Hum Ass Due In a five supe grou orga The … Read More...
Bitcoins How long have they been around?

## Bitcoins How long have they been around?

How long have they been around?   The first Bitcoin … Read More...
EEGR 221 MATLAB Project 1 Basic Signals Fall 2015 Due date: 10/5/15 1. (a) Plot ?1(?) = ?(?+1)−?(?−5) where -7 < t < 7 seconds. Use millisecond units. (b) Plot ? = 5 ??? (??)[ ?(?+1)−?(?−5)] 2. (a) Plot x2(t) exactly as shown in this figure. Include the same titles and labels for the signal. Hint: Find the amplitude equations as function of time and insert those to your MATLAB script to create and plot this signal. (b) Decompose x2(t) into its even and odd components and plot x2e(t) and x2o(t). (c) Plot x2e(t) + x2o(t) and verify that x2e(t) + x2o(t) = x2(t). How to report the results?  For each plot you must label x and y axis and have a title for the plot. Following commands could be used. heaviside, plot, axis, ylabel, ylabel, title, fliplr, etc … At the command prompt of MATLAB you can type >> help [command name] to get help with any command.  Plot all of the signal for t between -7 and 7 seconds.  Save your commands in an m-file with your name in the name field. (e.g. John_Scott.m) and append the code to the end of your report.  Your report must be organized and your solution for each question mu st be clearly marked by the number of the question. Example 2.a or 2.b, … In each part the problem should be clearly identified. Type the problem statement in each section. Show the plots of input and output signals. Draw conclusions based on your plots and in problem 3 discuss why the property is not satisfied based on your plots.  Turn in a hard copy of your report in class. This report must include a cover page with the name of both student partners.

## EEGR 221 MATLAB Project 1 Basic Signals Fall 2015 Due date: 10/5/15 1. (a) Plot ?1(?) = ?(?+1)−?(?−5) where -7 < t < 7 seconds. Use millisecond units. (b) Plot ? = 5 ??? (??)[ ?(?+1)−?(?−5)] 2. (a) Plot x2(t) exactly as shown in this figure. Include the same titles and labels for the signal. Hint: Find the amplitude equations as function of time and insert those to your MATLAB script to create and plot this signal. (b) Decompose x2(t) into its even and odd components and plot x2e(t) and x2o(t). (c) Plot x2e(t) + x2o(t) and verify that x2e(t) + x2o(t) = x2(t). How to report the results?  For each plot you must label x and y axis and have a title for the plot. Following commands could be used. heaviside, plot, axis, ylabel, ylabel, title, fliplr, etc … At the command prompt of MATLAB you can type >> help [command name] to get help with any command.  Plot all of the signal for t between -7 and 7 seconds.  Save your commands in an m-file with your name in the name field. (e.g. John_Scott.m) and append the code to the end of your report.  Your report must be organized and your solution for each question mu st be clearly marked by the number of the question. Example 2.a or 2.b, … In each part the problem should be clearly identified. Type the problem statement in each section. Show the plots of input and output signals. Draw conclusions based on your plots and in problem 3 discuss why the property is not satisfied based on your plots.  Turn in a hard copy of your report in class. This report must include a cover page with the name of both student partners.

Lab 5 Math 551 Fall 2015 Goal: In this assignment we will look at two fractals, namely the Sierpinski fractal and the Barnsley Fern. During the lab session, your lab instructor will teach you the necessary MATLAB code to complete the assignment, which will be discussed in the lab on Thursday October 8th or Friday October 9th in the lab (CW 144 or CW 145). What you have to submit: An m- le containing all of the commands necessary to perform all the tasks described below. Submit this le on Canvas. Click: \Assignments”, click \MATLAB Project 5″, click \Submit Assignment”, then upload your .m le and click \Submit Assignment” again. Due date: Friday October 16, 5pm. No late submission will be accepted. TASKS A fractal can be de ned as a self-similar detailed pattern repeating itself. Some of the most well know fractals (the Mandelbrot set and Julia set) can be viewed here: http://classes.yale.edu/fractals/ The Sierpinski Fractal The program srnpnski(m,dist,n) gets its name from the mathematician W. Sierpinski. The only parameter that must be speci ed is m which determines the number of vertices that will be part of a regular polygon. For larger m it produces a graph which is similar to a snow ake. The program starts with a randomly chosen seed position given by the internal variable s. At each stage one of the vertices is chosen at random and a new point is produced which is dist away from the old point to the vertex. The value of dist should be between 0 and 1. The default value is 0.5. This process is repeated n times. The default value of n is 1500. 1. Create a new Matlab function: func t i on s rpns k i (m, di s t , n) %This c r e a t e s a snowf lake from m v e r t i c e s us ing n i t e r a t i o n s . i f nargin <3, n=1500; end i f nargin <2, d i s t =0.5; end c l f a x i s ( [ ?1 ,1 , ?1 ,1] ) p=exp (2 pi  i  ( 1 :m)/m) ; pl o t (p , '  ' ) hold s=rand+i  rand ; f o r j =1:n r=c e i l (m rand ) ; s=d i s t  s+(1?d i s t )p( r ) ; pl o t ( s , ' . ' ) end 2. Try out the following commands s rpns k i ( 3 ) s rpns k i ( 3 , 0 . 5 , 2 5 0 0 ) s rpns k i ( 3 , 0 . 5 , 5 0 0 0 ) s rpns k i ( 3 , 0 . 4 ) 1 s rpns k i ( 3 , 0 . 2 ) s rpns k i ( 5 ) s rpns k i ( 5 , 0 . 4 ) s rpns k i ( 5 , 0 . 3 ) s rpns k i ( 6 , 0 . 3 ) s rpns k i ( 8 , 0 . 3 , 5 0 0 0 ) The Barnsley Fern The following program is the famous Barnsley Fern. The only external parameter is n, the number of iterations. 3. Create a new Matlab function: func t i on f e r n (n) A1=[ 0 . 8 5 , 0 . 0 4 ; ?0 . 0 4 , 0 . 8 5 ] ; A2=[ ?0 . 1 5 , 0 . 2 8 ; 0 . 2 6 , 0 . 2 4 ] ; A3=[ 0 . 2 , ?0 . 2 6 ; 0 . 2 3 , 0 . 2 2 ] ; A4=[ 0 , 0 ; 0 , 0 . 1 6 ] ; T1=[ 0 ; 1 . 6 ] ; T2=[ 0 ; 0 . 4 4 ] ; T3=[ 0 ; 1 . 6 ] ; T4=[ 0 , 0 ] ; P1=0.85; P2=0.07; P3=0.07; P4=0.01; c l f ; s=rand ( 2 , 1 ) ; pl o t ( s ( 1 ) , s ( 2 ) , ' . ' ) hold f o r j =1:n r=rand ; i f r<=P1 , s=A1 s+T1 ; e l s e i f r<=P1+P2 , s=A2 s+T2 ; e l s e i f r<=P1+P2+P3 , s=A3 s+T3 ; e l s e s=A4 s ; end pl o t ( s ( 1 ) , s ( 2 ) , ' . ' ) end 4. Try the following commands: f e r n (100) f e r n (500) f e r n (1000) f e r n (3000) f e r n (5000) f e r n (10000) 2 5. Change the parameters in the fern program: A1=[ 0 . 5 , 0 ; 0 , 0 . 5 ] ; A2=[ 0 . 5 , 0 ; 0 , 0 . 5 ] ; A3=[ 0 . 5 , 0 ; 0 , 0 . 5 ] ; T1=[ 1 ; 1 ] ; T2=[ 1 ; 5 0 ] ; T3=[ 5 0 ; 5 0 ] ; P1=0.33; P2=0.33; P3=0.34; Call the new program srptri.m. Try the command s r p t r i (5000) You should see a familiar looking result. 6. Change the parameters in the fern program: A1=[ 0 , 0 ; 0 , 0 . 5 ] ; A2=[ 0 . 4 2 , ?0 . 4 2 ; 0 . 4 2 , 0 . 4 2 ] ; A3=[ 0 . 4 2 , 0 . 4 2 ; ?0 . 4 2 , 0 . 4 2 ] ; A4=[ 0 . 1 , 0 ; 0 , 0 . 1 ] ; T1=[ 0 ; 0 ] ; T2=[ 0 ; 0 . 2 ] ; T3=[ 0 ; 0 . 2 ] ; T4=[ 0 , 0 . 2 ] ; P1=0.05; P2=0.4; P3=0.4; P4=0.15; Call the new program srptree.m. Try the command s r p t r e e (5000) This is an example of a fractal tree. Some nice animations of fractal trees can be seen here: http://classes.yale.edu/fractals/ MATLAB commands to learn: Cl f , c e i l , imaginary uni t I , i f . . e l s e i f . . e l s e . . end 3

## Lab 5 Math 551 Fall 2015 Goal: In this assignment we will look at two fractals, namely the Sierpinski fractal and the Barnsley Fern. During the lab session, your lab instructor will teach you the necessary MATLAB code to complete the assignment, which will be discussed in the lab on Thursday October 8th or Friday October 9th in the lab (CW 144 or CW 145). What you have to submit: An m- le containing all of the commands necessary to perform all the tasks described below. Submit this le on Canvas. Click: \Assignments”, click \MATLAB Project 5″, click \Submit Assignment”, then upload your .m le and click \Submit Assignment” again. Due date: Friday October 16, 5pm. No late submission will be accepted. TASKS A fractal can be de ned as a self-similar detailed pattern repeating itself. Some of the most well know fractals (the Mandelbrot set and Julia set) can be viewed here: http://classes.yale.edu/fractals/ The Sierpinski Fractal The program srnpnski(m,dist,n) gets its name from the mathematician W. Sierpinski. The only parameter that must be speci ed is m which determines the number of vertices that will be part of a regular polygon. For larger m it produces a graph which is similar to a snow ake. The program starts with a randomly chosen seed position given by the internal variable s. At each stage one of the vertices is chosen at random and a new point is produced which is dist away from the old point to the vertex. The value of dist should be between 0 and 1. The default value is 0.5. This process is repeated n times. The default value of n is 1500. 1. Create a new Matlab function: func t i on s rpns k i (m, di s t , n) %This c r e a t e s a snowf lake from m v e r t i c e s us ing n i t e r a t i o n s . i f nargin <3, n=1500; end i f nargin <2, d i s t =0.5; end c l f a x i s ( [ ?1 ,1 , ?1 ,1] ) p=exp (2 pi  i  ( 1 :m)/m) ; pl o t (p , '  ' ) hold s=rand+i  rand ; f o r j =1:n r=c e i l (m rand ) ; s=d i s t  s+(1?d i s t )p( r ) ; pl o t ( s , ' . ' ) end 2. Try out the following commands s rpns k i ( 3 ) s rpns k i ( 3 , 0 . 5 , 2 5 0 0 ) s rpns k i ( 3 , 0 . 5 , 5 0 0 0 ) s rpns k i ( 3 , 0 . 4 ) 1 s rpns k i ( 3 , 0 . 2 ) s rpns k i ( 5 ) s rpns k i ( 5 , 0 . 4 ) s rpns k i ( 5 , 0 . 3 ) s rpns k i ( 6 , 0 . 3 ) s rpns k i ( 8 , 0 . 3 , 5 0 0 0 ) The Barnsley Fern The following program is the famous Barnsley Fern. The only external parameter is n, the number of iterations. 3. Create a new Matlab function: func t i on f e r n (n) A1=[ 0 . 8 5 , 0 . 0 4 ; ?0 . 0 4 , 0 . 8 5 ] ; A2=[ ?0 . 1 5 , 0 . 2 8 ; 0 . 2 6 , 0 . 2 4 ] ; A3=[ 0 . 2 , ?0 . 2 6 ; 0 . 2 3 , 0 . 2 2 ] ; A4=[ 0 , 0 ; 0 , 0 . 1 6 ] ; T1=[ 0 ; 1 . 6 ] ; T2=[ 0 ; 0 . 4 4 ] ; T3=[ 0 ; 1 . 6 ] ; T4=[ 0 , 0 ] ; P1=0.85; P2=0.07; P3=0.07; P4=0.01; c l f ; s=rand ( 2 , 1 ) ; pl o t ( s ( 1 ) , s ( 2 ) , ' . ' ) hold f o r j =1:n r=rand ; i f r<=P1 , s=A1 s+T1 ; e l s e i f r<=P1+P2 , s=A2 s+T2 ; e l s e i f r<=P1+P2+P3 , s=A3 s+T3 ; e l s e s=A4 s ; end pl o t ( s ( 1 ) , s ( 2 ) , ' . ' ) end 4. Try the following commands: f e r n (100) f e r n (500) f e r n (1000) f e r n (3000) f e r n (5000) f e r n (10000) 2 5. Change the parameters in the fern program: A1=[ 0 . 5 , 0 ; 0 , 0 . 5 ] ; A2=[ 0 . 5 , 0 ; 0 , 0 . 5 ] ; A3=[ 0 . 5 , 0 ; 0 , 0 . 5 ] ; T1=[ 1 ; 1 ] ; T2=[ 1 ; 5 0 ] ; T3=[ 5 0 ; 5 0 ] ; P1=0.33; P2=0.33; P3=0.34; Call the new program srptri.m. Try the command s r p t r i (5000) You should see a familiar looking result. 6. Change the parameters in the fern program: A1=[ 0 , 0 ; 0 , 0 . 5 ] ; A2=[ 0 . 4 2 , ?0 . 4 2 ; 0 . 4 2 , 0 . 4 2 ] ; A3=[ 0 . 4 2 , 0 . 4 2 ; ?0 . 4 2 , 0 . 4 2 ] ; A4=[ 0 . 1 , 0 ; 0 , 0 . 1 ] ; T1=[ 0 ; 0 ] ; T2=[ 0 ; 0 . 2 ] ; T3=[ 0 ; 0 . 2 ] ; T4=[ 0 , 0 . 2 ] ; P1=0.05; P2=0.4; P3=0.4; P4=0.15; Call the new program srptree.m. Try the command s r p t r e e (5000) This is an example of a fractal tree. Some nice animations of fractal trees can be seen here: http://classes.yale.edu/fractals/ MATLAB commands to learn: Cl f , c e i l , imaginary uni t I , i f . . e l s e i f . . e l s e . . end 3

info@checkyourstudy.com Whatsapp +919911743277
find an interesting news article or case study detailing an information technology project with the problem that was trying to be solved, what technology was used to address the problem, and the benefits after the system was implemented.

## find an interesting news article or case study detailing an information technology project with the problem that was trying to be solved, what technology was used to address the problem, and the benefits after the system was implemented.

info@checkyourstudy.com
Is it necessary for an organization to recognize the existence of driving forces before committing to project management?

## Is it necessary for an organization to recognize the existence of driving forces before committing to project management?

As driving forces are exterior aspects so business cannot devise … Read More...
Problems Marking scheme 1. Let A be a nonzero square matrix. Is it possible that a positive integer k exists such that ?? = 0 ? For example, find ?3 for the matrix [ 0 1 2 0 0 1 0 0 0 ] A square matrix A is nilpotent of index k when ? ≠ 0 , ?2 ≠ 0 , … . . , ??−1 ≠ 0, ??? ?? = 0. In this task you will explore nilpotent matrices. 1. The matrix in the example given above is nilpotent. What is its index? ( 2 marks ) 2. Use a software program to determine which of the following matrices are nilpotent and find their indices ( 12 marks ) A. [ 0 1 0 0 ] B. [ 0 1 1 0 ] C. [ 0 0 1 0 ] D. [ 1 0 1 0 ] E. [ 0 0 1 0 0 0 0 0 0 ] F. [ 0 0 0 1 0 0 1 1 0 ] 3. Find 3×3 nilpotent matrices of indices 2 and 3 ( 2 marks ) 4. Find 4×4 nilpotent matrices of indices 2, 3, and 4 ( 2 marks ) 5. Find nilpotent matrix of index 5 ( 2 marks ) 6. Are nilpotent matrices invertible? prove your answer ( 3 marks ) 7. When A is nilpotent, what can you say about ?? ? prove your answer ( 3 marks ) 8. Show that if ? is nilpotent , then ? − ? is invertible ( 4 marks ) 30% 2. A radio transmitter circuit contains a resisitance of 2.0 Ω, a variable inductor of 100 − ? ℎ?????? and a voltage source of 4.0 ? . find the current ? in the circuit as a function of the time t for 0 ≤ ? ≤ 100? if the intial curent is zero. Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 3. An object falling under the influence of gravity has a variable accelertaion given by 32 − ? , where ? represents the velocity. If the object starts from rest, find an expression for the velocity in terms of the time. Also, find the limiting value of the velocity. Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 4. When the angular displacement ? of a pendulum is small ( less than 60), the pendulum moves with simple harmonic motion closely approximated by ?′′ + ? ? ? = 0 . Here , ?′ = ?? ?? and ? is the accelertaion due to gravity , and ? is the length of the pendulum. Find ? as a function of time ( in s ) if ? = 9.8 ?/?2, ? = 1.0 ? ? = 0.1 and ?? ?? = 0 when ? = 0 . sketch the cuve using any graphical tool. Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 5. Find the equation relating the charge and the time in a electric circuit with the following elements: ? = 0.200 ? , ? = 8.00 Ω , ? = 1.00 ?? , ? = 0. In this circuit , ? = 0 and ? = 0.500 ? when ? = 0 Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 6. A spring is stretched 1 m by ? 20 − ? Weight. The spring is stretched 0.5 m below the equilibrium position with the weight attached and the then released. If it is a medium that resists the motion with a force equal to 12?, where v is the velocity, sketch and find the displacement y of the weight as a function of the time. Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 7. A 20?? inductor, a 40.0 Ω resistor, a 50.0 ?? capacitor, and voltage source of 100 ?−100?are connected in series in an electric circuit. Find the charge on the capacitor as a function of time t , if ? = 0 and ? = 0 ?ℎ?? ? = 0 Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 10% quality and neatness and using Math equations in MS word. –

## Problems Marking scheme 1. Let A be a nonzero square matrix. Is it possible that a positive integer k exists such that ?? = 0 ? For example, find ?3 for the matrix [ 0 1 2 0 0 1 0 0 0 ] A square matrix A is nilpotent of index k when ? ≠ 0 , ?2 ≠ 0 , … . . , ??−1 ≠ 0, ??? ?? = 0. In this task you will explore nilpotent matrices. 1. The matrix in the example given above is nilpotent. What is its index? ( 2 marks ) 2. Use a software program to determine which of the following matrices are nilpotent and find their indices ( 12 marks ) A. [ 0 1 0 0 ] B. [ 0 1 1 0 ] C. [ 0 0 1 0 ] D. [ 1 0 1 0 ] E. [ 0 0 1 0 0 0 0 0 0 ] F. [ 0 0 0 1 0 0 1 1 0 ] 3. Find 3×3 nilpotent matrices of indices 2 and 3 ( 2 marks ) 4. Find 4×4 nilpotent matrices of indices 2, 3, and 4 ( 2 marks ) 5. Find nilpotent matrix of index 5 ( 2 marks ) 6. Are nilpotent matrices invertible? prove your answer ( 3 marks ) 7. When A is nilpotent, what can you say about ?? ? prove your answer ( 3 marks ) 8. Show that if ? is nilpotent , then ? − ? is invertible ( 4 marks ) 30% 2. A radio transmitter circuit contains a resisitance of 2.0 Ω, a variable inductor of 100 − ? ℎ?????? and a voltage source of 4.0 ? . find the current ? in the circuit as a function of the time t for 0 ≤ ? ≤ 100? if the intial curent is zero. Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 3. An object falling under the influence of gravity has a variable accelertaion given by 32 − ? , where ? represents the velocity. If the object starts from rest, find an expression for the velocity in terms of the time. Also, find the limiting value of the velocity. Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 4. When the angular displacement ? of a pendulum is small ( less than 60), the pendulum moves with simple harmonic motion closely approximated by ?′′ + ? ? ? = 0 . Here , ?′ = ?? ?? and ? is the accelertaion due to gravity , and ? is the length of the pendulum. Find ? as a function of time ( in s ) if ? = 9.8 ?/?2, ? = 1.0 ? ? = 0.1 and ?? ?? = 0 when ? = 0 . sketch the cuve using any graphical tool. Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 5. Find the equation relating the charge and the time in a electric circuit with the following elements: ? = 0.200 ? , ? = 8.00 Ω , ? = 1.00 ?? , ? = 0. In this circuit , ? = 0 and ? = 0.500 ? when ? = 0 Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 6. A spring is stretched 1 m by ? 20 − ? Weight. The spring is stretched 0.5 m below the equilibrium position with the weight attached and the then released. If it is a medium that resists the motion with a force equal to 12?, where v is the velocity, sketch and find the displacement y of the weight as a function of the time. Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 7. A 20?? inductor, a 40.0 Ω resistor, a 50.0 ?? capacitor, and voltage source of 100 ?−100?are connected in series in an electric circuit. Find the charge on the capacitor as a function of time t , if ? = 0 and ? = 0 ?ℎ?? ? = 0 Correct solution 5% Graph the general solution 2.5% Graph the function and particular solution 2.5% 10% quality and neatness and using Math equations in MS word. –

Problems Marking scheme 1. Let A be a nonzero square … Read More...