20 25 30 March April May June July Number of individuals Month (2011) Population size of three different madtom catiCish in the Marais de Cygnes River in Spring/Summer 2011 Brindled madtom Neosho madtom Slender madtom Analysis: You need to evaluate your hypothesis based on the data patterns shown by your graph. Remember that: • You use data to determine support or refute your hypothesis. It is only possible to support a hypothesis, not to “prove” one (that would require testing every possible permutation and combination of factors). Your evaluation of your hypothesis should not be contradicted by the pattern shown by your data. • Refer back to the prediction you made as part of your hypothesis and use your data to justify your decision to support or refute your hypothesis. • In the “if” part of your hypothesis you should have provided a rationale, or explanation for the prediction you made in your hypothesis (“then” part of hypothesis”). Use this to help you explain why you think you observed the specific pattern of data revealed in your graph. • You should consider all of the data you collected in examining the support (or lack of support for your hypothesis). If there are unusual data points or “outliers” that don’t seem to fit the general pattern in your graph, explain what you think those mean. Examples: I was right. Diet Pepsi floated and so did Apricot Nectar. Regular Pepsi sank. Obviously the regular Pepsi was heavier. This helps us understand the concept of density, which is a really important one. {This analysis misses the goal. The hypothesis isn’t actually mentioned and the data is only briefly described. There is no explanation of the importance of the Apricot Nectar results. Finally, there is no connection to how these results help understand density or why it is biologically important} I hypothesized that diet soda would float, and all three cans of diet Pepsi did float while the regular Pepsi sank. This supports my hypothesis. Both types of Pepsi were 8.5 fluid ounces in volume, but the regular Pepsi also contained 16 grams of sugar. This means that the regular Pepsi had 16 more grams of mass provided by the sugar in the same amount of volume. This would lead to an increase in density, which explains why the regular soda cans sank. When we put in a can of Apricot Nectar, which had 19 grams of sugar, it floated. This was unexpected, but I think it is explained by the fact that an Apricot Nectar can had a volume of 7 fluid ounces, but the dimensions of the can are the same as that of a Pepsi can. A same-sized can with less liquid probably has an air space that helped it float. The results of this experiment help us understand how the air bladder of a fish, which creates an air space inside the fish, helps it float in the water and also how seaweeds and other living things with air spaces or other factors that decrease their density keep from sinking to the bottom of the water. {This analysis meets the goal. It clearly ties the hypothesis to the results and outlines what they mean. It describes how the results support the hypothesis, but also explains a possible reason behind the unusual results of the Apricot Nectar. Finally, there is a link to how this experiment helps us understand biology}

BI 102 Lab 1 Writing Assignment How did the different concentrations of sucrose impact osmotic rate? This assignment requires you to evaluate a hypothesis and communicate the results of your experiment on the rate of osmosis into sucrose solutions of varying concentrations. The questions below are meant to guide you to reporting the key findings of your experiment and help you think through how to explain the findings and draw conclusions from them in a scientific manner. ASSIGNMENT: Please respond to the following questions to complete your laboratory write up. For this assignment you will only focus on the osmosis of water into sucrose concentrations of varying concentration. Make sure that your write up is accurate, and clearly written so that it is easily readable. A grading rubric is provided on the second page of this assignment. To earn full points on your write up, you must provide answers that align to the “meets” column of your grading rubric as well as meeting all “Quality of Writing and Mechanics” elements described in the rubric. There are also some tips on pages 3-4 of this assignment to help you succeed. FORMAT: • Type your responses, using 1.5 or double spacing. • Include the section headings (Hypothesis, Results, Analysis) and question number (example: 1, 2, 3, etc) in your answers but do not rewrite the question. • Graphs may be made with a computer program (example: Microsoft excel, Mac numbers, etc) or may be neatly produced with a ruler on graphing paper. • Print out the cover sheet on page 2 of this assignment, read and sign the academic honesty statement, and submit it with your write up. Your instructor WILL NOT accept a write up without the signed cover sheet. DUE DATE: Your write up is due at the beginning of class next week. Late assignments will have 1 point deducted per day up to 5 days, at which point the assignment will be assigned 0 points. Hypothesis and Prediction – Part 1 of Rubric 1. What did you think was going to happen in this experiment and why? You may find it helpful to state your answers to these questions as an “if-then” hypothesis-prediction. Be sure you have included a biological rationale that explains WHY you made this hypothesis/prediction. (You worked on this in question 2 on page 10 of this lab activity) Results – Part 2 of Rubric 2. How did the different concentrations of sucrose impact osmotic rate? Answer this question by creating a line graph that shows the results of your experiment. If you need assistance building a graph, there is a Guide to Graphing resource available on your Moodle lab course site. Analysis- Part 3 of Rubric 3. Explain why you think that the results shown in your graph support or refute your hypothesis (remember we never “prove” anything in science). Consider all your data and the overall data pattern as you answer this question. Don’t ignore unusual data that may not seem to fit into a specific patterns (“outliers”). Explain what you think might be behind these unusual data points. 4. What is the biological significance of your results? What biological concepts explain completely why these events happened in the experiment? How do these results help you understand the biology of the cell and how materials move back and forth across the cell membrane? (A hint: refer back to questions 1A-1F on page 10 of this lab activity). Think about giving a specific example. References- Mechanics Checklist 5. Provide at least one full citation (make sure you include an in-text citation that pinpoints where you used this resource) for a resource you made use of in performing the experiment, understanding the concepts and writing this assignment. (Perhaps your lab manual? Your textbook? A website?) If you used more than one resource, you need to cite each one! If you need help with citations, a Guide to Citing References is available on your Moodle lab course site. Please print out and submit this cover sheet with your lab writeup! Lab Writeup Assignment (1) Assessment Rubric-­‐ 10 points total Name: ________________________________________ Element Misses (1 point) Approaches (2 points) Meets (3 points) Hypothesis Clarity/Specificity Testability Rationale ___Hypothesis is unclear and hardto- understand ___Hypothesis is not testable ___No biological rationale for hypothesis or rationale is fully inaccurate ___Hypothesis included is clearly stated, but not specific or lacks specific details __Hypothesis is testable, but not in a feasible way in this lab ___Some foundation for hypothesis, but based in part on biological inaccuracy ___Hypothesis included is clearly stated and very specific ___Hypothesis is testable and could be tested within lab parameters ___Rationale for hypothesis is grounded in accurate biological information Graph Title Axes Variables Key Graph clarity Data accuracy ___Graph lacks a title ___Axes are not labeled ___Variables not addressed in graph ___No key or way to tell data points apart ___Graph is hard to read and comparisons cannot be made: Inappropriate graph type or use of scale ___Data graphed is inaccurate or does not relate to experiment ___Graph has a title that is not very descriptive ___Axes are either unlabeled, or units are unclear or wrong ___Variables addressed in graph, but not on correct axes ___Key included, but is hard to understand ___Graph is somewhat readable, comparisons can be made with difficulty: Appropriate graph type, but not scaled well ___Data graphed is partially accurate; some data is missing ___Graph has a concise, descriptive title ___Axes are labeled, including clarification of units used ___Variables on correct axes ___A clear, easy-to-use key to data points is included ___Graph is clearly readable and comparisons between treatments are easy to make: Graph type and scale are appropriate to data ___Data graphed is accurate and includes all relevant data, including controls (if needed) Analysis Hypothesis Scientific language Data addressed Explanation ___Hypothesis is not addressed ___Hypothesis is described using language like proven, true, or right ___No explanations for data patterns observed in graph or data does not support conclusions. ___No biological explanation for data trends or explanations are completely inaccurate ___Hypothesis is mentioned, but not linked well to data ___Hypothesis is not consistently described as supported or refuted ___Some data considered in conclusions but other data is ignored. Any unusual “outliers” are ignored ___Explanations include minimal or some inaccurate biological concepts ___Hypothesis is evaluated based upon data ___Hypothesis is consistently described as supported or refuted ___All data collected is considered and addressed by conclusions, including presence of outliers, ___Explanations include relevant and accurate biological concepts Quality of Writing and Mechanics: Worth 1 point. Writeup should meet all of the following criteria! Yes No ☐ ☐ Write up includes your name, the date, and your lab section ☐ ☐ Write up is free from spelling and grammatical errors (make sure you proofread!!) ☐ ☐ Write up is clear and easy-to-understand ☐ ☐ Write up includes full citation for at least one reference with corresponding in-text citation ☐ ☐ All portions of write up are clearly labeled, and question numbers are included Plagiarism refers to the use of original work, ideas, or text that are not your own. This includes cut-and-paste from websites, copying directly from texts, and copying the work of others, including fellow students. Telling someone your answers to the questions (including telling someone how to make their graph, question #2), or asking for the answers to any question, is cheating. (Asking someone how to make the graph for this assignment is NOT the same as asking for help learning excel or some other software). All forms of cheating, including plagiarism and copying of work will result in an immediate zero for the exam, quiz, or assignment. In the case of copying, all parties involved in the unethical behavior will earn zeros. Cheating students will be referred to the Student Conduct Committee for further action. You also have the right to appeal to the Student Conduct Committee. I have read and understand the plagiarism statement. ____________________________________________________ Signature Guidelines for Good Quality Scientific Reports Hypothesis and Prediction: The hypothesis is a tentative explanation for the phenomenon. Remember that: • A good hypothesis and prediction is testable (and should be testable under the conditions of our lab environment; For example, if your hypothesis requires shooting a rocket into space, then its not really testable under our laboratory conditions). • Your explanation can be ruled out through testing, or falsified. • A good hypothesis and prediction is detailed and specific in what it is testing. • A good hypothesis provides a rationale or explanation for why you think your prediction is reasonable and this rationale is based on what we know about biology. • A good prediction is specific and can be tested with a specific experiment. Examples*: I think that diet soda will float and regular soda will sink. {This hypothesis misses the goal. It is not specific as we don’t know where the sodas are floating and sinking, and it does not provide any explanation to explain why the hypothesis makes sense} Because diet soda does not contain sugar and regular soda does, the diet soda will float in a bucket of water, while regular soda will sink. {This hypothesis approaches the goal. It is more specific about the conditions, and it provides a partial explanation about why the hypothesis makes sense, but the connection between sugar and sinking is unclear} If diet soda does not contain sugar, then its density (mass/volume) is lower than that of regular soda which does contain sugar, and so diet soda will float in a bucket of water while regular soda sinks. {This hypothesis meets the goal. It is specific and the rationale- sugar affects density and density is what determines floating or sinking in water- is clearly articulated} *Note that these examples are for different experiments and investigations and NOT about your osmosis lab. They are provided only to help you think about what you need to include in your write up. Graph: The graph is a visual representation of the data you gathered while testing your hypothesis. Remember that: • A graph needs a concise title that clearly describes the data that it is showing. • Data must be put on the correct axes of the graph. In general, the data you collected (representing what you are trying to find out about) goes on the vertical (Y) axis. The supporting data that that describes how, when or under what conditions you collected your data goes on the horizontal (X) axis. (For this reason time nearly always goes on the X-axis). • Axes must be labeled, including the units in which data were recorded • Data points should be clearly marked and identified; a key is helpful if more than one group of data is included in the graph. • The scale of a graph is important. It should be consistent (there should be no change in the units or increments on a single axis) and appropriate to the data you collected Examples: {This graph misses the goal. There is no title, nor is there a key to help distinguish what the data points mean. The scale is too large- from 0 to 100 with an increment of 50, when the maximum number in the graph is 25- and makes it hard to interpret this graph. The x-axis is labeled, but without units (the months) and the y-axis has units, but the label is incomplete- number of what?} {This graph meets the goal. There is a descriptive title, and all of the axes are clearly labeled with units. There is a key so that we can distinguish what each set of data points represent. The dependent variable (number of individuals) is correctly placed on the y-axis with the independent variable of time placed on the x-axis. The scale of 0-30 is appropriate to the data, with each line on the x-axis representing an increment of 5.} 0 50 100 Number Month 0 5 10 15 20 25 30 March April May June July Number of individuals Month (2011) Population size of three different madtom catiCish in the Marais de Cygnes River in Spring/Summer 2011 Brindled madtom Neosho madtom Slender madtom Analysis: You need to evaluate your hypothesis based on the data patterns shown by your graph. Remember that: • You use data to determine support or refute your hypothesis. It is only possible to support a hypothesis, not to “prove” one (that would require testing every possible permutation and combination of factors). Your evaluation of your hypothesis should not be contradicted by the pattern shown by your data. • Refer back to the prediction you made as part of your hypothesis and use your data to justify your decision to support or refute your hypothesis. • In the “if” part of your hypothesis you should have provided a rationale, or explanation for the prediction you made in your hypothesis (“then” part of hypothesis”). Use this to help you explain why you think you observed the specific pattern of data revealed in your graph. • You should consider all of the data you collected in examining the support (or lack of support for your hypothesis). If there are unusual data points or “outliers” that don’t seem to fit the general pattern in your graph, explain what you think those mean. Examples: I was right. Diet Pepsi floated and so did Apricot Nectar. Regular Pepsi sank. Obviously the regular Pepsi was heavier. This helps us understand the concept of density, which is a really important one. {This analysis misses the goal. The hypothesis isn’t actually mentioned and the data is only briefly described. There is no explanation of the importance of the Apricot Nectar results. Finally, there is no connection to how these results help understand density or why it is biologically important} I hypothesized that diet soda would float, and all three cans of diet Pepsi did float while the regular Pepsi sank. This supports my hypothesis. Both types of Pepsi were 8.5 fluid ounces in volume, but the regular Pepsi also contained 16 grams of sugar. This means that the regular Pepsi had 16 more grams of mass provided by the sugar in the same amount of volume. This would lead to an increase in density, which explains why the regular soda cans sank. When we put in a can of Apricot Nectar, which had 19 grams of sugar, it floated. This was unexpected, but I think it is explained by the fact that an Apricot Nectar can had a volume of 7 fluid ounces, but the dimensions of the can are the same as that of a Pepsi can. A same-sized can with less liquid probably has an air space that helped it float. The results of this experiment help us understand how the air bladder of a fish, which creates an air space inside the fish, helps it float in the water and also how seaweeds and other living things with air spaces or other factors that decrease their density keep from sinking to the bottom of the water. {This analysis meets the goal. It clearly ties the hypothesis to the results and outlines what they mean. It describes how the results support the hypothesis, but also explains a possible reason behind the unusual results of the Apricot Nectar. Finally, there is a link to how this experiment helps us understand biology}

info@checkyourstudy.com Whatsapp +919911743277
The Achulles tension force of Ft = 650 N is mobilized when the man tries to stand on his toes. As this is done , each of his feet is subjected to a reactive force of Nf = 400 N. Part A) determine the direction of the resultant moment produced by Ft and Nf about the ankle joint A. Part B) determine the magnitude of the resultant moment produced by Ft and Nf about the ankle joint A

The Achulles tension force of Ft = 650 N is mobilized when the man tries to stand on his toes. As this is done , each of his feet is subjected to a reactive force of Nf = 400 N. Part A) determine the direction of the resultant moment produced by Ft and Nf about the ankle joint A. Part B) determine the magnitude of the resultant moment produced by Ft and Nf about the ankle joint A

 
The power crane is used to hoist the 2,3- Mg load upward at constant velocity. The 1.5-Mg jib BD, 0.4-Mg jib BC, and 6.8 -Mg counterweight C have centers of mass at G1, G2 and G3 respectively. determine the resultant moment produced by the load and the weight of the tower crane jib about point A and about point B.

The power crane is used to hoist the 2,3- Mg load upward at constant velocity. The 1.5-Mg jib BD, 0.4-Mg jib BC, and 6.8 -Mg counterweight C have centers of mass at G1, G2 and G3 respectively. determine the resultant moment produced by the load and the weight of the tower crane jib about point A and about point B.

The largest number of ATP molecules are produced in which phase of cellular respiration? Select one: glycolysis preparation reaction citric acid cycle electron transport chain Calvin cycle

The largest number of ATP molecules are produced in which phase of cellular respiration? Select one: glycolysis preparation reaction citric acid cycle electron transport chain Calvin cycle

The largest number of ATP molecules are produced in which … Read More...
Statistical Methods (STAT 4303) Review for Final Comprehensive Exam Measures of Central Tendency, Dispersion Q.1. The data below represents the test scores obtained by students in college algebra class. 10,12,15,20,13,16,14 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) Q.2. The data below represents the test scores obtained by students in English class. 12,15,16,18,13,10,17,20 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) (f) Compare the results of Q.1 and Q.2, Which scores College Algebra or English do you think is more precise (less spread)? Q.3 Following data represents the score obtained by students in one of the exams 9, 13, 14, 15, 16, 16, 17, 19, 20, 21, 21, 22, 25, 25, 26 Create a frequency table to calculate the following descriptive statistics (a) mean (b) median (c) mode (d) first and third quartiles (e) Construct Box and Whisker plot. (f) Comment on the shape of the distribution. (g) Find inter quartile range (IQR). (h) Are there any outliers (based on IQR technique)? In the above problem, if the score 26 is replaced by 37 (i) What will happen to the mean? Will it increase, decrease or remains the same? (j) What will be the new median? (k) What can you say about the effect of outliers on mean and median? Q.4 Following data represents the score obtained by students in one of the exams 19, 14, 14, 15, 17, 16, 17, 20, 20, 21, 21, 22, 25, 25, 26, 27, 28 Create a frequency table to calculate the following descriptive statistics a) mean b) median c) mode d) first and third quartiles e) Construct Box and Whisker plot. f) Comment on the shape of the distribution. g) Find inter quartile range (IQR). h) Are there any outliers (based on IQR technique)? In the above problem, if the score 28 is replaced by 48 i) What will happen to the mean? Will it increase, decrease or remains the same? j) What will be the new median? k) What can you say about the effect of outliers on mean and median? Q.5 Consider the following data of height (in inch) and weight(in lbs). Height(x) Frequency 50 2 52 3 55 2 60 4 62 3  Find the mean height.  What is the variance of height? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.6. The following table shows the number of miles run during one week for a sample of 20 runners: Miles Mid-value (x) Frequency (f) 5.5-10.5 1 10.5-15.5 2 15.5-20.5 3 20.5-25.5 5 25.5-30.5 4 (a) Find the average (mean) miles run. (Hint: Find mid-value of mile range first) (b) What is the variance of miles run? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.7. (a) If the mean of 20 observations is 20.5, find the sum of all observations? (b) If the mean of 30 observations is 40, find the sum of all observations? Probability Q.8 Out of forty students, 14 are taking English Composition and 29 are taking Chemistry. a) How many students are in both classes? b) What is the probability that a randomly-chosen student from this group is taking only the Chemistry class? Q.9 A drawer contains 4 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and then replaced. Another ball is taken from the drawer. What is the probability that (Draw tree diagram to facilitate your calculation). (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q.10 A drawer contains 3 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and not replaced. Another ball is then taken from the drawer. Draw tree diagram to facilitate your calculation. What is the probability that (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q. 11 Missile A has 45% chance of hitting target. Missile B has 55% chance of hitting a target. What is the probability that (i) both miss the target. (ii) at least one will hit the target. (iii) exactly one will hit the target. Q. 12 A politician from D party speaks truth 65% of times; another politician from rival party speaks truth 75% of times. Both politicians were asked about their personal love affair with their own office secretary, what is the probability that (i) both lie the actual fact . (ii) at least one will speak truth. (iii) exactly one speaks the truth. (iv) both speak the truth. Q.13 The question, “Do you drink alcohol?” was asked to 220 people. Results are shown in the table. . Yes No Total Male 48 82 Female 24 66 Total (a) What is the probability of a randomly selected individual being a male also drinks? (b) What is the probability of a randomly selected individual being a female? (c) What is the probability that a randomly selected individual drinks? (d) A person is selected at random and if the person is female, what is the probability that she drinks? (e) What is the probability that a randomly selected alcoholic person is a male? Q.14 A professor, Dr. Drakula, taught courses that included statements from across the five colleges abbreviated as AH, AS, BA, ED and EN. He taught at Texas A&M University – Kingsville (TAMUK) during the span of five academic years AY09 to AY13. The following table shows the total number of graduates during AY09 to AY13. One day, he was running late to his class. He was so focused on the class that he did not stop for a red light. As soon as he crossed through the intersection, a police officer Asked him to stop. ( a ) It is turned out that the police officer was TAMUK graduate during the past five years. What is the probability that the Police Officer was from ED College? ( b ) What is the probability that the Police Officer graduated in the academic year of 2011? ( c ) If the traffic officer graduated from TAMUK in the academic year of 2011(AY11). What is the conditional probability that he graduated from the ED college? ( d ) Are the events the academic year “AY 11” and the college of Education “ED” independent? Yes or no , why? Discrete Distribution Q.15 Find k and probability for X=2 and X=4. X 1 2 3 4 5 P(X=x) 0.1 3k 0.2 2k 0.2 (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers.What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Q.16 Find k. X 3 4 5 6 7 P(X=x) k 2k 2k k 2k (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers. What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Binomial Distribution: Q.17 (a) Hospital records show that of patients suffering from a certain disease, 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover? (b) A (blindfolded) marksman finds that on the average he hits the target 4 times out of 5. If he fires 4 shots, what is the probability of (i) more than 2 hits? (ii) at least 3 misses? (c) which of the following are binomial experiments? Explain the reason. i. Telephone surveying a group of 200 people to ask if they voted for George Bush. ii. Counting the average number of dogs seen at a veterinarian’s office daily. iii. You take a survey of 50 traffic lights in a certain city, at 3 p.m., recording whether the light was red, green, or yellow at that time. iv. You are at a fair, playing “pop the balloon” with 6 darts. There are 20 balloons. 10 of the balloons have a ticket inside that say “win,” and 10 have a ticket that says “lose.” Normal Distribution Q.18 Use standard normal distribution table to find the following probabilities: (a) P(Z<2.5) (b) P(Z< -1.3) (c) P(Z>0.12) (d) P(Z> -2.15) (e) P(0.11<Z<0.22) (f) P(-0.11<Z<0.5) Q.19. Use normal distribution table to find the missing values (?). (a) P(Z< ?)=0.40 (b) P(Z< ?)=0.76 (c) P(Z> ?)=0.87 (d) P(Z> ?)=0.34 Q.20. The length of life of certain type of light bulb is normally distributed with mean=220hrs and standard deviation=20hrs. (a) Define a random variable, X A light bulb is randomly selected, what is the probability that (b) it will last will last more than 207 hrs. ? (c) it will last less than 214 hrs. (d) it will last in between 199 to 207 hrs. Q.21. The length of life of an instrument produced by a machine has a normal distribution with a mean of 22 months and standard deviation of 4 months. Find the probability that an instrument produced by this machine will last (a) less than 10 months. (b) more than 28 months (c) between 10 and 28 months. Distribution of sample mean and Central Limit Theorem (CLT) Q.22 It is assumed that weight of teenage student is normally distributed with mean=140 lbs. and standard deviation =15 lbs. A simple random sample of 40 teenage students is taken and sample mean is calculated. If several such samples of same size are taken (i) what could be the mean of all sample means. (ii) what could be the standard deviation of all sample means. (iii) will the distribution of sample means be normal ? (iv) What is CLT? Write down the distribution of sample mean in the form of ~ ( , ) 2 n X N   . Q.23 The time it takes students in a cooking school to learn to prepare seafood gumbo is a random variable with a normal distribution where the average is 3.2 hours and a standard deviation of 1.8 hours. A sample of 40 students was investigated. What is the distribution of sample mean (express in numbers)? Hypothesis Testing Q.24 The NCHS reported that the mean total cholesterol level in 2002 for all adults was 203 with standard deviation of 37. Total cholesterol levels in participants who attended the seventh examination of the Offspring in the Framingham Heart Study are summarized as follows: n=3,00, =200.3. Is there statistical evidence of a difference in mean cholesterol levels in the Framingham Offspring (means does the result form current examination differs from 2002 report)?? (Follow the steps below to reach the conclusion) (i) Define null and alternate hypothesis (Also write what is  , and x in words at the beginning) (ii) Identify the significance level ,  and check whether it is one sided or two sided test. (iii) Calculate test statistics, Z. (iv) Use standard normal table to find the p-value and state whether you reject or accept (fail to reject) the null hypothesis. (v) what is the critical value, do you reject or accept the H0. (vi) Write down the conclusion based on part (iv). Q.25 A sample of 145 boxes of Kellogg’s Raisin Bran contain in average 1.95 scoops of raisins. It is known from past experiments that the standard deviation for the number of scoops of raisins is 0.25. The manufacturer of Kellogg’s Raisin Bran claimed that in average their product contains more than 2 scoops of raisins, do you reject or accept the manufacturers claim (follow all five steps)? Q.26 It is assumed that the mean systolic blood pressure is μ = 120 mm Hg. In the Honolulu Heart Study, a sample of n = 100 people had an average systolic blood pressure of 130.1 mm Hg. The standard deviation from the population is 21.21 mm Hg. Is the group significantly different (with respect to systolic blood pressure!) from the regular population? Use 10% level of significance. Q.27 A CEO claims that at least 80 percent of the company’s 1,000,000 customers are very satisfied. Again, 100 customers are surveyed using simple random sampling. The result: 73 percent are very satisfied. Based on these results, should we accept or reject the CEO’s hypothesis? Assume a significance level of 0.05. Q.28 True/False questions (These questions are collected from previous HW, review and exam problems, see the previous solutions for answers) (a) Total sum of probability can exceed 1. (b) If you throw a die, getting 2 or any even number are independent events. (c) If you roll a die for 20 times, the probability of getting 5 in 15th roll is 20 15 . (d) A student is taking a 5 question True-False quiz but he has not been doing any work in the course and does not know the material so he randomly guesses at all the answers. Probability that he gets the first question right is 2 1 . (e) Typing in laptop and writing emails using the same laptop are independent events. (f) Normal distribution is right skewed. (g) Mean is more robust to outliers. So mean is used for data with extreme values. (h) It is possible to have no mode in the data. (i) Standard normal variable, Z has some unit. (j) Only two parameters are required to describe the entire normal distribution. (k) Mean of standard normal variable, Z is 1. (l) If p-value of more than level of significance (alpha), we reject the H0. (m) Very small p-value indicates rejection of H0. (n) H0 always contains equality sign. (o) CLT indicates that distribution of sample mean can be anything, not just normal. (p) Sample mean is always equal to population mean. (q) Variance of sample mean is less than population mean. (r) Variance of sample mean does not depend on sample size. (s) Mr. A has cancer but a medical doctor diagnosed him as “no cancer”. It is a type I error. (t) Level of significance is probability of making type II error. (u) Type II error can be controlled. (v) Type I error is more serious than type II error. (w) Type I and Type II errors are based on null hypothesis. Q.29 Type I and Type II Errors : Make statements about Type I (False Positive) and Type II errors (False Negative). (a) The Alpha-Fetoprotein (AFP) Test has both Type I and Type II error possibilities. This test screens the mother’s blood during pregnancy for AFP and determines risk. Abnormally high or low levels may indicate Down syndrome. (Hint: Take actual status as down syndrome or not) Ho: patient is healthy Ha: patient is unhealthy (b) The mechanic inspects the brake pads for the minimum allowable thickness. Ho: Vehicles breaks meet the standard for the minimum allowable thickness. Ha: Vehicles brakes do not meet the standard for the minimum allowable thickness. (c) Celiac disease is one of the diseases which can be misdiagnosed or have less diagnosis. Following table shows the actual celiac patients and their diagnosis status by medical doctors: Actual Status Yes No Diagnosed as celiac Yes 85 5 No 25 105 I. Calculate the probability of making type I and type II error rates. II. Calculate the power of the test. (Power of the test= 1- P(type II error) Answers: USEFUL FORMULAE: Descriptive Statistics Possible Outliers, any value beyond the range of Q 1.5( ) and Q 1.5( ) Range = Maximum value -Minimum value 100 where 1 ( ) (Preferred) 1 and , n fx x For data with repeats, 1 ( ) (Preferred ) OR 1 and n x x For data without repeats, 1 3 1 3 3 1 2 2 2 2 2 2 2 2 2 2 Q Q Q Q x s CV n f n f x x OR s n fx nx s n x x s n x nx s                             Discrete Distribution         ( ) ( ) ( ) ( ) { ( )} ( ) ( ) 2 2 2 2 E X x P X x V X E X E X E X xP X x Binomial Distribution Probability mass function, P(X=x)= x n x n x C p q  for x=0,1,2,…,n. E(X)=np, Var(X)=npq Hypothesis Testing based on Normal Distribution      X std X mean Z Standard Normal Variable, Probability Bayes Rule, ( ) ( and ) ( ) ( ) ( | ) P B P A B P B P A B P A B    Central Limit Theorem For large n (n>30), ~ ( , ) 2 n X N   and ˆ ~ ( , ) n pq p N p For hypothesis testing of μ, σ known           n x Z   For hypothesis testing of p n pq p p Z   ˆ ANSWERS: Q.1 (a) 14.286 (b) 14 (c) none (d) 10.24 (e) 22.40 Q.2 (a) 15.125 (b) 15.5 (c) No (d) 10.98 (e) 21.9 (f) English Q.3 (a) 18.6 (b)19 (c) 16, 21, and 25 (d) 15, 22 (f) slightly left (g) 7 (h) no outliers (i) increase (j) same Q.4 (a) 0.41 (b) 20 (c)14, 17, 20, 21,25 (d) 16.5, 25 (f) slightly right (g) 8.5 (h) no (i) increase (j) same Q.5 (a)56.57 (b) 22.26 (c) 8.34 Q.6 (a) 21 (b) 38.57 (c) 29.57 Q.7 (a) 410 (b) 1200 Q.8 (a)3 (b) 0.65 Q.9 (a) 0.082 (b) 0.29 (c)0.34 (d) 0.66 (e)0.10 (f) 0.64 Q.10 (a) 0.038 (b)0.23 (c) 0.71 (d) 0.29 (e)0.096 (f) 0.62 Q.11 (i)0.248 (ii)0.752 (iii)0.505 Q.12 (i)0.0875 (ii)0.913 (iii)0.425 (iii)0.488 Q.13 (a)0.22 (b)0.41 (c)0.33 (d)0.27 (e) 0.67 Q.14 (a) 0.13 (b) 0.18 (c)0.12 Q.15 E(X)=3.1 , V(X)=1.69, $0.2 per game, $ 4 win. Q.16 E(X)=5.125, V(X)=1.86, $0.25 loss per game, $5 loss. Q.17 (a)0.201 (b) 0.819, 0.027 Q.18 (a)0.9938 (b)0.0968 (c)0.452 (d)0.984 (e) 0.0433 (f)0.2353 Q.19 (a) -0.25 (b)0.71 (c) -1.13 (d)0.41 Q.20 (b) 0.7422 (c) 0.3821 (d) 0.1109 Q.21 (a)0.0014 (b) 0.0668 (c) 0.9318 Q.22 (a) 140 (b)2.37 Q.24 Z=-1.26, Accept null. Q.25 Z=-2.41, accept null Q.26 Z=4.76, reject H0 Q.27 Z=-1.75, reject H0 Q.28 F, F, F, T , F, F, F, T, F, T, F, F, T, T, F, F, T, F, T, F, F, T, T Q.29 (c)0.113 , 0.022 , 0.977 (or 98%)

Statistical Methods (STAT 4303) Review for Final Comprehensive Exam Measures of Central Tendency, Dispersion Q.1. The data below represents the test scores obtained by students in college algebra class. 10,12,15,20,13,16,14 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) Q.2. The data below represents the test scores obtained by students in English class. 12,15,16,18,13,10,17,20 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) (f) Compare the results of Q.1 and Q.2, Which scores College Algebra or English do you think is more precise (less spread)? Q.3 Following data represents the score obtained by students in one of the exams 9, 13, 14, 15, 16, 16, 17, 19, 20, 21, 21, 22, 25, 25, 26 Create a frequency table to calculate the following descriptive statistics (a) mean (b) median (c) mode (d) first and third quartiles (e) Construct Box and Whisker plot. (f) Comment on the shape of the distribution. (g) Find inter quartile range (IQR). (h) Are there any outliers (based on IQR technique)? In the above problem, if the score 26 is replaced by 37 (i) What will happen to the mean? Will it increase, decrease or remains the same? (j) What will be the new median? (k) What can you say about the effect of outliers on mean and median? Q.4 Following data represents the score obtained by students in one of the exams 19, 14, 14, 15, 17, 16, 17, 20, 20, 21, 21, 22, 25, 25, 26, 27, 28 Create a frequency table to calculate the following descriptive statistics a) mean b) median c) mode d) first and third quartiles e) Construct Box and Whisker plot. f) Comment on the shape of the distribution. g) Find inter quartile range (IQR). h) Are there any outliers (based on IQR technique)? In the above problem, if the score 28 is replaced by 48 i) What will happen to the mean? Will it increase, decrease or remains the same? j) What will be the new median? k) What can you say about the effect of outliers on mean and median? Q.5 Consider the following data of height (in inch) and weight(in lbs). Height(x) Frequency 50 2 52 3 55 2 60 4 62 3  Find the mean height.  What is the variance of height? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.6. The following table shows the number of miles run during one week for a sample of 20 runners: Miles Mid-value (x) Frequency (f) 5.5-10.5 1 10.5-15.5 2 15.5-20.5 3 20.5-25.5 5 25.5-30.5 4 (a) Find the average (mean) miles run. (Hint: Find mid-value of mile range first) (b) What is the variance of miles run? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.7. (a) If the mean of 20 observations is 20.5, find the sum of all observations? (b) If the mean of 30 observations is 40, find the sum of all observations? Probability Q.8 Out of forty students, 14 are taking English Composition and 29 are taking Chemistry. a) How many students are in both classes? b) What is the probability that a randomly-chosen student from this group is taking only the Chemistry class? Q.9 A drawer contains 4 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and then replaced. Another ball is taken from the drawer. What is the probability that (Draw tree diagram to facilitate your calculation). (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q.10 A drawer contains 3 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and not replaced. Another ball is then taken from the drawer. Draw tree diagram to facilitate your calculation. What is the probability that (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q. 11 Missile A has 45% chance of hitting target. Missile B has 55% chance of hitting a target. What is the probability that (i) both miss the target. (ii) at least one will hit the target. (iii) exactly one will hit the target. Q. 12 A politician from D party speaks truth 65% of times; another politician from rival party speaks truth 75% of times. Both politicians were asked about their personal love affair with their own office secretary, what is the probability that (i) both lie the actual fact . (ii) at least one will speak truth. (iii) exactly one speaks the truth. (iv) both speak the truth. Q.13 The question, “Do you drink alcohol?” was asked to 220 people. Results are shown in the table. . Yes No Total Male 48 82 Female 24 66 Total (a) What is the probability of a randomly selected individual being a male also drinks? (b) What is the probability of a randomly selected individual being a female? (c) What is the probability that a randomly selected individual drinks? (d) A person is selected at random and if the person is female, what is the probability that she drinks? (e) What is the probability that a randomly selected alcoholic person is a male? Q.14 A professor, Dr. Drakula, taught courses that included statements from across the five colleges abbreviated as AH, AS, BA, ED and EN. He taught at Texas A&M University – Kingsville (TAMUK) during the span of five academic years AY09 to AY13. The following table shows the total number of graduates during AY09 to AY13. One day, he was running late to his class. He was so focused on the class that he did not stop for a red light. As soon as he crossed through the intersection, a police officer Asked him to stop. ( a ) It is turned out that the police officer was TAMUK graduate during the past five years. What is the probability that the Police Officer was from ED College? ( b ) What is the probability that the Police Officer graduated in the academic year of 2011? ( c ) If the traffic officer graduated from TAMUK in the academic year of 2011(AY11). What is the conditional probability that he graduated from the ED college? ( d ) Are the events the academic year “AY 11” and the college of Education “ED” independent? Yes or no , why? Discrete Distribution Q.15 Find k and probability for X=2 and X=4. X 1 2 3 4 5 P(X=x) 0.1 3k 0.2 2k 0.2 (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers.What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Q.16 Find k. X 3 4 5 6 7 P(X=x) k 2k 2k k 2k (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers. What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Binomial Distribution: Q.17 (a) Hospital records show that of patients suffering from a certain disease, 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover? (b) A (blindfolded) marksman finds that on the average he hits the target 4 times out of 5. If he fires 4 shots, what is the probability of (i) more than 2 hits? (ii) at least 3 misses? (c) which of the following are binomial experiments? Explain the reason. i. Telephone surveying a group of 200 people to ask if they voted for George Bush. ii. Counting the average number of dogs seen at a veterinarian’s office daily. iii. You take a survey of 50 traffic lights in a certain city, at 3 p.m., recording whether the light was red, green, or yellow at that time. iv. You are at a fair, playing “pop the balloon” with 6 darts. There are 20 balloons. 10 of the balloons have a ticket inside that say “win,” and 10 have a ticket that says “lose.” Normal Distribution Q.18 Use standard normal distribution table to find the following probabilities: (a) P(Z<2.5) (b) P(Z< -1.3) (c) P(Z>0.12) (d) P(Z> -2.15) (e) P(0.11 ?)=0.87 (d) P(Z> ?)=0.34 Q.20. The length of life of certain type of light bulb is normally distributed with mean=220hrs and standard deviation=20hrs. (a) Define a random variable, X A light bulb is randomly selected, what is the probability that (b) it will last will last more than 207 hrs. ? (c) it will last less than 214 hrs. (d) it will last in between 199 to 207 hrs. Q.21. The length of life of an instrument produced by a machine has a normal distribution with a mean of 22 months and standard deviation of 4 months. Find the probability that an instrument produced by this machine will last (a) less than 10 months. (b) more than 28 months (c) between 10 and 28 months. Distribution of sample mean and Central Limit Theorem (CLT) Q.22 It is assumed that weight of teenage student is normally distributed with mean=140 lbs. and standard deviation =15 lbs. A simple random sample of 40 teenage students is taken and sample mean is calculated. If several such samples of same size are taken (i) what could be the mean of all sample means. (ii) what could be the standard deviation of all sample means. (iii) will the distribution of sample means be normal ? (iv) What is CLT? Write down the distribution of sample mean in the form of ~ ( , ) 2 n X N   . Q.23 The time it takes students in a cooking school to learn to prepare seafood gumbo is a random variable with a normal distribution where the average is 3.2 hours and a standard deviation of 1.8 hours. A sample of 40 students was investigated. What is the distribution of sample mean (express in numbers)? Hypothesis Testing Q.24 The NCHS reported that the mean total cholesterol level in 2002 for all adults was 203 with standard deviation of 37. Total cholesterol levels in participants who attended the seventh examination of the Offspring in the Framingham Heart Study are summarized as follows: n=3,00, =200.3. Is there statistical evidence of a difference in mean cholesterol levels in the Framingham Offspring (means does the result form current examination differs from 2002 report)?? (Follow the steps below to reach the conclusion) (i) Define null and alternate hypothesis (Also write what is  , and x in words at the beginning) (ii) Identify the significance level ,  and check whether it is one sided or two sided test. (iii) Calculate test statistics, Z. (iv) Use standard normal table to find the p-value and state whether you reject or accept (fail to reject) the null hypothesis. (v) what is the critical value, do you reject or accept the H0. (vi) Write down the conclusion based on part (iv). Q.25 A sample of 145 boxes of Kellogg’s Raisin Bran contain in average 1.95 scoops of raisins. It is known from past experiments that the standard deviation for the number of scoops of raisins is 0.25. The manufacturer of Kellogg’s Raisin Bran claimed that in average their product contains more than 2 scoops of raisins, do you reject or accept the manufacturers claim (follow all five steps)? Q.26 It is assumed that the mean systolic blood pressure is μ = 120 mm Hg. In the Honolulu Heart Study, a sample of n = 100 people had an average systolic blood pressure of 130.1 mm Hg. The standard deviation from the population is 21.21 mm Hg. Is the group significantly different (with respect to systolic blood pressure!) from the regular population? Use 10% level of significance. Q.27 A CEO claims that at least 80 percent of the company’s 1,000,000 customers are very satisfied. Again, 100 customers are surveyed using simple random sampling. The result: 73 percent are very satisfied. Based on these results, should we accept or reject the CEO’s hypothesis? Assume a significance level of 0.05. Q.28 True/False questions (These questions are collected from previous HW, review and exam problems, see the previous solutions for answers) (a) Total sum of probability can exceed 1. (b) If you throw a die, getting 2 or any even number are independent events. (c) If you roll a die for 20 times, the probability of getting 5 in 15th roll is 20 15 . (d) A student is taking a 5 question True-False quiz but he has not been doing any work in the course and does not know the material so he randomly guesses at all the answers. Probability that he gets the first question right is 2 1 . (e) Typing in laptop and writing emails using the same laptop are independent events. (f) Normal distribution is right skewed. (g) Mean is more robust to outliers. So mean is used for data with extreme values. (h) It is possible to have no mode in the data. (i) Standard normal variable, Z has some unit. (j) Only two parameters are required to describe the entire normal distribution. (k) Mean of standard normal variable, Z is 1. (l) If p-value of more than level of significance (alpha), we reject the H0. (m) Very small p-value indicates rejection of H0. (n) H0 always contains equality sign. (o) CLT indicates that distribution of sample mean can be anything, not just normal. (p) Sample mean is always equal to population mean. (q) Variance of sample mean is less than population mean. (r) Variance of sample mean does not depend on sample size. (s) Mr. A has cancer but a medical doctor diagnosed him as “no cancer”. It is a type I error. (t) Level of significance is probability of making type II error. (u) Type II error can be controlled. (v) Type I error is more serious than type II error. (w) Type I and Type II errors are based on null hypothesis. Q.29 Type I and Type II Errors : Make statements about Type I (False Positive) and Type II errors (False Negative). (a) The Alpha-Fetoprotein (AFP) Test has both Type I and Type II error possibilities. This test screens the mother’s blood during pregnancy for AFP and determines risk. Abnormally high or low levels may indicate Down syndrome. (Hint: Take actual status as down syndrome or not) Ho: patient is healthy Ha: patient is unhealthy (b) The mechanic inspects the brake pads for the minimum allowable thickness. Ho: Vehicles breaks meet the standard for the minimum allowable thickness. Ha: Vehicles brakes do not meet the standard for the minimum allowable thickness. (c) Celiac disease is one of the diseases which can be misdiagnosed or have less diagnosis. Following table shows the actual celiac patients and their diagnosis status by medical doctors: Actual Status Yes No Diagnosed as celiac Yes 85 5 No 25 105 I. Calculate the probability of making type I and type II error rates. II. Calculate the power of the test. (Power of the test= 1- P(type II error) Answers: USEFUL FORMULAE: Descriptive Statistics Possible Outliers, any value beyond the range of Q 1.5( ) and Q 1.5( ) Range = Maximum value -Minimum value 100 where 1 ( ) (Preferred) 1 and , n fx x For data with repeats, 1 ( ) (Preferred ) OR 1 and n x x For data without repeats, 1 3 1 3 3 1 2 2 2 2 2 2 2 2 2 2 Q Q Q Q x s CV n f n f x x OR s n fx nx s n x x s n x nx s                             Discrete Distribution         ( ) ( ) ( ) ( ) { ( )} ( ) ( ) 2 2 2 2 E X x P X x V X E X E X E X xP X x Binomial Distribution Probability mass function, P(X=x)= x n x n x C p q  for x=0,1,2,…,n. E(X)=np, Var(X)=npq Hypothesis Testing based on Normal Distribution      X std X mean Z Standard Normal Variable, Probability Bayes Rule, ( ) ( and ) ( ) ( ) ( | ) P B P A B P B P A B P A B    Central Limit Theorem For large n (n>30), ~ ( , ) 2 n X N   and ˆ ~ ( , ) n pq p N p For hypothesis testing of μ, σ known           n x Z   For hypothesis testing of p n pq p p Z   ˆ ANSWERS: Q.1 (a) 14.286 (b) 14 (c) none (d) 10.24 (e) 22.40 Q.2 (a) 15.125 (b) 15.5 (c) No (d) 10.98 (e) 21.9 (f) English Q.3 (a) 18.6 (b)19 (c) 16, 21, and 25 (d) 15, 22 (f) slightly left (g) 7 (h) no outliers (i) increase (j) same Q.4 (a) 0.41 (b) 20 (c)14, 17, 20, 21,25 (d) 16.5, 25 (f) slightly right (g) 8.5 (h) no (i) increase (j) same Q.5 (a)56.57 (b) 22.26 (c) 8.34 Q.6 (a) 21 (b) 38.57 (c) 29.57 Q.7 (a) 410 (b) 1200 Q.8 (a)3 (b) 0.65 Q.9 (a) 0.082 (b) 0.29 (c)0.34 (d) 0.66 (e)0.10 (f) 0.64 Q.10 (a) 0.038 (b)0.23 (c) 0.71 (d) 0.29 (e)0.096 (f) 0.62 Q.11 (i)0.248 (ii)0.752 (iii)0.505 Q.12 (i)0.0875 (ii)0.913 (iii)0.425 (iii)0.488 Q.13 (a)0.22 (b)0.41 (c)0.33 (d)0.27 (e) 0.67 Q.14 (a) 0.13 (b) 0.18 (c)0.12 Q.15 E(X)=3.1 , V(X)=1.69, $0.2 per game, $ 4 win. Q.16 E(X)=5.125, V(X)=1.86, $0.25 loss per game, $5 loss. Q.17 (a)0.201 (b) 0.819, 0.027 Q.18 (a)0.9938 (b)0.0968 (c)0.452 (d)0.984 (e) 0.0433 (f)0.2353 Q.19 (a) -0.25 (b)0.71 (c) -1.13 (d)0.41 Q.20 (b) 0.7422 (c) 0.3821 (d) 0.1109 Q.21 (a)0.0014 (b) 0.0668 (c) 0.9318 Q.22 (a) 140 (b)2.37 Q.24 Z=-1.26, Accept null. Q.25 Z=-2.41, accept null Q.26 Z=4.76, reject H0 Q.27 Z=-1.75, reject H0 Q.28 F, F, F, T , F, F, F, T, F, T, F, F, T, T, F, F, T, F, T, F, F, T, T Q.29 (c)0.113 , 0.022 , 0.977 (or 98%)

No expert has answered this question yet. You can browse … Read More...
A company produces bag, each of which could be sold for$150. It has a fixed monthly cost of $13,000 and a variable cost of $20 per bag produced. A. Determine the company monthly total cost function B. determine the company’s monthly revenue function C determine the company’s monthly total profit function D how many bag must the company produce to break even E how many bags must the company produce to generate $26,000 in profit? Compute A log 100 B log 1000 C log2 8 D log5. 25 E log 0.01 F log 1 G loga a

A company produces bag, each of which could be sold for$150. It has a fixed monthly cost of $13,000 and a variable cost of $20 per bag produced. A. Determine the company monthly total cost function B. determine the company’s monthly revenue function C determine the company’s monthly total profit function D how many bag must the company produce to break even E how many bags must the company produce to generate $26,000 in profit? Compute A log 100 B log 1000 C log2 8 D log5. 25 E log 0.01 F log 1 G loga a

Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide: PbCO3 (s) PbO (s) + CO2 (g) __________ grams of carbondioxide will be produced by the decomposition of 7.50 g of lead (II) carbonate? A) 1.23 B) 2.50 C) 0.00936 D) 6.26 E) 7.83

Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide: PbCO3 (s) PbO (s) + CO2 (g) __________ grams of carbondioxide will be produced by the decomposition of 7.50 g of lead (II) carbonate? A) 1.23 B) 2.50 C) 0.00936 D) 6.26 E) 7.83

A) 1.23