Assignment 2 Conditional Probability, Bayes Theorem, and Random Variables Conditional Probability and Bayes’ Theorem Problems 1-14 from Problem Set on Conditional Probability and Bayes’ Theorem I am including all the question here so that there is no confusion. Q1. Pair of six sided dices are rolled and the outcome is noted: What is the sample space? What is the size of the sample space? Suppose all we are interested in is the sum of the two outcomes. What is the probability that the sum of the two is 6? 7? 8? (Note: This can be solved using both enumeration and conditional probability method). Here, it makes more sense to use the enumeration approach than conditional probability. It is, however, listed here to set the stage for Q5. What is the probability that the sum of the two is above 5 and the two numbers are equal? Express this question in terms of events A, B, and set operators. What is the probability that the sum of the two is above 5 or the two numbers are equal? Express this question in terms of events A, B, and set operators. Q2. If P(A)=0.4, P(B)=0.5 and P(A∩B)=0.3 What is the value of (a) P(A|B) and (b) P(B|A) Q3. At a fair, a vendor has 25 helium balloons on strings: 10 balloons are yellow, 8 are red, and 7 are green. A balloon is selected at random and sold. Given that the balloon sold is yellow, what is the probability that the next balloon selected at random is also yellow? Q4. A bowl contains seven blue chips and three red chips. Two chips are to be drawn at random and without replacement. What is the probability that the fist chip is a red chip and the second a blue? Express this question in terms of events A, B, and set operators and use conditional probability. Q5. Three six sided dices are rolled and the outcome is noted: What is the size of the sample space? What is the probability that the sum of the three numbers is 6? 13? 18? Solve using conditional probability How does the concept of conditional probability help? Q6. A grade school boy has 5 blue and four white marbles in his left pocket and four blue and five white marbles in his right pocket. If he transfers one marble at random from his left pocket to his right pocket, what is the probability of his then drawing a blue marble from his right pocket? Q7. In a certain factory, machine I, II, and III are all producing springs of the same length. Of their production, machines I, II, and III produce 2%, 1%, and 3% defective springs respectively. Of the total production of springs in the factory, machine I produces 35%, machine II produces 25%, and machine III produces 40%. If one spring is selected at random from the total springs produced in a day, what is the probability that it is defective? Given that the selected spring is defective, what is the probability that it was produced on machine III? Q8. Bowl B1 contains 2 white chips, bowl B2 contains 2 red chips, bowl B3 contains 2 white and 2 red chips, and Bowl B4 contains 3 white chips and 1 red chip. The probabilities of selecting bowl B1, B2, B3, and B4 are 1/2, 1/4, 1/8, and 1/8 respectively. A bowl is selected using these probabilities, and a chip is then drawn at random. Find P(W), the probability of drawing a white chip P(B1|W): the probability that bowl B1 was selected, given that a white chip was drawn. Q9. A pap smear is a screening procedure used to detect cervical cancer. For women with this cancer, there are about 16% false negative. For women without cervical cancer, there are about 19% false positive. In the US, there are about 8 women in 100,000 who have this cancer. What is the probability that a woman who has been tested positive actually has cervical cancer? Q10. There is a new diagnostic test for a disease that occurs in about 0.05% of the population. The test is not perfect but will detect a person with the disease 99% of the time. It will, however, say that a person without the disease has the disease about 3% of the time. A person is selected at random from the population and the test indicates that this person has the disease. What are the conditional probabilities that The person has the disease The person does not have the disease Q11. Consider two urns: the first contains two white and seven black balls, and the second contains five white and six black balls. We flip a fair coin and then draw a ball from the first urn or the second urn depending on whether the outcome was a head or a tails. What is the conditional probability that the outcome of the toss was heads given that a white ball was selected? Q12. In answering a question on a multiple-choice test a student either knows the answer or guesses. Let p be the probability that she knows the answer. Assume that a student who guesses at the answer will be correct with probability 1/m where m is the number of multiple choice alternatives. What is the conditional probability that a student knew the answer given that she answered it correctly? Q13. A laboratory blood test is 95% effective in detecting a certain disease when it is, in fact, present. However, the test also yields a “false positive” result for 1% of the healthy persons tested (i.e., if a healthy person is tested, then, with probability 0.01, the test result will imply that he has the disease.). If 0.5% of the population actually have the disease, what is the probability a person has the disease given that his test results are positive? Q14. An urn contains b black balls and r red balls. One of the balls is drawn at random, but when it is put back in the urn, c additional balls of the same color are put in it with it. Now suppose that we draw another ball. What is the probability that the first ball drawn was black given that the second ball drawn was red? Random Variables Q15. Suppose an experiment consists of tossing two six sided fair dice and observing the outcomes. What is the sample space? Let Y denote the sum of the two numbers that appear on the dice. Define Y to be a random variable. What are the values that the random variable Y can take? What does it mean if we say Y=7? What does it mean if I say that Y<7? Q16. Suppose an experiment consists of picking a sample of size n from a population of size N. Assume that n≪N. Also, assume that the population contains D defective parts and N-D non defective parts, where n
xposure Evaluation – Single substance, different exposure time, different concentrations: 3- A person is working in a factory producing. This person is exposure to different concentrations of Toluene with different exposures time. The results of a personal sampling in an 8-hour shift is shown here: Exposure Time Concentration 3 hr. 35 min 790 mg/m^3 43 min 27 ppm 3.70 hr. 800 mg/m^3 What is this worker’s time weighted average of exposure in mg/m^3? Is the company in compliance with the OSHA requirement? 6- Phenyl ether can be used in soap factories as fragrance. A worker is exposed to this material during 9-hour shift and the exposure information is given in the following table: Exposure Time Concentration 1 hr. 45 min 4×〖10〗^(-6 ) mg/〖cm〗^3 2 hr. 5 min 7×〖10〗^(-6 ) mg/〖cm〗^3 65 min 3×〖10〗^(-3 ) mg/L Remaining Time 7.5 mg/m^3 What is this worker’s time weighted average of exposure in mg/m^3? Is the company in compliance with the OSHA requirement? 7- One of the major ingredients of insect repellents is Naphthalene. Consider a situation in which a worker is exposed to this material. The exposure time and concentration is given in a table below: Exposure Time Concentration 275 min 12 ppm 40 min 5 ppm 165 min 10 ppm What is this worker’s time weighted average of exposure? Is the condition hazardous? Exposure Evaluation – Multiple substance, equal exposure time, constant concentrations: 1- A person is exposed to the vapors of Benzene and Ethyl alcohol. Tests show that the concentration of Benzene is 1 ppm and Ethyl alcohol is 450 ppm. What is the threshold limit value of the mix? Is this person at risk? 6- Several workers at a rubber and leather manufacturing company are exposed to vapors of Vinyl chloride, Toluene and Xylene with concentration of 0.2 ppm, 135 ppm 200 mg/m^3 respectively. What is the threshold limit value of the mix? Are the employees at risk? 7- Several workers exposed to vapors of Ammonia, Arsine, Chloroform and Acetone with concentration of 12 ppm, 0.04 mg/m^3, 15 ppm, and 570 mg/m^3 respectively. What is the threshold limit value of the mix? Are the employees at risk?
info@checkyourstudy.com
Which statement regarding science technology is false? Select one: Science technology has brought about life-improving discoveries, such as antibiotics. Science technology helps us to understand the causes of cancer. Science technology is a basis for all ethical or moral decisions. Science technology may ease the feeding of the world population by producing new plant strains. Scientific experimentation may make use of a model instead of an actual subject.
Which statement regarding science technology is false? Select one: Science … Read More...
Chapter 07 Reading Questions Due: 11:59pm on Friday, May 23, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Chapter 7 Reading Quiz Question 17 Part A A lake is currently at high pool, with the same amount of water flowing into the lake as is flowing over the spillway. Which of the following temporary changes would increase the resident time of water in this lake? ANSWER: Chapter 7 Reading Quiz Question 16 Part A A large reservoir behind a dam is rapidly rising, as rain and melting snow add more water than is being released out of the dam’s spillway. In this situation, _____. ANSWER: Chapter 7 Reading Quiz Question 1 Part A Which one of the following statements is correct? ANSWER: Double the rate of water flow into the lake and double the rate of water flow out of the lake, while keeping the lake at the same level. Keep the inflow into the lake the same, but release twice as much water from the lake, resulting in a lowering of the lake level. Decrease the inflow into the lake by half, and decrease the outflow of the lake by half. None of the choices would increase the resident time in the lake. the net flux is positive and the capital of water within the reservoir is decreasing the net flux is positive and the capital of water within the reservoir is increasing the net flux is negative and the capital of water within the reservoir is increasing the net flux is negative and the capital of water within the reservoir is decreasing Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 1 of 8 5/21/2014 8:01 PM Chapter 7 Reading Quiz Question 18 Part A A raging river cascades down a granite mountain and eventually reaches the ocean. At the mouth of the river is a beautiful sandy beach composed of fine grains of granite particles from the river. The entire process of producing this sand is a result of _____. ANSWER: Chapter 7 Reading Quiz Question 4 Part A The physical and chemical properties of soils are primarily determined by _____. ANSWER: Chapter 7 Reading Quiz Question 19 Part A Several inches of rain fall over a field of tall corn, soaking into the soil and draining into ditches. Within an hour, there is no standing water and the humidity over the field rises quickly. At a nearby shopping mall, the rainwater fell onto blacktop and drained to sewer pipes, which carried the water directly into a stream. Which of the following occurred in The cycling time of an element or molecule in an ecosystem is equal to the sum of all the flux times. The cycling time is how long it takes an element or molecule to pass through a biogeochemical cycle. The cycling time of water moving through an ecosystem is typically shorter than the resident time in any pool in this system. The amount of time that water spends in an ocean is the cycling time. mineral evaporation erosion, weathering, transport, and then deposition erosion, dissolution, and precipitation organisms consuming and eroding granite the properties of rock from which the soils develop the amount of precipitation that the soil experiences the range of temperatures that the soil experiences the types of animals that live and move through the soils Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 2 of 8 5/21/2014 8:01 PM the cornfield but not in the parking lot? ANSWER: Chapter 7 Reading Quiz Question 6 Part A Most of the water on Earth is found in _____. ANSWER: Chapter 7 Reading Quiz Question 5 Part A Which one of the following primarily results from the effects of solar energy? ANSWER: Chapter 7 Reading Quiz Question 20 Part A A rural Minnesota farmer grows a variety of vegetables to feed her family. In addition, she cuts down some of her dead trees for firewood to heat her home in the winter. This farmer is adding to the flux of the carbon cycle in her region by _____. precipitation evaporation runoff transpiration the polar ice caps lakes and streams aquifers the oceans evaporation of water from a lake the formation of ice on the top of a pond movement of ocean tides the movement of water over a waterfall Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 3 of 8 5/21/2014 8:01 PM ANSWER: Chapter 7 Reading Quiz Question 8 Part A In a terrestrial ecosystem, most carbon is stored in the biomass of _____. ANSWER: Chapter 7 Reading Quiz Question 7 Part A In which of the following countries would we expect that the terrestrial ecosystems have the highest net primary production and biomass? ANSWER: Chapter 7 Reading Quiz Question 22 Part A Some farmers in the Midwest of the United States rotate their crops from year to year, switching from soybeans to corn on the same fields. What is one of the advantages of doing this? encouraging photosynthesis as she raises crops burning carbon-based fuels by consuming vegetables grown on her farm All of the choices are correct. the animals living there air the top layers of soil containing dead organisms living plants China Australia Brazil United States Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 4 of 8 5/21/2014 8:01 PM ANSWER: Chapter 7 Reading Quiz Question 10 Part A Most nitrogen enters the biosphere through the process of _____ ANSWER: Chapter 7 Reading Quiz Question 9 Part A Where do we expect to find the least amount of nitrogen? ANSWER: Chapter 7 Reading Quiz Question 12 Part A Along the west coast of the United States, upwellings bring deep ocean waters to the surface, carrying with them _____, which greatly increases NPP. ANSWER: The corn crop benefits from reactive nitrogen added to the soil by the soybean crop. Both crops require the same fertilizing supplies, so farmers save by buying fertilizer in bulk. Soybeans add large amounts of carbon dioxide to the soil, which helps the corn crop. Corn adds large amounts of phosphorus to the soil, which helps the soybean crop. nitrogen fixation in which bacteria convert N2 to NH3 cellular respiration, in which animals convert N2 to NH4 fermentation in which bacteria convert N2 to HNO3 photosynthesis, in which plants convert N2 to NO2 in Earth’s crust in plants in animals in the atmosphere Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 5 of 8 5/21/2014 8:01 PM Chapter 7 Reading Quiz Question 11 Part A Which one of the following statements about the carbon, phosphorus, and nitrogen cycles is true? ANSWER: Chapter 7 Reading Quiz Question 24 Part A A large coal-burning power plant is about 50 miles upwind from a lake that used to be popular for fishing. But now, just five years after the plant was constructed, the fish populations are decreasing dramatically. Which one of the following impacts of this coal-burning power plant is most likely hurting the fish populations in this downwind lake? ANSWER: Chapter 7 Reading Quiz Question 14 Part A Which one of the following statements about sulfur is correct? ANSWER: oxygen phosphate carbon sulfur Phosphorus is virtually absent in the atmosphere. The major source of carbon used by plants is the soil. Bacteria drive the phosphorus cycle. The major source of nitrogen used by plants is the air. insufficient sunlight reaching the lake low oxygen levels from burning fossil fuels eutrophication of the lake acidification of the lake Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 6 of 8 5/21/2014 8:01 PM Chapter 7 Reading Quiz Question 13 Part A Nitrogen and sulfur are important to all organisms because they are important constituents of _____. ANSWER: Chapter 7 Reading Quiz Question 25 Part A In Iowa, a small, deep lake in the summer becomes stratified with warmer, less-dense water at the surface and colder, denser water near the bottom. As fall air temperatures decrease, the surface water cools and then drops toward the bottom, mixing the lake levels together. As a result of this mixing, _____. ANSWER: Chapter 7 Reading Quiz Question 15 Part A A fire spreads across hundreds of acres of prairie, burning most of the plant parts above the ground. Compared to before the fire, right after this fire the pool of nutrients in the prairie plants _____. The main pool of sulfur is in the atmosphere where the flux is high and the residence time is long. The main pool of sulfur is in rocks. The flux of sulfur through the atmosphere is high and the residence is short. The main pool of sulfur is in the atmosphere where the flux is low and the residence time is long. The main pool of sulfur is in rocks. The flux of sulfur through the atmosphere is low and the residence is short. nucleic acids glucose phosphates some amino acids nitrogen and phosphorus are added to the lake nitrogen and phosphorus decrease near the surface of the lake nitrogen and phosphorus increase near the surface of the lake None of the choices is correct. Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 7 of 8 5/21/2014 8:01 PM ANSWER: Score Summary: Your score on this assignment is 0.0%. You received 0 out of a possible total of 21 points. and the soil decreases increases and the pool of nutrients in the soil decreases and the soil increases decreases and the pool of nutrients in the soil increases Chapter 07 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 8 of 8 5/21/2014 8:01 PM
info@checkyourstudy.com
http://www.econlib.org/library/Smith/smWN1.html#B.I,%20Ch.1,%20Of%20the%20Division%20of%20Labor What does Smith mean by division of labor, and how does it affect production? A. He means that each person does their own work to benefit themselves by creating goods. This creates well-crafted goods. B. He argues that in order to become more efficient, we need to put everyone in the same workhouses and eliminate division. C. He says that the division of labor provides farmers with the opportunity to become involved in manufacturing. D. He means that each person makes one small part of a good very quickly, but this is bad for the quality of production overall. E. He means that by having each individual specialize in one thing, they can work together to create products more efficiently and effectively. Which of the following is NOT an example of the circumstances by which the division of labor improves efficiency? A. A doll-making company stops allowing each employee to make one whole doll each and instead appoints each employee to create one part of the doll. B. A family of rug makers buys a loom to speed up their production. C. A mechanic opens a new shop to be nearer to the market. D. A factory changes the responsibilities of its employees so that one group handles heavy boxes and the other group does precision sewing. E. A baker who used to make a dozen cookies at a time buys a giant mixer and oven that enable him to make 20 dozen cookies at a time. Considering the global system of states, what do you think the allegory of the pins has to offer? A. It suggests that there could be a natural harmony of interests among states because they can divide labor among themselves to the benefit of everyone. B. It suggests that states can never be secure enough to cooperate because every state is equally capable of producing the same things. C. It suggests that a central authority is necessary to help states cooperate, in the same way that a manager oversees operations at a factory. D. The allegory of the pins is a great way to think about how wars come about, because states won’t cooperate with each other like pin-makers do. E. The allegory of the pins shows us that there is no natural harmony of interests between states. Smith sees the development of industry, technology, and the division of labor as A. generally positive but not progressive. The lives of many people may improve, but the world will generally stay the same. B. generally positive and progressive. The world is improving because of these changes, and it will continue to improve. C. generally negative. The creation of new technologies and the division of labor are harmful to all humans, both the wealthy and the poor. D. generally negative. The creation of the division of labor only benefits the wealthy at the expense of the poor. E. both positive and negative. Smith thinks that technology hurts us, while the division of labor helps society progress and develop. http://www.youtube.com/watch?v=RUwS1uAdUcI What point is Hans Rosling trying to make when he describes the global health pre-test? A. He is trying to show how the average person has no idea of the true state of global health. B. He is trying to illustrate how we tend to carry around outdated notions about the state of global health. C. He is trying to make us see that the less-developed countries are far worse off than we ever thought. D. He is trying to drive home the idea that global health has not improved over time despite foreign aid and improvements in medicine. E. He is trying to warn us about the rapid growth in world population. Rosling shows us that we tend to think about global health in terms of “we and them.” Who are the “we” and who are the “them”? A. “We” refers to academics, students, and scholars; “them” refers to the uneducated. B. “We” refers to the average person; “them” refers to politicians and global leaders. C. “We” refers to the wealthy; “them” refers to the poor. D. “We” refers to the Western world; “them” refers to the Third World. E. “We” refers to students; “them” refers to professors. In the life expectancy and fertility rate demonstration, what do the statistics reveal? A. Over time, developed countries produced small families and long lives, whereas developing countries produced large families and short lives. B. The world today looks much like it did in 1962 despite our attempts to help poorer countries develop. C. All countries in the world, even the poorer ones, are trending toward longer lives and smaller families. D. Developed countries are trending toward smaller families but shorter lives. E. All countries tend to make gains and losses in fertility and lifespan, but in the long run there is no significant change. What point does Rosling make about life expectancy in Vietnam as compared to the United States? To what does he attribute the change? A. He indicates that economic change preceded social change. B. He suggests that markets and free trade resulted in the increase in life expectancy. C. He says that the data indicates that the Vietnam War contributed to the decrease in life expectancy during that time, but that it recovered shortly thereafter. D. He says that social change in Asia preceded economic change, and life expectancy in Vietnam increased despite the war. E. He indicates that Vietnam was equal to the United States in life expectancy before the war. According to Rosling, how are regional statistics about child survival rates and GDP potentially misleading? A. Countries have an incentive to lie about the actual survival rates because they want foreign assistance. B. Statistics for the individual countries in a region are often vastly different. C. Regional statistics give us a strong sense of how we can understand development within one region, but it does not allow us to compare across regions. D. The data available over time and from countries within regions is often poorly collected and incomplete. E. Child survival rates cannot be compared regionally, since each culture has a different sense of how important children are. What is Rosling’s main point about statistical databases? A. The data is available but not readily accessible, so we need to create networks to solve that problem. B. The data that comes from these databases is often flawed and unreliable. C. It doesn’t matter whether we have access to these databases because the data can’t be used in an interesting way. D. Statistics can’t tell us very much, but we should do our best to make use of the information we do have. E. The information that could be true is too hard to sort out from what isn’t true because we don’t know how strong the data really is. http://www.marxists.org/archive/lenin/works/1916/imp-hsc/ch10.htm#v22zz99h-298-GUESS Click the link at left to read Chapter 10 of Imperialism, The Highest Stage of Capitalism, then answer the questions below. According to Lenin, what is the fundamental source of a monopoly? A. It is a natural effect of human behavior. B. It is the result of governments and police systems. C. Its source is rooted in democracy. D. It comes from the concentration of production at a high stage. E. It is what follows a socialist system. What are the principal types or manifestations of monopoly capitalism? A. Monopolistic capitalist associations like cartels, syndicates and trusts; and monopolies as a result of colonial policy. B. Monopolization of raw materials and monopolization of finance capital. C. Monopolization of governing structures and monopolies of oligarchies. D. Monopolist capitalist associations like cartels, syndicates and trusts; and monopolies as a result of colonial policy AND monopolization of raw materials and monopolization of finance capital. E. Monopolization of raw materials and monopolization of finance capital AND monopolization of governing structures and monopolies of oligarchies. What is the definition of a rentier state according to Lenin? A. A state that colonizes other states. B. A state whose bourgeoisie live off the export of capital. C. A poor state. D. A wealthy state. E. A colonized state. Overall Lenin’s analysis of the state of capitalism is concerned with: A. The interactions between states. B. The interactions within states. C. The ownership of industry and organizations. D. The interactions within states AND the ownership of industry and organizations. E. All of these options. http://view.vzaar.com/1194665/flashplayer Watch the video at left, and then answer the questions below. The Marshall Plan was developed by the United States after World War II. What was its purpose? A. to feed the hungry of Europe B. to stem the spread of communism C. to maintain an American military presence in Europe D. to feed the hungry of Europe AND to stem the spread of communism E. to stem the spread of communism AND to maintain an American military presence in Europe What kind of aid was sent at first? A. foods, fertilizers, and machines for agriculture B. books, paper, and radios for education C. clothing, medical supplies, and construction equipment D. mostly cash in the form of loans and grants E. people with business expertise to help develop the economy What kind of aid did the United States send to Greece to help its farmers? A. tractors B. mules C. seeds D. fertilizer E. all of these options What was one way that the United States influenced public opinion in Italy during the elections described in the video? A. The United States provided significant food aid to Italy so that the Italians would be inclined to vote against the Communists. B. The Italians had been impressed by the strength and loyalty of the American soldiers, and were inclined to listen to them during the elections. C. There was a large number of young Italians who followed American fashion and culture. D. Italian immigrants in the United States wrote letters to their families in Italy urging them not to vote for Communists. E. The Greeks showed the Italians how much the Americans had helped them, warning that supporting a Communist candidate would mean sacrificing American aid. How did Pope Pius XII undermine the strength of the Communist Party in Italy? A. He encouraged Italians to go out and vote. B. He warned that the Communist Party would legalize abortion. C. He excommunicated many members of the Communist Party. D. He made a speech in support of capitalism. E. He declared that Communists should not be baptized. http://www.youtube.com/watch?v=KVhWqwnZ1eM Use the video at left to answer the questions below. Hans Rosling shares how his students discuss “we” versus “them.” To whom are his students referring? A. the United States and Mexico B. Christians and Muslims C. Democrats and Republicans D. Europe and Asia E. none of these options According to Rosling, what factors contribute to a better quality of life for people in developing countries? A. family planning B. soap and water C. investment D. vaccinations E. all of these options Using his data, Rosling demonstrates a great shift in Mexico. What change does his data demonstrate? A. a decrease in drug usage B. a decrease in the number of jobs available C. an increase in average life expenctancy D. an increase in the rate of violent crime E. all of these options Instead of “developing” and “developed,” Rosling divides countries into four categories. Which of the following is NOT one of them? A. high-income countries B. middle-income countries C. low-income countries D. no-income countries E. collapsing countries Rosling discusses the increased life expectancy in both China and the United States. How are the situations different? A. The U.S. and China are on different continents. B. The life expectancy in China rose much higher than it did in the U.S. C. China first expanded its life expectancy and then grew economically, whereas the U.S. did the reverse. D. Average income and life expectancy steadily increased in the U.S., but they steadily decreased in China. E. all of these options Rosling shows a chart that demonstrates the regional income distribution of the world from 1970 to 2015. During that time, what has happened in South and East Asia? A. Money has flowed out of Asia to developing countries in Africa. B. The average income of citizens of South and East Asia has increased over the last 30 years. C. The average income of citizens of South and East Asia has decreased over the last 30 years. D. The average income of citizens of South and East Asia has surpassed that of Europe and North America. E. There has been no change. Click here to access GapMinder, the data visualizer that Hans Rosling uses. In 2010, which of the following countries had both a higher per-capita GDP and a higher life expectancy than the United States? A. France B. Japan C. Denmark D. Singapore E. Kuwait http://www.garretthardinsociety.org/articles/art_tragedy_of_the_commons.html http://www.youtube.com/watch?v=8a4S23uXIcM The Tragedy of the Commons What is the rough definition of the “commons” given in the article? A. any private property on which others trespass B. behavior that everyone considers to be normal C. a cow that lives in a herd D. government-administered benefits, like unemployment or Social Security E. a shared resource What does Hardin mean by describing pollution as a reverse tragedy of the commons? A. Rather than causing a problem, it resolves a problem. B. Pollution costs us money rather than making us money. C. We are putting something into the commons rather than removing something from it. D. It starts at the other end of the biological pyramid. E. Humans see less of it as time goes on. Hardin says “the air and waters surrounding us cannot readily be fenced, and so the tragedy of the commons as a cesspool must be prevented by different means.” What are those means? A. establishing more international treaties to protect the environment B. using laws or taxes to make the polluter pay for pollution C. punishing consumers for generating waste D. raising awareness about environmental issues E. developing greener products Pacific Garbage Dump According to the news report, what percent of the Gyre is made of plastic? A. 50 percent B. 60 percent C. 70 percent D. 80 percent E. 90 percent Where does the majority of the plastic in the Gyre come from? A. barges that dump trash in the ocean B. storm drains from land C. people throwing litter off boats into the ocean D. remnants from movie sets filmed at sea E. fishing boats processing their catch What does Charles Moore mean by the “throwaway concept”? A. the habitual use of disposable plastic packaging B. the mistaken view that marine ecosystems are infinitely renewable C. a general lack of interest in recycling D. the willingness to discard effective but small-scale environmental policies in deference to broader E. people throwing away their lives in pursuit of money In what way does the Great Pacific Gyre represent issues like global warming a tragedy of the commons? A. because all the plastic trash in it comes from the United States B. because it kills the albatross and makes it impossible for them to reproduce C. surbecause the countries rounding the Pacific Ocean are polluting the water in a way that affects the quality of the resource for all, but no one is specifically accountable for it D. because it causes marine life to compete for increasingly scarce nutrients in the ocean E. because nations in the region all collectively agreed to dump their trash in the Pacific http://www.npr.org/news/specials/climate/video/ http://ngm.nationalgeographic.com/climateconnections/climate-map http://www.npr.org/news/specials/climate/video/wildchronicles.html Use the links provided at left to answer the questions below. Global Warming: It’s All About Carbon How does carbon give us fuel? A. When you burn things that contain carbon the bonds break, giving off energy. B. Burning things creates carbon out of other elements as a result of combustion. C. Carbon is created after oxygen and hydrogen get released. D. Carbon bonds are created thereby giving off energy. E. Carbon is made into fuel by refining oil. National Geographic Climate Map What geographic areas have seen the most significant changes in temperature? A. The African continent. B. The Pacific Ocean. C. The Atlantic Ocean. D. The Arctic Ocean. E. The Indian Ocean. Why does it matter that rain fall steadily rather than in downpours? A. For those countries accustomed to steady rain fall, downpours are actually more efficient ways to catch water. B. Downpours in regions accustomed to steady fall makes them more prone to flooding and damage. C. In general, as long as regions get either steady fall or downpours most things will stay the same. D. Downpours are always more beneficial to crop growth than steady rain. E. Steady rain is always more beneficial to crop growth than downpours. Climate Change Threatens Kona Coffee What is unique about the climate in Hawaii, making it a good place to grow coffee? A. The elevation is high, the nights are cool and the days are humid. B. The elevation is low, the nights are warm and the days are dry. C. The elevation is high, the nights are warm and the days are dry. D. The elevation is low, the nights are cool and the days are dry. E. The elevation is high, the nights are warm and the days are humid. What specific temperature pattern have experts noted about the region where Kona coffee is grown in Hawaii? A. There has been no significant change but the bean production has dropped. B. The nights have warmed up, even though the days have cooled. C. There has been an increase in bean production with the change in climate. D. The nights have cooled even more so than before. E. There has been universally hot days all the way around.
http://www.econlib.org/library/Smith/smWN1.html#B.I,%20Ch.1,%20Of%20the%20Division%20of%20Labor What does Smith mean by division of labor, and … Read More...
Assessed task no 1 THE NEW ENTERPRISE PROJECT Introduction to tasks one – the New Enterprise Project All managers become involved in business planning at some stage in their careers and the first assessed task requires you to demonstrate the skills required to produce a business plan. Often business planning is undertaken by a management team and so this first task is a group activity. The first task involves producing a business plan for a new company of your choice, either a standalone new business or a new subsidiary of an existing company. The business plan should be designed either to secure approval and funding from the board of an existing parent company or funding from an investor/lender in the case of a new, stand-alone business. You should agree the subject of the new enterprise project with your tutor. The task brief Strategic plans are, by definition, about the future. Trying to match an organisation’s capabilities (its resources and its competences) to a changing external environment is central to the idea of strategic management. It is clear, therefore, that if strategic management is not to be completely reactive it requires a degree of foresight – at least a view of the future. This first part of this task therefore encourages you to undertake “Horizon scanning” so that you can assess the likely future directions of a particular market or industry, – the one which you choose for your new enterprise plan. Working as a group, having first decided on your new enterprise project you are asked to consider what sort of changes will occur in the market in which you have chosen to operate, and how this will influence your strategic plans for the company. To do this you should do conventional PEST analysis and then, because PEST analysis considers the current situation, you should use the horizon scanning techniques and facilities available through the shapingtomorrow website in order to get some views as to how the market is likely to develop. Having identified in the first part of this task what sort of changes will occur in the market in which you have chosen to operate and how this will influence your strategic plans for the company, you now have to select the strategies which you intend to follow and create a financial model to determine the financial outcomes of those strategies. Finally, you should produce a PowerPoint presentation (20 minutes max) to present and justify your business plan. Your group will present your new enterprise project as part of a symposium held the last week of the module. Your tutor will give you verbal feedback on your completed business plan at this stage. This is a group assessed task: consequently the portfolio item submitted by each individual group member will be the same and should include: 1. A list of group members 2. A brief review of future developments in your chosen area using an appropriate planning horizon horizon, and in markets or industry is where changes are frequent or unpredictable you may feel it sensible to identify more than one scenario (500 words maximum). 3. an executive summary (400 words maximum) of your business plan, and 4. A link to the financial spreadsheet, or a summary of it 5.The PowerPoint presentation used to present the plan You will no doubt find a good deal of information on your chosen industry, but please try to identify only the most significant issues and limit your submission to the equivalent of two A 4 pages
info@checkyourstudy.com
Collaborative report Situation D: Proposal for Kindle-like devices/electronic textbooks to be used for textbook/academic purposes (institutions of higher ed would be audience). Situation: As any college student knows, textbooks for classes are expensive and students are not likely to keep some textbooks related to classes outside of one’s major. Some students will return these books to the bookstore in an effort to recoup some of their money, while others will offer them directly to other students at a discounted price. Bookstores tend to make most of their textbook-related income from selling used textbooks, while publishers make money from new editions. Additionally, many textbook editions come with a Website companion to enhance instruction with those textbooks. Kindle is a portable device with which someone can access texts electronically by purchasing them, usually at a discounted price off the print-version. Kindle is the original product, but Apple has a similar device too. These devices tend to cost over $200. However, there is discussion about their use as an option for textbook purchases. Also, bookstores have implemented a rental system; however, not all textbooks are available for rental, much as not all textbooks have an electronic version yet. You work for Learned Books, a textbook publisher that is trying to think of ways to balance its desire for profitability with students’ desire to reign in book-related expenses. You understand that a company that can appeal to the market’s concerns, considering increased competition from online retail sources, will be able to stay in business. Your group is tasked with ascertaining how LB can do this. One idea is to develop a rental system, another involves joining forces with manufacturers of Kindle-like devices and offering discounted versions of texts to students electronically through e-readers or PCs that can easily access the Internet. Students could purchase the electronic version outright or purchase the electronic version but have access to it for a limited, 12 month period (rental basis). ***Research how are such devices and electronic versions being used for textbook purposes, considering various expenses for producing electronic versions of textbooks and readability concerns? Document Feasibility study/Proposal: Develop a document in which you articulate your assessment of these ideas, integrating at least one graphic and an executive summary. The document should be 2-3 pages long and include formal elements as needed.
info@checkyourstudy.com Whatsapp +919911743277
1) What is the energy stored in the 10.0 micro-Farad capacitor of a heart defibrillator charged to 9000 V? ________________ 2) Electron guns are used in x-ray machines. The electrons are accelerated through a relatively large voltage and directed onto a metal target, producing x-rays. How many electrons per second strike the target if the current is 0.500 mA?
No expert has answered this question yet. You can browse … Read More...
Physics 2010 Sid Rudolph Fall 2009 MIDTERM 4 REVIEW Problems marked with an asterisk (*) are for the final. Solutions are on the course web page. 1. A. The drawing to the right shows glass tubing, a rubber bulb and two bottles. Is the situation you see possible? If so, carefully describe what has taken place in order to produce the situation depicted. B. The picture depicts three glass vessels, each filled with a liquid. The liquids each have different densities, and DA > DB > DC. In vessel B sits an unknown block halfway to the bottom and completely submerged. 1. _______ In which vessel would the block sit on the bottom? 2. _______ In which vessel would the block float on the top? 3. _______ In which vessel would the block feel the smallest buoyant force? 4. _______ In which vessels are buoyant forces on the block are the same? 5. _______ Assume the coefficient of volume expansion for the liquid in B and the block are $B > $block. If the temperature of vessel B with the block is raised, would block B rise to the surface, sink to the bottom, or remain where it is? 2. A circular tank with a 1.50 m radius is filled with two fluids, a 4.00 m layer of water and a 3.00 m layer of oil. Use Doil = 8.24 × 10 kg/m and Dwater = 1.00 × 10 kg/m , and Datm = 1.01 × 10 N/m . 2 3 3 3 5 2 A. What are the gauge and absolute pressures 1.00 m above the bottom of the tank? B. A block of material in the shape of a cube (m = 100 kg and side length = 42.0 cm) is released at the top of the oil layer. Where does the block come to rest? Justify your answer. If it comes to rest between two layers, specify which layers and what portion of the block sits in each layer. [Note: Vcube = a ]3 C. A small 1.00 cm radius opening is made in the side of the tank 0.500 m up from its base (block was removed). What volume of water drains from the tank in 10.0 s? (b) (a) 3. A tube is inserted into a vein in the wrist of a patient in a reclined position on a hospital bed. The heart is vertically 25.0 cm above the position of the wrist where the tube is inserted. Take DBLOOD = 1.06 × 103 kg/m3. The gauge venous blood pressure at the level of the heart is 6.16 × 103 N/m2. Assume blood behaves as an ideal nonviscous fluid. A. What is the gauge venous blood pressure at the position of the wrist? B. The tube coming from the wrist is connected to a bottle of whole blood the patient needs in a transfusion. See above figure (b). What is the minimum height above the level of the heart at which the bottle must be held to deliver the blood to the patient? C. Suppose the bottle of blood is held 1.00 m above the level of the heart. Assume the tube inserted in the wrist has a diameter of 2.80 mm. What is the velocity, v, and flow rate of blood as it enters the wrist. You may also assume the rate at which the blood level in the bottle drops is very small. The answer you get here is a substantial overstatement. Blood is not really a non-viscous fluid. 4. A 0.500 kg block is attached to a horizontal spring and oscillates back and forth on a frictionless surface with a frequency of f = 3.00 hz. The amplitude of this motion is 6.00 × 10 m. Assume to = 0 and is the instant the block is -2 at the equilibrium position moving to the left. A. Write expressions x(t) = !A sin (Tt) and v(t) = !AT cos (Tt) filling in the values of A and T. B. What is the total mechanical energy (METOT) of the block-spring system? C. Suppose the block, at the moment it reaches its maximum velocity to the left splits in half with only one of the halves remaining attached to the spring. What are the amplitude and frequency of the resulting oscillations? D. Suppose, instead of splitting at the position of maximum velocity to the left, the block now splits when it is at the extreme position in the left. What are the amplitude and frequency of the resulting motion? E. Describe in words what would happen to the period of oscillation if a second block identical to the first block were dropped on the first block at either of its extreme positions. 5. A. A spring has one end attached to a wall and the other end attached to two identical masses, mA and mB. The system is set into oscillation on a frictionless surface with amplitude A. See figure. When the system is momentarily at rest at x = -A whatever it is that holds mA to mB fails; and later in the motion mB moves away from mA to the right. 1. Location where the acceleration of mA is maximum and negative. 2. Location where the KE of mA is maximum. The next few questions ask you to compare the behavior of the mass-spring system after and before mB detached. Energy considerations are most useful here. 3. The amplitude of the mass-spring oscillation has (increased, decreased, not changed) after mB detaches. 4. The frequency of the mass-spring oscillation has (increased, decreased, stayed the same) after mB detaches. 5. The maximum speed of mA has (increased, decreased, stayed the same) after mB detaches. 6. The period of oscillation of the mass-spring system has (increased, decreased, stayed the same) after mB detaches. 7. The fraction of the total mechanical energy of the entire spring-2 mass system carried away with mB after mB detaches is B. A spherical object is completely immersed in a liquid and is neutrally buoyant some distance above the bottom of the vessel. See figure. The upper surface of the liquid is open to the earth’s atmosphere. 1. How is the density of the fluid related to the density of the spherical object? 2. Assume the fluid and object are incompressible. In addition, the $sphere (coefficient of volume expansion) > $liquid. For the following items below, indicate whether the object sinks to the bottom, rises to the surface, or does nothing based on the changes described. a. Atmospheric pressure drops by 20%. b. Salt is dissolved in the liquid in the same way fresh water is turned into salt water. c. The entire apparatus is warmed 10oC (liquid and object are both warmed). d. The entire apparatus is transported to the surface of the moon. (gmoon = 1.6 m/s , PATM = 0 on moon) 2 e. 100 cm3 of the liquid is removed from the top. The object is still initially submerged. 6. A. A mass m is attached to a spring and oscillating on a frictionless, horizontal surface. See figure. At the instant the mass passes the equilibrium position moving to the right, half the mass detaches from the other half. The oscillating system is now the spring and half the original mass with the detached mass moving off to the right with constant velocity. Relative to the original spring-mass system, the new spring-mass system with half the mass oscillates with … In the spaces provided below, enter the words larger, smaller or the same that best completes the above sentence.. 1. amplitude 2. period 3. frequency 4. maximum velocity 5. mechanical energy B. A solid cylinder is floating at the interface between water and oil with 3/4 of the cylinder in the water region and 1/4 of the cylinder in the oil region. See figure. Select the item in the parenthesis that best fits the statement. 1. The item (oil, water, and/or cylinder) with the largest density. 2. The item (oil, water, and/or cylinder) with the smallest density. 3. The weight of the cylinder (is equal to, greater than or less than) the total buoyant force it feels. 4. The density of the cylinder (is equal to, less than, or greater than) the density of water. rC. Three thermometers in different settings record temperatures T1 = 1000°F, T2 = 1000°C, and T3 = 1000 K. In the space below select T1, T2 or T3, that best fits the statement. 1. The thermometer in the hottest environment. 2. The thermometer in the coolest environment. 3. The thermometer reading a temperature 900° above the boiling point of water. 7. An oil tanker in the shape of a rectangular solid is filled with oil (Doil = 880 kg/m ). The flat bottom of the 3 hull is 48.0 m wide and sits 26.0 m below the surface of the surrounding water. Inside the hull the oil is stored to a depth of 24.0 m. The length of the tanker, assumed filled with oil along the entire length, is 280 m. View from Rear View from Side Note: Dsalt water = 1.015 × 10 kg/m ; Vrectangular solid = length × width × height. 3 3 A. At the bottom of the hull, what is the water pressure on the outside and the oil pressure on the inside of the horizontal bottom part of the hull? Assume the Po above the oil is the same as the Po above the water and its value is Po = 1.01 × 10 N/m . 5 2 B. If you did part A correctly you determined that the water pressure on the horizontal bottom part of the hull is larger than the oil pressure there. Explain why this MUST be the case. C. What buoyant force does the tanker feel? D. What is the weight of the tanker, excluding the weight of the oil in the hull? 8. A. Water is poured into a tall glass cylinder until it reaches a height of 24.0 cm above the bottom of the cylinder. Next, olive oil (Doil = 920 kg/m ) is very carefully added until the total amount of 3 fluid reaches 48.0 cm above the bottom of the cylinder. Olive oil and water do not mix. See figure. Take Dwater = 1.00 × 10 kg/m and Patm = 1.01 × 10 N/m . 3 3 5 2 1. Indicate on the drawing which layer is water and which is olive oil. 2. What is the gauge pressure 10.0 cm below the top of the upper fluid layer in the cylinder. 3. What is the gauge pressure on the bottom of the cylinder? 4. If the cylinder is in the shape of a right circular cylinder with radius of 3.60 cm, what force is exerted on the bottom of the cylinder? B. A 0.200 kg mass is hung from a massless spring. At equilibrium, the spring stretched 28.0 cm below its unstretched length. This mass is now replaced with a 0.500 kg mass. The 0.500 kg mass is lowered to the original equilibrium position of the 0.200 kg mass and suddenly released producing vertical SHM. 1. What is the spring constant for this spring? 2. What is the period of oscillation for the 0.500 kg/spring system? 3. What is the amplitude of this oscillation? r9. The drawing shows a possible design for a thermostat. It consists of an aluminum rod whose length is 5.00 cm at 20.0°C. The thermostat switches an air conditioner when the end of the rod just touches the contact. The position of the contact can be changed with an adjustment screw. What is the size of the spacing such that the air conditioner turns on at 27.0°C. This is not a very practical device. Take “al = 2.3 × 10 /°C. -5 r10. The following is an effective technique for determining the temperature TF inside a furnace. Inside the furnace is 100 gm of molten (i.e., in a liquid state) lead (Pb). The lead is dropped into an aluminum calorimeter containing 200 gm water both at an initial temperature of 10.0°C. After equilibrium is reached, the temperature reads 21.8°C. Assumptions: (1) No water is vaporized; (2) no heat is lost to or gained from the environment; and (3) the specific heat for the lead is the same whether the lead is a solid or a liquid. DATA TABLE LEAD CALORIMETER WATER mPb = 100 gm mAl = 150 gm mW = 200 gm CPb = 0.0305 cal/gm°C CAl = 0.215 cal/gm°C CW = 1.0 cal/gm°C LF = 6.0 ca./gm (heat of fusion) Tinit = 10.0°C Tinit = 10.0°C MPPb = 327°C (melting point) TF = unknown Tequilibrium = 21.8°C A. In words, describe the distinct steps in the cooling of lead. B. How many calories of heat are absorbed by the calorimeter and the water it contains to reach 21.8°C? C. How many calories are lost by the lead in cooling from TF to the final equilibrium temperature of 21.8°C? D. What was the original furnace temperature? E. If the same amount of aluminum (CAl = 0.215 cal/gm°C and LM = 21.5 cal/gm) were used in the same furnace instead of lead, would the final equilibrium temperature be higher, less or the same as in the lead case? No calculation is needed to answer this. Please explain. r11. The length of aluminum cable between consecutive support towers carrying electricity to a large metropolitan area is 180.00 m on a hot August day when the temperature is 38°C. Use “(Al) = 24 × 10-6/°C. A. What is the length of the same section of aluminum cable on a very cold winter day when T = -24°C? B. If the same length of copper (” = 17 × 10-6/°C) cable (i.e., 180.00 m on the same hot August day) were used instead of aluminum, would the length of the copper cable be shorter, longer or the same as that of the aluminum on the same winter day as in (A)? Please explain your conclusion You do not have to do any calculations here. r12. You wish to make a cup of coffee with cream in a 0.250 kg mug (cmug = 900 J/kg°C) with 0.325 kg coffee (ccoffee = 4.18 × 10 J/kg°C) starting at 25.0°C and 0.010 kg cream (ccream = 3.80 × 10 J/kg°C) at 10.0°C. 3 3 You use a 50.0 W electric heater to bring the coffee, cream and mug to a final temperature of 90.0°C. How long must the coffee system be heated? Indicate clearly the assumptions you need to make. r13. A 75.0 kg patient is running a fever of 106°F and is given an alcohol rubdown to lower his body temperature. Take the specific heat of the human body to be Cbody = 3.48 × 10 J/kg°C, the heat of 3 evaporation of the rubbing alcohol to be Lv(alcohol) = 8.51 × 10 J/kg, and the density of the rubbing 5 alcohol to be 793 kg/m3. You may assume that all the heat removed from the fevered body goes into evaporating the alcohol, and that while the patient’s body is cooling, his metabolism adds no measurable heat. A. What quantity of heat must be removed from the body to lower its temperature to 99.0°F? B. What volume of rubbing alcohol is required? C. This is a qualitative question. Give an answer and explanation. Suppose you were told that the alcohol applied started at room temperature (. 70°F) and were given the specific heat for the alcohol. Thus, you now expect some of the body heat warming the alcohol to the temperature of the fever before evaporation occurs. How would this effect the result of the calculation in part (B)? r14. A 56.0 kg hypothermia victim is running a body temperature of 91.0°F. The victim is far away from any immediate medical treatment. Her friends decide to treat the hypothermia victim by placing the victim in a sleeping bag with one of her friends and use the heat from the friend to raise the victim’s body temperature. Take the specific heat of the human body to be Cbody = 3.48 × 10 J/kg°C. Assume that the sleeping bag acts 3 like a perfect calorimeter and also assume no heat is lost to or obtained from the sleeping bag. Finally, assume all the heat that warms the hypothermia victim comes from the basic metabolic heat produced by the body of the victim’s friend in the sleeping bag with her and that metabolism is rated at 2.00 × 106 cal/day, and that the victim’s metabolism is negligible. A. How much heat must be added to the victim’s body to get her temperature up to 98.0°F? B. How long must the victim remain in the sleeping bag with her friend to achieve this temperature change? C. This is a qualitative question. If the thermal characteristics of the sleeping bag are now taken into account, but still assuming no heat leaves or enters the sleeping bag, how will the answer to question (b) above be different? r15. A few years back a lawsuit was filed by a woman against McDonald’s because she scalded herself with a Styrofoam cup filled with coffee which she spilled on herself while driving. This question was spawned by that incredible legal action and represents a possible action taken by McDonald’s to insure cooler coffee. Suppose a typical cup of coffee sold by McDonald’s is basically 400 ml of hot water and when poured into the Styrofoam cup its temperature is 96.0°C. Take 1.00 ml to have a mass of 1.00 gm and = 4.19 kJ/kg°C. Neglect any heat lost to the cup and assume no heat is lost by the coffee to the environment. A. How much heat in joules must the coffee lose to bring its temperature to a drinkable 68.0°C? B. McDonald’s possible approach to lowering the temperature of the 96.0°C coffee to 68.0°C is to add a cube of ice initially at 0.0°C. (Take Lf = 334 kJ/kg.) What mass of ice has to be added to the coffee to reduce its initial temperature to the desired 68.0°C? r16. During this past Thanksgiving your instructor overdid it and consumed 3000 Cal of food and dessert. Remember 1.0 Cal = 4.19 x 10 J. For the questions below, as 3 sume no heat is lost to the environment. [Note: = 33.5 x 105 J/kg; = 4.19 x 103 J/kgoC] A. If all of this energy went into heating 65.0 kg water starting at 37.0oC (a mass approximately that of your instructor), what would be the final temperature of this water? B. Assume your instructor removes these overeating calories by running 10 kilometer races [note: 1.61 km = 1.00 mile]. Using the rule of thumb that 1 mile of jogging will require 100 Cal, what is the minimum number of races your instructor must run to consume the 3000 Cal in part A as exercise? C. The year before, your instructor was particularly gluttonous and consumed 5000 Cal. Assuming the same conditions of water mass (65.0 kg) and starting temperature (37.0oC) as in A, what is the final temperature of the water system, and if any water vaporizes to steam, how much? [Note: BP(H2O) = 100 C] o 17. Below is the position vs. time graph for the simple harmonic of a spring oscillation on a frictionless horizontal surface. Motion to the right is positive. 1. The earliest instant of time, including t0 = 0 at which the PEelastic is maximum. 2. The earliest instant of time at which the KE of the mass is a maximum and the mass is moving to the right. 3. The earliest instant of time at which the acceleration of the mass is maximum and positive. 4. The earliest instant of time at which the speed of the mass is zero. 18. A. A spring is attached to a post at the top of a 15.0° frictionless ramp. A 2.00 kg mass is attached to the spring and the mass is slowly allowed to stretch the spring to the equilibrium position of the mass-spring system, the spring stretches by 0.400 m See figure. The mass is now pulled an additional 10.0 cm and released. The mass-spring system executes simple harmonic motion. 1. What is the spring constant, k, of the spring. 2. What are the amplitude and period of oscillation of the mass-spring system? B. A solid, uniform cylinder is floating at the interface between water (Dwater = 1.00 × 103 kg/m ) and oil (Doil = 8.24 × 10 kg/m ) with 3/4 of the cylinder in the water region and 3 3 3 1/4 of the cylinder in the oil region. Assume the axis of the cylinder is perfectly vertical. See figure. 1. What is the density of the material out of which the cylinder is made? 2. Assume the upper surface of the oil region si open to the atmosphere (Datm = 1.01 × 10 N/m ) and the oil-water interface is 0.500 m below the 5 2 upper surface of the oil. Also assume the height of the cylinder is 10.0 cm. What is the gauge pressure on the bottom surface of the cylinder? Recall: Pgauge = P – PATM. 19. A. A mass m is attached to a spring and is oscillating on a frictionless horizontal surface (see figure). At the instant the mass is at an amplitude position a second identical mass is carefully placed on top of the original mass. The oscillating system is now the spring and the two identical masses. Relative to the original spring-single mass system, the new spring-2-mass system oscillates with a … In the spaces provided below, enter (I) for increased, (D) for decreased, or (R) remains unchanged, that best completes the above last sentence. 1. amplitude. 2. period. 3. frequency. 4. spring constant. 5. maximum speed. 6. mechanical energy. 7. maximum acceleration. B. Suppose you are asked about the absolute pressure at some depth h below the surface of a liquid. The top surface is exposed to the atmosphere on a sunny day in Salt Lake City. For each statement below in the spaces provided, enter I for increase, D for decrease, or R for remains the same, when accounting for what happens to the absolute pressure at the point you are observing. 1. More liquid is added so now the observation point is farther below the surface. 2. The fluid is now exchanged for a less dense fluid. The observation point is at same h. 3. The experiment is moved to New York City, which is at sea level, on a sunny day. 4. The fluid is now seen to be moving with some speed v past the observation point. 5. The observation point is moved closer to the surface of the liquid. 6. The air above the fluid is removed by a vacuum system. 7. The apparatus is moved to a laboratory on the surface of the moon. 20. A 3.00 kg mass is attached to a spring (k = 52.0 N/m) that is hanging vertically from a fixed support. The mass is moved to a position 0.800 m lower than the unstretched position of the end of the spring. The spring is then released and the mass-spring system executes SHM. Take the 0.800 m of the mass as the reference location for its gravitational PE. A. What is the equilibrium position of the mass-spring system? B. What is the amplitude of the SHM the mass-spring system executes? C. What is the period of the oscillation of this system? D. What is the total mechanical energy of the mass-spring system at the moment the mass is released? E. What are (i) the KE of the mass and (ii) the speed of the mass when the spring is at its equilibrium position? 21. A 38.0 kg block is moving back and forth on a frictionless horizontal surface between two springs. The spring on the right has a force constant kR = 2.50 × 10 N/m. When the block is between the two 3 springs its speed (v) is 1.82 m/s. See figure. A. If the block compresses the left spring to 5.62 cm beyond its uncompressed length, determine the value of kL. B. What is the maximum compression of the right spring when the mass interacts with it? C. What is the total time the spring on the right is compressed during a single event? 22. Two identical containers are connected at the bottom via a tube of negligible volume and a valve which is closed. Both containers are filled initially to the same height of 1.00 m, one with chloroform (DC = 1530 kg/m ) in the left chamber and the other 3 with mercury in the right chamber (DHg = 1.36 × 10 kg/m ). 4 3 Sitting on top of each identical circular container is a massless plate that can slide up or down without friction and without allowing any fluid to leak past. The radius of the circular plate is 12.0 cm. The valve is now opened. A. What volume of mercury drains into the chloroform container? (Note: Vcyl = Br h) 2 B. What mass must be placed on the plate on the chloroform side to force all the mercury, but none of the chloroform, back to the mercury chamber? 23. A 12.0 kg mass M is attached to a cord that is wrapped around a wheel in the shape of a uniform disk of radius r = 12.0 cm and mass m = 10.0 kg. The block starts from rest and accelerates down the frictionless incline with constant acceleration. Assume the disk axle is frictionless. Note: Idisk = 1/2 mr . 2 A. Use energy methods to find the velocity of the block after it has moved 2.00 m down the incline. B. What is the constant acceleration of the block and the angular acceleration of the wheel? C. How many revolutions does the wheel turn for the distance the block travels in (A)? D. If the uniform disk were replaced by a uniform sphere with the same r and m of the disk, would the acceleration of the block attached to the sphere be larger, smaller, or the same as that for the block attached to the disk? Note: Isphere = 2/5 mr . 2 24. A pulley is in the shape of a uniform disk of mass m = 5.00 kg and radius r = 6.40 cm. The pulley can rotate without friction about an axis through the center of mass. A massless cord is wrapped around the pulley and connected to a 1.80 kg mass. The 1.80 kg mass is released from rest and falls 1.50 m. See figure. Note: Idisk = 1/2 mr . 2 A. Use energy methods to determine the speed of the block after falling 1.50 m. B. What is the constant acceleration of the block and the angular acceleration of the wheel? C. How many revolutions does the pulley disk turn for the distance the block travels in (A)? D Suppose the disk were replaced by a uniform sphere with the same r and m of the disk. Would the acceleration of the block attached to the sphere be larger, smaller, or the same as that for the block attached to the the disk? Note: Isphere 2/5 mr . 2 26. A 700.0 N fisherman is walking toward the edge of a 200 N plank as shown. He has placed a can of worms weighing 75.0 N on the left side of the plank as indicated in the drawing. The plank is the horizontal section in the drawing. A. Identify all the forces the plank feels before it begins to tip. Draw a free body diagram. B. As the fisherman nears the point on the plank where it begins to tip, how do the upward forces the supports exert on the plank change. C. How far a distance, as measured from the center of the right support, can he walk before the plank begins to tip? 26. A 75.0 kg sign hangs from a 4.80 m uniform horizontal rod whose mass is 120 kg. The rod is supported by a cable that makes an angle of 53° with the rod. he sign hangs 3.60 m out along the rod. A. What is the tension in the cable? B. What are the forces PPv and PPH exerted by the wall on the left end of the rod? 27. A 1.00 × 104 N great white shark is hanging by a cable attached to a 4.00 m massless rod that can pivot at its base. See figure. A. Determine the tension in the cable supporting the upper end of the rod. See figure. B. Determine the force (a vector quantity) exerted on the base of the rod. Suggestion: Find this force by first evaluating the separate components of the force. See figure. 28. A 6.00 m uniform beam extends horizontally from a hinge fixed on a wall on the left. A cable is attached to the right end of the beam. The cable makes an angle of 30.0° with respect to the horizontal and the right end of the cable is fixed to a wall on the right. At the right end of the cable hangs a 140.0 kg mass. The mass of the beam is 240.0 kg. See figure. A. Find the tension in the cable. B. Find the vertical and horizontal forces the hinge exerts on the left end of the beam. 29 A. The blades of a “Cuisinart” blender when run at the “mix” level, start from rest and reach 2.00 × 103 rpm (revolutions per minute) in 1.60 s. The edges of the blades are 3.10 cm from the center of the circle about which they rotate. 1. What is the angular acceleration of the blades in rad/s2 while they are accelerating? 2. Through how many rotations did the blades travel in that 1.60 s? 3. If the blades have a moment of inertia of 5.00 × 10-5 kg m2, what net torque did the blades feel while accelerating? B. A 7.50 × 10 N 4 shipping crate is hanging by a cable attached to a uniform 1.20 × 104 N steel beam that can pivot at its base. A second cable supports the beam and is attached to a wall. See figure. 1. Determine the tension T in the upper cable. 2. Determine the magnitude of the force exerted on the beam at its base. See drawing. 30. The drawing shows a uniform ladder of length L and weight 220 N. The ladder is sitting at an angle of 30° above the horizontal resting on the corner of a concrete wall at a point that is one-fourth of the way from the end of the ladder. A 640 N construction worker is standing on the ladder one-third of the way up from the end of the ladder which is resting on the ground. Assume the corner of the wall on which the ladder rests exerts only a normal force on the ladder at the point where there is contact. A. What is the magnitude of the normal force the wall exerts on the ladder? B. Find the magnitude of both the normal force the ground exerts on the left end of the ladder and the static frictional force the ground exerts on the left end of the ladder. 31. A. A solid, right circular cylinder (radius = 0.150 m, height = 0.120 m) has a mass m. The cylinder is floating in a tank in the interface between two liquids that do not mix: water on the bottom and oil above. One-third of the cylinder is in the oil layer (Doil = 725 kg/m ) 3 and two-thirds in the water layer (Dwater = 1.00 × 10 kg/m ). See 3 3 drawing. Note: V(circular cylinder) = B r2 h. 1. Find the mass of the cylinder. 2. With the cylinder present, take the thickness of the oil layer to be 0.200 m and the thickness of the water layer to be 0.300 m. What is the gauge pressure at the bottom of the tank? Assume the top of the oil layer is exposed to the atmosphere. B. A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of T = 7.52 rad/s. The drawing indicates the position of the block when the spring is unstretched. That position is labeled “x = 0 m” in the drawing. The drawing also shows a small bottle whose left edge is located at Xb = 0.0900 m. The block is now pulled to the right, stretching the spring by Xs = 0.0343 m, and is then thrown to the left, i.e., given an initial push to the left. In order for the block to knock over the bottle when it is moving to the right, it must be “thrown” with an initial speed to the left v0. Ignoring the width of the block, what is the minimum value of v0? 32. B. Three objects, a disk (ICM = ½ MR ), a hoop (ICM = MR ), and a hollow ball (ICM = b MR ) all have 2 2 2 the same mass and radius. Each is subject to the same uniform tangential force that causes the object, starting from rest, to rotate with increasing angular speed about an axis through the center of mass for each object. In the case of the hollow ball the tangential force has a moment arm equal to the radius of the ball. In the space below, enter D for disk, H for hoop, and/or B for hollow ball, or same to best answer the question. 1. The object with the largest moment of inertia about the axis through the CM. 2. The object experiencing the greatest net torque. 3. The object with the greatest angular acceleration during the period the force is acting. 4. The object rotating with the smallest angular speed assuming the force has been acting for the same length of time on each object. 33. A. A uniform disk (D), hoop (H), and sphere (S), all with the same mass and radius, can freely rotate about an axis through the center of mass (CM) of each. A massless string is wrapped around each item. The string is used to apply a constant and equal tangential force to each object. See figure. For the statements below, enter D, H, S, none or the same. Assume all objects start from rest at the same instant. 1. The one with the smallest moment of inertia about the shown axis. 2. The object experiencing the largest net torque. 3. The object undergoing the smallest angular acceleration. 4. The object with the largest angular speed after an elapsed time of 5.0 s. 5. The object for which the largest amount of string has unraveled in 5.0 s. 6. The object with the smallest KErot after 5.0 s. 7. The object that undergoes the most rotations in 5.0 s. B. A spherical object is completely immersed in a liquid of density Dliq some distance above the bottom of the vessel. See figure. The upper surface is initially open to the earth’s atmosphere at sea level. Assume the liquid and object are both incompressible. For the items below, indicate whether the object sinks to the bottom (B), rises to the surface (T), or does nothing (N). 1. The vessel is brought to Salt Lake City. 2. Salt is dissolved in the liquid in the same way fresh water is turned into salt water. 3. The top 50 cm3 of the liquid is removed from the vessel. 4. The entire apparatus is transported to the surface of the moon. 5. The volume of the spherical object is increased by heating it without heating the liquid. 6. The spherical object is moved 10 cm farther down in the vessel and released. 7. A mass is placed on the top surface of the liquid in the vessel increasing the pressure at the surface. No fluid leaks. 34. A 2.20 × 103 N uniform beam is attached to an overhead beam as shown in the drawing. A 3.60 × 103 N trunk hangs from an attachment to the beam two-thirds of the way down from the upper connection of the beam to the overhead support. A cable is tied to the lower end of the beam and is also attached to the wall on the right. A. What is the tension in the cable connecting the lower end of the beam to the wall? B. What are magnitude of the vertical and horizontal components of the force the overhead beam exerts on the upper end of the beam at P? 35. A. A 12.0 kg block moves back and forth on a frictionless horizontal surface between two springs. The spring on the right has a force constant k = 825 N/m. When the block arrives at the spring on the right, it compresses that spring 0.180 m from its unstretched position. 1. What is the total mechanical energy of the block and two spring system? 2. With what speed does the block travel between the two springs while not in contact with either spring? 3. Suppose the block, after arriving at the left spring, remains in contact with that spring for a total time of 0.650 s, before separating on its way to the right spring? Using the connection between this 0.650 s and the period of oscillation between the block and the left spring, determine the spring constant of the left spring. B. A turkey baster (see figure) consists of a squeeze bulb attached to a plastic tube. When the bulb is squeezed and released, with the open end of the tube under the surface of the turkey gravy, the gravy rises in the tube to a distance h, as shown in the drawing. It can then be squirted over the turkey. Using Patm = 1.013 × 105 N/m2 for atmospheric pressure and 1.10 × 103 kg/m3 for the density of the gravy, determine the absolute pressure of the air in the bulb with the distance h = 0.160 m. Give answer to three significant digits. 36. A. The pictures below depict three glass vessels, each filled with a liquid. The liquids each have different densities, and DA > DB > DC. In vessel C an unknown block is neutrally buoyant halfway to the bottom and completely submerged. A, B, and/or C, or none are all possible answers. 1. _______ In which vessel(s) would the block sink all the way to the bottom? 2. _______ In which vessel(s) would the largest volume of the block be exposed above the surface of the liquid? 3. _______ In which vessel(s) would the buoyant forces on the block be the same? B. A swinging pendulum (A) and a mass-spring system (B) are built to have identical periods. For the statements below enter either A, B, U (unchanged) to best fit which oscillating system would have the larger period as a result of the change. 1. _______ The mass of the mass-spring system is increased. 2. _______ The mass of the swinging pendulum is increased without altering the location of its center of mass. 3. _______ The spring constant of the mass-spring system is increased. 4. _______ The length of the swinging pendulum system is increased. 5. _______ Both systems are taken to the moon and set oscillating. C. A block of mass m moves back and forth on a frictionless surface between two springs. See drawing. Assume kL > kR. For the statements below enter L for the left spring, R for the right spring, or same as the case may be. 1. _______ The spring that has the maximum compression when m is momentarily at rest. 2. _______ The spring that stores the larger elastic potential energy when maximally compressed. 3. _______ The spring that momentarily stops the block in the least time once the block arrives at the spring. 37. A uniform beam extending at right angles from a wall is used to display an advertising sign for an eatery. The beam is 2.50 m long an weighs 80.0 N. The sign, whose dimensions are 1.00 m by 0.800 m, is uniform, and weighs 200. N, hangs from the beam as shown in the drawing. A cable, attached to the wall of the eatery at a point on the beam where the inside end of the sign is attached to the beam and making an angle of 60.0° with the beam, supports this advertising structure. A. What is the magnitude of the tension in the cable supporting the beam? B. What are the magnitudes of the horizontal and vertical forces the wall exerts on the left end of the beam? 38. A. Examine the picture shown to the right. Initially, before the pump is turned on, the two masses (m1 = 1.00 kg, m2 = 2.75 kg) are held in place. the pressures above and below m1 are Patm = 1.01 × 10 N/m and 5 2 the spring is in its unstretched position. The pump is turned on and the masses are allowed to move. The mass m1 moves without friction inside a cylindrical piston of radius r = 3.85 cm. Once equilibrium is established, by what distance has the spring stretched? Take k = 2.00 × 103 N/m for the spring constant. B. A solid cylinder (radius 0.125 m and height 0.150 m) has a mass of 6.50 kg. The cylinder is floating in water. Oil (Doil = 725 kg/m ) is poured on top of the water until 3 the situation shown in the drawing results. How much of the height (in meters) of the cylinder remains in the water layer?
info@checkyourstudy.com Whatsapp +919911743277
Engineering Risk Management Special topic: Beer Game Copyright Old Dominion University, 2017 All rights reserved Revised Class Schedule Lac-Megantic Case Study Part 1: Timeline of events Part 2: Timeline + causal chain of events Part 3: Instructions Evaluate your causal-chain (network) Which are the root causes? Which events have the most causes? What are the relationship of the causes? Which causes have the most influence? Part 4: Instructions Consider these recommendations from TSB Which nodes in your causal chain will be addressed by which of these recommendations? Recap How would you summarize the steps in conducting post-event analysis of an accident? Beer Game Case Study The beer game was developed at MIT in the 1960s. It is an experiential learning business simulation game created by a group of professors at MIT Sloan School of Management in early 1960s to demonstrate a number of key principles of supply chain management. The game is played by teams of four players, often in heated competition, and takes at least one hour to complete. Beer Game Case Study Beer Game Case Study A truck driver delivers beer once each week to the retailer. Then the retailer places an order with the trucker who returns the order to the wholesaler. There’s a four week lag between ordering and receiving the beer. The retailer and wholesaler do not communicate directly. The retailer sells hundreds of products and the wholesaler distributes many products to a large number of customers. Beer Game Case Study The Retailer Week 1: Lover’s Beer is not very popular but the retailer sells four cases per week on average. Because the lead time is four weeks, the retailer attempts to keep twelve cases in the store by ordering four cases each Monday when the trucker makes a delivery. Week 2: The retailer’s sales of Lover’s beer doubles to eight cases, so on Monday, he orders 8 cases. Week 3: The retailer sells 8 cases. The trucker delivers four cases. To be safe, the retailer decides to order 12 cases of Lover’s beer. Week 4: The retailer learns from some of his younger customers that a music video appearing on TV shows a group singing “I’ll take on last sip of Lover’s beer and run into the sun.” The retailer assumes that this explains the increased demand for the product. The trucker delivers 5 cases. The retailer is nearly sold out, so he orders 16 cases. Beer Game Case Study The Retailer Week 5: The retailer sells the last case, but receives 7 cases. All 7 cases are sold by the end of the week. So again on Monday the retailer orders 16 cases. Week 6: Customers are looking for Lover’s beer. Some put their names on a list to be called when the beer comes in. The trucker delivers only 6 cases and all are sold by the weekend. The retailer orders another 16 cases. Week 7: The trucker delivers 7 cases. The retailer is frustrated, but orders another 16 cases. Week 8: The trucker delivers 5 cases and tells the retailer the beer is backlogged. The retailer is really getting irritated with the wholesaler, but orders 24 cases. Beer Game Case Study The Wholesaler The wholesaler distributes many brands of beer to a large number of retailers, but he is the only distributor of Lover’s beer. The wholesaler orders 4 truckloads from the brewery truck driver each week and receives the beer after a 4 week lag. The wholesaler’s policy is to keep 12 truckloads in inventory on a continuous basis. Week 6: By week 6 the wholesaler is out of Lover’s beer and responds by ordering 30 truckloads from the brewery. Week 8: By the 8th week most stores are ordering 3 or 4 times more Lovers’ beer than their regular amounts. Week 9: The wholesaler orders more Lover’s beer, but gets only 6 truckloads. Week 10: Only 8 truckloads are delivered, so the wholesaler orders 40. Week 11: Only 12 truckloads are received, and there are 77 truckloads in backlog, so the wholesaler orders 40 more truckloads. Beer Game Case Study The Wholesaler Week 12: The wholesaler orders 60 more truckloads of Lover’s beer. It appears that the beer is becoming more popular from week to week. Week 13: There is still a huge backlog. Weeks 14-15: The wholesaler receives larger shipments from the brewery, but orders from retailers begin to drop off. Week 16: The trucker delivers 55 truckloads from the brewery, but the wholesaler gets zero orders from retailers. So he stops ordering from the brewery. Week 17: The wholesaler receives another 60 truckloads. Retailers order zero. The wholesaler orders zero. The brewery keeps sending beer. Beer Game Case Study The Brewery The brewery is small but has a reputation for producing high quality beer. Lover’s beer is only one of several products produced at the brewery. Week 6: New orders come in for 40 gross. It takes two weeks to brew the beer. Week 14: Orders continue to come in and the brewery has not been able to catch up on the backlogged orders. The marketing manager begins to wonder how much bonus he will get for increasing sales so dramatically. Week 16: The brewery catches up on the backlog, but orders begin to drop off. Week 18: By week 18 there are no new orders for Lover’s beer. Week 19: The brewery has 100 gross of Lover’s beer in stock, but no orders. So the brewery stops producing Lover’s beer. Weeks 20-23. No orders. Beer Game Case Study At this point all the players blame each other for the excess inventory. Conversations with wholesale and retailer reveal an inventory of 93 cases at the retailer and 220 truckloads at the wholesaler. The marketing manager figures it will take the wholesaler a year to sell the Lover’s beer he has in stock. The retailers must be the problem. The retailer explains that demand increased from 4 cases per week to 8 cases. The wholesaler and marketing manager think demand mushroomed after that, and then fell off, but the retailer explains that didn’t happen. Demand stayed at 8 cases per week. Since he didn’t get the beer he ordered, he kept ordering more in an attempt to keep up with the demand. The marketing manager plans his resignation. Homework 4 Read the case and answer 1+6 questions. 0th What should go right? 1st What can go wrong? 2nd What are the causes and consequences? 3rd What is the likelihood of occurrence? 4rd What can be done to detect, control, and manage them? 5th What are the alternatives? 6th What are the effects beyond this particular time? Homework 4 In 500 words or less, summarize lessons learned in this beer game as it relates to supply chain risk management. Apply one of the tools (CCA, HAZOP, FMEA, etc.) to the case. Work individually and submit before Monday midnight (Feb. 20th). No class on Monday (Feb. 20th).
checkyourstudy.com Whatsapp +919911743277