Many people believe that choosing a job and choosing a career are the same. You know my position; I believe a JOB is Just over Broke. What is your position? Explain the differences between a job and a career.

Many people believe that choosing a job and choosing a career are the same. You know my position; I believe a JOB is Just over Broke. What is your position? Explain the differences between a job and a career.

A job is essentially one thing an individual do to … Read More...
4. Using your knowledge of the Stevenson’s career management model identify and briefly describe one activity that should be included in an organization’s career management program. Identify which element of the model the activity you identified fits within.

4. Using your knowledge of the Stevenson’s career management model identify and briefly describe one activity that should be included in an organization’s career management program. Identify which element of the model the activity you identified fits within.

Discipline Expertise- There is an apparent type of interdisciplinary in … Read More...
Overview The human body can regulate its function responding to the change of its environment. Temperature is one of the factors which can modulate the body function. Refer to the related lectures and other resources; answer the followed questions (question 1-5 need at least 400 words together): Q1 In case of cold weather how does human body detect the coldness? Explain the signal detection, delivery, processing and involved cells, tissues and organs.

Overview The human body can regulate its function responding to the change of its environment. Temperature is one of the factors which can modulate the body function. Refer to the related lectures and other resources; answer the followed questions (question 1-5 need at least 400 words together): Q1 In case of cold weather how does human body detect the coldness? Explain the signal detection, delivery, processing and involved cells, tissues and organs.

  The chief brain mechanisms for heat regulation are established … Read More...
Scenario: You are to design synchronous and asynchronous circuits that will allow the following requirements to be met. Tasks: 1. Packet number checking A synchronous sequential machine is to have a single input line and a single output line. The circuit is to receive messages of 4-bit words coded in binary (least significant bit first). The purpose of the circuit is to detect whether the number coming in is a prime number (divisible by only itself and 1). Thus, the output is to become 1 whenever a 4-bit word does represent a valid prime number. At the end of each word the machine is to return to the reset starting state. Steps: 1) Draw a State Diagram (Mealy) and check for redundancies 2) Then assign binary State Identifiers. 3) Make a Next State Truth Table (NSTT) 4) Select a bistable type 5) Determine expressions for the bistable inputs 6) Determine expressions for the outputs 2. Monitoring System A monitoring system sends 1s positive going pulses to a device to ensure that it is operating correctly. The device will respond by lowering its normally high line as soon as it receives the pulse then raising the line again within the 1s if working correctly. If the device line doesn’t respond correctly or respond at all then an alarm must occur. 1) Carry out a design for the asynchronous system that will realise the requirements up to the point where internal conditions are designated to the lines in the merged table. 2) Explain what the designer would have to do to ensure the system was hazard free and the output was as short as possible.

Scenario: You are to design synchronous and asynchronous circuits that will allow the following requirements to be met. Tasks: 1. Packet number checking A synchronous sequential machine is to have a single input line and a single output line. The circuit is to receive messages of 4-bit words coded in binary (least significant bit first). The purpose of the circuit is to detect whether the number coming in is a prime number (divisible by only itself and 1). Thus, the output is to become 1 whenever a 4-bit word does represent a valid prime number. At the end of each word the machine is to return to the reset starting state. Steps: 1) Draw a State Diagram (Mealy) and check for redundancies 2) Then assign binary State Identifiers. 3) Make a Next State Truth Table (NSTT) 4) Select a bistable type 5) Determine expressions for the bistable inputs 6) Determine expressions for the outputs 2. Monitoring System A monitoring system sends 1s positive going pulses to a device to ensure that it is operating correctly. The device will respond by lowering its normally high line as soon as it receives the pulse then raising the line again within the 1s if working correctly. If the device line doesn’t respond correctly or respond at all then an alarm must occur. 1) Carry out a design for the asynchronous system that will realise the requirements up to the point where internal conditions are designated to the lines in the merged table. 2) Explain what the designer would have to do to ensure the system was hazard free and the output was as short as possible.

Scenario: You are to design synchronous and asynchronous circuits that … Read More...
A community bird-watching society makes and sells simple bird feeders to raise money for its conservation activities. The materials for each feeder cost $3, and the society sells an average of 20 feeders per week at a price of $7 each. The society has been considering raising the price, so it conducts a survey and finds that for every dollar increase, it loses 2 sales per week. (a) Find a function P that models weekly profit in terms of price per feeder. (Let x be the price per feeder.) P(x) = (b) What price should the society charge for each feeder to maximize profits? $ What is the maximum weekly profit? $

A community bird-watching society makes and sells simple bird feeders to raise money for its conservation activities. The materials for each feeder cost $3, and the society sells an average of 20 feeders per week at a price of $7 each. The society has been considering raising the price, so it conducts a survey and finds that for every dollar increase, it loses 2 sales per week. (a) Find a function P that models weekly profit in terms of price per feeder. (Let x be the price per feeder.) P(x) = (b) What price should the society charge for each feeder to maximize profits? $ What is the maximum weekly profit? $

No expert has answered this question yet. You can browse … Read More...
Chapter 11 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Understanding Work and Kinetic Energy Learning Goal: To learn about the Work-Energy Theorem and its basic applications. In this problem, you will learn about the relationship between the work done on an object and the kinetic energy of that object. The kinetic energy of an object of mass moving at a speed is defined as . It seems reasonable to say that the speed of an object–and, therefore, its kinetic energy–can be changed by performing work on the object. In this problem, we will explore the mathematical relationship between the work done on an object and the change in the kinetic energy of that object. First, let us consider a sled of mass being pulled by a constant, horizontal force of magnitude along a rough, horizontal surface. The sled is speeding up. Part A How many forces are acting on the sled? ANSWER: Part B This question will be shown after you complete previous question(s). Part C K m v K = (1/2)mv2 m F one two three four This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I Typesetting math: 91% This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Work-Energy Theorem Reviewed Learning Goal: Review the work-energy theorem and apply it to a simple problem. If you push a particle of mass in the direction in which it is already moving, you expect the particle’s speed to increase. If you push with a constant force , then the particle will accelerate with acceleration (from Newton’s 2nd law). Part A Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied for a fixed interval of time , then the _____ of the particle will increase by an amount . You did not open hints for this part. ANSWER: M F a = F/M t at Typesetting math: 91% Part B Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied over a given distance , along the path of the particle, then the _____ of the particle will increase by . ANSWER: Part C If the initial kinetic energy of the particle is , and its final kinetic energy is , express in terms of and the work done on the particle. ANSWER: Part D In general, the work done by a force is written as . Now, consider whether the following statements are true or false: The dot product assures that the integrand is always nonnegative. The dot product indicates that only the component of the force perpendicular to the path contributes to the integral. The dot product indicates that only the component of the force parallel to the path contributes to the integral. Enter t for true or f for false for each statement. Separate your responses with commas (e.g., t,f,t). ANSWER: D FD Ki Kf Kf Ki W Kf = F W =  ( ) d f i F r r Typesetting math: 91% Part E Assume that the particle has initial speed . Find its final kinetic energy in terms of , , , and . You did not open hints for this part. ANSWER: Part F What is the final speed of the particle? Express your answer in terms of and . ANSWER: ± The Work Done in Pulling a Supertanker Two tugboats pull a disabled supertanker. Each tug exerts a constant force of 2.20×106 , one at an angle 10.0 west of north, and the other at an angle 10.0 east of north, as they pull the tanker a distance 0.660 toward the north. Part A What is the total work done by the two tugboats on the supertanker? Express your answer in joules, to three significant figures. vi Kf vi M F D Kf = Kf M vf = N km Typesetting math: 91% You did not open hints for this part. ANSWER: Energy Required to Lift a Heavy Box As you are trying to move a heavy box of mass , you realize that it is too heavy for you to lift by yourself. There is no one around to help, so you attach an ideal pulley to the box and a massless rope to the ceiling, which you wrap around the pulley. You pull up on the rope to lift the box. Use for the magnitude of the acceleration due to gravity and neglect friction forces. Part A Once you have pulled hard enough to start the box moving upward, what is the magnitude of the upward force you must apply to the rope to start raising the box with constant velocity? Express the magnitude of the force in terms of , the mass of the box. J m g F m Typesetting math: 91% You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Pulling a Block on an Incline with Friction A block of weight sits on an inclined plane as shown. A force of magnitude is applied to pull the block up the incline at constant speed. The coefficient of kinetic friction between the plane and the block is . Part A F = mg F μ Typesetting math: 91% What is the total work done on the block by the force of friction as the block moves a distance up the incline? Express the work done by friction in terms of any or all of the variables , , , , , and . You did not open hints for this part. ANSWER: Part B What is the total work done on the block by the applied force as the block moves a distance up the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Now the applied force is changed so that instead of pulling the block up the incline, the force pulls the block down the incline at a constant speed. Wfric L μ m g  L F Wfric = WF F L μ m g  L F WF = Typesetting math: 91% Part C What is the total work done on the block by the force of friction as the block moves a distance down the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Part D What is the total work done on the box by the appled force in this case? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: When Push Comes to Shove Two forces, of magnitudes = 75.0 and = 25.0 , act in opposite directions on a block, which sits atop a frictionless surface, as shown in the figure. Initially, the center of the block is at position = -1.00 . At some later time, the block has moved to the right, and its center is at a new position, = 1.00 . Wfric L μ m g  L F Wfric = WF μ m g  L F WF = F1 N F2 N xi cm xf cm Typesetting math: 91% Part A Find the work done on the block by the force of magnitude = 75.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Part B Find the work done by the force of magnitude = 25.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: W1 F1 N xi cm xf cm W1 = J W2 F2 N xi cm xf cm Typesetting math: 91% Part C What is the net work done on the block by the two forces? Express your answer numerically, in joules. ANSWER: Part D Determine the change in the kinetic energy of the block as it moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Work from a Constant Force Learning Goal: W2 = J Wnet Wnet = J Kf − Ki xi cm xf cm Kf − Ki = J Typesetting math: 91% To understand how to compute the work done by a constant force acting on a particle that moves in a straight line. In this problem, you will calculate the work done by a constant force. A force is considered constant if is independent of . This is the most frequently encountered situation in elementary Newtonian mechanics. Part A Consider a particle moving in a straight line from initial point B to final point A, acted upon by a constant force . The force (think of it as a field, having a magnitude and direction at every position ) is indicated by a series of identical vectors pointing to the left, parallel to the horizontal axis. The vectors are all identical only because the force is constant along the path. The magnitude of the force is , and the displacement vector from point B to point A is (of magnitude , making and angle (radians) with the positive x axis). Find , the work that the force performs on the particle as it moves from point B to point A. Express the work in terms of , , and . Remember to use radians, not degrees, for any angles that appear in your answer. You did not open hints for this part. ANSWER: Part B Now consider the same force acting on a particle that travels from point A to point B. The displacement vector now points in the opposite direction as it did in Part A. Find the work done by in this case. Express your answer in terms of , , and . F( r) r F r F L L  WBA F L F  WBA = F L WAB F Typesetting math: 91% L F  You did not open hints for this part. ANSWER: ± Vector Dot Product Let vectors , , and . Calculate the following: Part A You did not open hints for this part. ANSWER: WAB = A = (2, 1,−4) B = (−3, 0, 1) C = (−1,−1, 2) Typesetting math: 91% Part B What is the angle between and ? Express your answer using one significant figure. You did not open hints for this part. ANSWER: Part C ANSWER: Part D ANSWER: A B = AB A B AB = radians 2B 3C = Typesetting math: 91% Part E Which of the following can be computed? You did not open hints for this part. ANSWER: and are different vectors with lengths and respectively. Find the following: Part F Express your answer in terms of You did not open hints for this part. ANSWER: 2(B 3C) = A B C A (B C) A (B + C) 3 A V 1 V 2 V1 V2 V1 Typesetting math: 91% Part G If and are perpendicular, You did not open hints for this part. ANSWER: Part H If and are parallel, Express your answer in terms of and . You did not open hints for this part. ANSWER: ± Tactics Box 11.1 Calculating the Work Done by a Constant Force V = 1 V 1 V 1 V 2 V = 1 V 2 V 1 V 2 V1 V2 V = 1 V 2 Typesetting math: 91% Learning Goal: To practice Tactics Box 11.1 Calculating the Work Done by a Constant Force. Recall that the work done by a constant force at an angle to the displacement is . The vector magnitudes and are always positive, so the sign of is determined entirely by the angle between the force and the displacement. W F  d W = Fd cos  F d W  Typesetting math: 91% TACTICS BOX 11.1 Calculating the work done by a constant force Force and displacement Work Sign of Energy transfer Energy is transferred into the system. The particle speeds up. increases. No energy is transferred. Speed and are constant. Energy is transferred out of the system. The particle slows down. decreases. A box has weight of magnitude = 2.00 accelerates down a rough plane that is inclined at an angle = 30.0 above the horizontal, as shown at left. The normal force acting on the box has a magnitude = 1.732 , the coefficient of kinetic friction between the box and the plane is = 0.300, and the displacement of the box is 1.80 down the inclined plane.  W W 0 F(“r) + K < 90 F("r) cos  + 90 0 0 K > 90 F(“r) cos  − K 180 −F(“r) − FG N  n N μk d m Typesetting math: 91% Part A What is the work done on the box by gravity? Express your answers in joules to two significant figures. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Wgrav Wgrav = J Typesetting math: 91% Work and Potential Energy on a Sliding Block with Friction A block of weight sits on a plane inclined at an angle as shown. The coefficient of kinetic friction between the plane and the block is . A force is applied to push the block up the incline at constant speed. Part A What is the work done on the block by the force of friction as the block moves a distance up the incline? Express your answer in terms of some or all of the following: , , , . You did not open hints for this part. ANSWER: w  μ F Wf L μ w  L Wf = Typesetting math: 91% Part B What is the work done by the applied force of magnitude ? Express your answer in terms of some or all of the following: , , , . ANSWER: Part C What is the change in the potential energy of the block, , after it has been pushed a distance up the incline? Express your answer in terms of some or all of the following: , , , . ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). W F μ w  L W = “U L μ w  L “U = Typesetting math: 91% Part F This question will be shown after you complete previous question(s). Where’s the Energy? Learning Goal: To understand how to apply the law of conservation of energy to situations with and without nonconservative forces acting. The law of conservation of energy states the following: In an isolated system the total energy remains constant. If the objects within the system interact through gravitational and elastic forces only, then the total mechanical energy is conserved. The mechanical energy of a system is defined as the sum of kinetic energy and potential energy . For such systems where no forces other than the gravitational and elastic forces do work, the law of conservation of energy can be written as , where the quantities with subscript “i” refer to the “initial” moment and those with subscript “f” refer to the final moment. A wise choice of initial and final moments, which is not always obvious, may significantly simplify the solution. The kinetic energy of an object that has mass \texttip{m}{m} and velocity \texttip{v}{v} is given by \large{K=\frac{1}{2}mv^2}. Potential energy, instead, has many forms. The two forms that you will be dealing with most often in this chapter are the gravitational and elastic potential energy. Gravitational potential energy is the energy possessed by elevated objects. For small heights, it can be found as U_{\rm g}=mgh, where \texttip{m}{m} is the mass of the object, \texttip{g}{g} is the acceleration due to gravity, and \texttip{h}{h} is the elevation of the object above the zero level. The zero level is the elevation at which the gravitational potential energy is assumed to be (you guessed it) zero. The choice of the zero level is dictated by convenience; typically (but not necessarily), it is selected to coincide with the lowest position of the object during the motion explored in the problem. Elastic potential energy is associated with stretched or compressed elastic objects such as springs. For a spring with a force constant \texttip{k}{k}, stretched or compressed a distance \texttip{x}{x}, the associated elastic potential energy is \large{U_{\rm e}=\frac{1}{2}kx^2}. When all three types of energy change, the law of conservation of energy for an object of mass \texttip{m}{m} can be written as K U Ki + Ui = Kf + Uf Typesetting math: 91% \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}. The gravitational force and the elastic force are two examples of conservative forces. What if nonconservative forces, such as friction, also act within the system? In that case, the total mechanical energy would change. The law of conservation of energy is then written as \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2+W_{\rm nc}=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}, where \texttip{W_{\rm nc}}{W_nc} represents the work done by the nonconservative forces acting on the object between the initial and the final moments. The work \texttip{W_{\rm nc}}{W_nc} is usually negative; that is, the nonconservative forces tend to decrease, or dissipate, the mechanical energy of the system. In this problem, we will consider the following situation as depicted in the diagram : A block of mass \texttip{m}{m} slides at a speed \texttip{v}{v} along a horizontal, smooth table. It next slides down a smooth ramp, descending a height \texttip{h}{h}, and then slides along a horizontal rough floor, stopping eventually. Assume that the block slides slowly enough so that it does not lose contact with the supporting surfaces (table, ramp, or floor). You will analyze the motion of the block at different moments using the law of conservation of energy. Part A Which word in the statement of this problem allows you to assume that the table is frictionless? ANSWER: Part B straight smooth horizontal Typesetting math: 91% This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H Typesetting math: 91% This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Sliding In Socks Suppose that the coefficient of kinetic friction between Zak’s feet and the floor, while wearing socks, is 0.250. Knowing this, Zak decides to get a running start and then slide across the floor. Part A If Zak’s speed is 3.00 \rm m/s when he starts to slide, what distance \texttip{d}{d} will he slide before stopping? Express your answer in meters. ANSWER: Typesetting math: 91% Part B This question will be shown after you complete previous question(s). Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. \rm m Typesetting math: 91%

Chapter 11 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Understanding Work and Kinetic Energy Learning Goal: To learn about the Work-Energy Theorem and its basic applications. In this problem, you will learn about the relationship between the work done on an object and the kinetic energy of that object. The kinetic energy of an object of mass moving at a speed is defined as . It seems reasonable to say that the speed of an object–and, therefore, its kinetic energy–can be changed by performing work on the object. In this problem, we will explore the mathematical relationship between the work done on an object and the change in the kinetic energy of that object. First, let us consider a sled of mass being pulled by a constant, horizontal force of magnitude along a rough, horizontal surface. The sled is speeding up. Part A How many forces are acting on the sled? ANSWER: Part B This question will be shown after you complete previous question(s). Part C K m v K = (1/2)mv2 m F one two three four This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I Typesetting math: 91% This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Work-Energy Theorem Reviewed Learning Goal: Review the work-energy theorem and apply it to a simple problem. If you push a particle of mass in the direction in which it is already moving, you expect the particle’s speed to increase. If you push with a constant force , then the particle will accelerate with acceleration (from Newton’s 2nd law). Part A Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied for a fixed interval of time , then the _____ of the particle will increase by an amount . You did not open hints for this part. ANSWER: M F a = F/M t at Typesetting math: 91% Part B Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied over a given distance , along the path of the particle, then the _____ of the particle will increase by . ANSWER: Part C If the initial kinetic energy of the particle is , and its final kinetic energy is , express in terms of and the work done on the particle. ANSWER: Part D In general, the work done by a force is written as . Now, consider whether the following statements are true or false: The dot product assures that the integrand is always nonnegative. The dot product indicates that only the component of the force perpendicular to the path contributes to the integral. The dot product indicates that only the component of the force parallel to the path contributes to the integral. Enter t for true or f for false for each statement. Separate your responses with commas (e.g., t,f,t). ANSWER: D FD Ki Kf Kf Ki W Kf = F W =  ( ) d f i F r r Typesetting math: 91% Part E Assume that the particle has initial speed . Find its final kinetic energy in terms of , , , and . You did not open hints for this part. ANSWER: Part F What is the final speed of the particle? Express your answer in terms of and . ANSWER: ± The Work Done in Pulling a Supertanker Two tugboats pull a disabled supertanker. Each tug exerts a constant force of 2.20×106 , one at an angle 10.0 west of north, and the other at an angle 10.0 east of north, as they pull the tanker a distance 0.660 toward the north. Part A What is the total work done by the two tugboats on the supertanker? Express your answer in joules, to three significant figures. vi Kf vi M F D Kf = Kf M vf = N km Typesetting math: 91% You did not open hints for this part. ANSWER: Energy Required to Lift a Heavy Box As you are trying to move a heavy box of mass , you realize that it is too heavy for you to lift by yourself. There is no one around to help, so you attach an ideal pulley to the box and a massless rope to the ceiling, which you wrap around the pulley. You pull up on the rope to lift the box. Use for the magnitude of the acceleration due to gravity and neglect friction forces. Part A Once you have pulled hard enough to start the box moving upward, what is the magnitude of the upward force you must apply to the rope to start raising the box with constant velocity? Express the magnitude of the force in terms of , the mass of the box. J m g F m Typesetting math: 91% You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Pulling a Block on an Incline with Friction A block of weight sits on an inclined plane as shown. A force of magnitude is applied to pull the block up the incline at constant speed. The coefficient of kinetic friction between the plane and the block is . Part A F = mg F μ Typesetting math: 91% What is the total work done on the block by the force of friction as the block moves a distance up the incline? Express the work done by friction in terms of any or all of the variables , , , , , and . You did not open hints for this part. ANSWER: Part B What is the total work done on the block by the applied force as the block moves a distance up the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Now the applied force is changed so that instead of pulling the block up the incline, the force pulls the block down the incline at a constant speed. Wfric L μ m g  L F Wfric = WF F L μ m g  L F WF = Typesetting math: 91% Part C What is the total work done on the block by the force of friction as the block moves a distance down the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Part D What is the total work done on the box by the appled force in this case? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: When Push Comes to Shove Two forces, of magnitudes = 75.0 and = 25.0 , act in opposite directions on a block, which sits atop a frictionless surface, as shown in the figure. Initially, the center of the block is at position = -1.00 . At some later time, the block has moved to the right, and its center is at a new position, = 1.00 . Wfric L μ m g  L F Wfric = WF μ m g  L F WF = F1 N F2 N xi cm xf cm Typesetting math: 91% Part A Find the work done on the block by the force of magnitude = 75.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Part B Find the work done by the force of magnitude = 25.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: W1 F1 N xi cm xf cm W1 = J W2 F2 N xi cm xf cm Typesetting math: 91% Part C What is the net work done on the block by the two forces? Express your answer numerically, in joules. ANSWER: Part D Determine the change in the kinetic energy of the block as it moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Work from a Constant Force Learning Goal: W2 = J Wnet Wnet = J Kf − Ki xi cm xf cm Kf − Ki = J Typesetting math: 91% To understand how to compute the work done by a constant force acting on a particle that moves in a straight line. In this problem, you will calculate the work done by a constant force. A force is considered constant if is independent of . This is the most frequently encountered situation in elementary Newtonian mechanics. Part A Consider a particle moving in a straight line from initial point B to final point A, acted upon by a constant force . The force (think of it as a field, having a magnitude and direction at every position ) is indicated by a series of identical vectors pointing to the left, parallel to the horizontal axis. The vectors are all identical only because the force is constant along the path. The magnitude of the force is , and the displacement vector from point B to point A is (of magnitude , making and angle (radians) with the positive x axis). Find , the work that the force performs on the particle as it moves from point B to point A. Express the work in terms of , , and . Remember to use radians, not degrees, for any angles that appear in your answer. You did not open hints for this part. ANSWER: Part B Now consider the same force acting on a particle that travels from point A to point B. The displacement vector now points in the opposite direction as it did in Part A. Find the work done by in this case. Express your answer in terms of , , and . F( r) r F r F L L  WBA F L F  WBA = F L WAB F Typesetting math: 91% L F  You did not open hints for this part. ANSWER: ± Vector Dot Product Let vectors , , and . Calculate the following: Part A You did not open hints for this part. ANSWER: WAB = A = (2, 1,−4) B = (−3, 0, 1) C = (−1,−1, 2) Typesetting math: 91% Part B What is the angle between and ? Express your answer using one significant figure. You did not open hints for this part. ANSWER: Part C ANSWER: Part D ANSWER: A B = AB A B AB = radians 2B 3C = Typesetting math: 91% Part E Which of the following can be computed? You did not open hints for this part. ANSWER: and are different vectors with lengths and respectively. Find the following: Part F Express your answer in terms of You did not open hints for this part. ANSWER: 2(B 3C) = A B C A (B C) A (B + C) 3 A V 1 V 2 V1 V2 V1 Typesetting math: 91% Part G If and are perpendicular, You did not open hints for this part. ANSWER: Part H If and are parallel, Express your answer in terms of and . You did not open hints for this part. ANSWER: ± Tactics Box 11.1 Calculating the Work Done by a Constant Force V = 1 V 1 V 1 V 2 V = 1 V 2 V 1 V 2 V1 V2 V = 1 V 2 Typesetting math: 91% Learning Goal: To practice Tactics Box 11.1 Calculating the Work Done by a Constant Force. Recall that the work done by a constant force at an angle to the displacement is . The vector magnitudes and are always positive, so the sign of is determined entirely by the angle between the force and the displacement. W F  d W = Fd cos  F d W  Typesetting math: 91% TACTICS BOX 11.1 Calculating the work done by a constant force Force and displacement Work Sign of Energy transfer Energy is transferred into the system. The particle speeds up. increases. No energy is transferred. Speed and are constant. Energy is transferred out of the system. The particle slows down. decreases. A box has weight of magnitude = 2.00 accelerates down a rough plane that is inclined at an angle = 30.0 above the horizontal, as shown at left. The normal force acting on the box has a magnitude = 1.732 , the coefficient of kinetic friction between the box and the plane is = 0.300, and the displacement of the box is 1.80 down the inclined plane.  W W 0 F(“r) + K < 90 F("r) cos  + 90 0 0 K > 90 F(“r) cos  − K 180 −F(“r) − FG N  n N μk d m Typesetting math: 91% Part A What is the work done on the box by gravity? Express your answers in joules to two significant figures. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Wgrav Wgrav = J Typesetting math: 91% Work and Potential Energy on a Sliding Block with Friction A block of weight sits on a plane inclined at an angle as shown. The coefficient of kinetic friction between the plane and the block is . A force is applied to push the block up the incline at constant speed. Part A What is the work done on the block by the force of friction as the block moves a distance up the incline? Express your answer in terms of some or all of the following: , , , . You did not open hints for this part. ANSWER: w  μ F Wf L μ w  L Wf = Typesetting math: 91% Part B What is the work done by the applied force of magnitude ? Express your answer in terms of some or all of the following: , , , . ANSWER: Part C What is the change in the potential energy of the block, , after it has been pushed a distance up the incline? Express your answer in terms of some or all of the following: , , , . ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). W F μ w  L W = “U L μ w  L “U = Typesetting math: 91% Part F This question will be shown after you complete previous question(s). Where’s the Energy? Learning Goal: To understand how to apply the law of conservation of energy to situations with and without nonconservative forces acting. The law of conservation of energy states the following: In an isolated system the total energy remains constant. If the objects within the system interact through gravitational and elastic forces only, then the total mechanical energy is conserved. The mechanical energy of a system is defined as the sum of kinetic energy and potential energy . For such systems where no forces other than the gravitational and elastic forces do work, the law of conservation of energy can be written as , where the quantities with subscript “i” refer to the “initial” moment and those with subscript “f” refer to the final moment. A wise choice of initial and final moments, which is not always obvious, may significantly simplify the solution. The kinetic energy of an object that has mass \texttip{m}{m} and velocity \texttip{v}{v} is given by \large{K=\frac{1}{2}mv^2}. Potential energy, instead, has many forms. The two forms that you will be dealing with most often in this chapter are the gravitational and elastic potential energy. Gravitational potential energy is the energy possessed by elevated objects. For small heights, it can be found as U_{\rm g}=mgh, where \texttip{m}{m} is the mass of the object, \texttip{g}{g} is the acceleration due to gravity, and \texttip{h}{h} is the elevation of the object above the zero level. The zero level is the elevation at which the gravitational potential energy is assumed to be (you guessed it) zero. The choice of the zero level is dictated by convenience; typically (but not necessarily), it is selected to coincide with the lowest position of the object during the motion explored in the problem. Elastic potential energy is associated with stretched or compressed elastic objects such as springs. For a spring with a force constant \texttip{k}{k}, stretched or compressed a distance \texttip{x}{x}, the associated elastic potential energy is \large{U_{\rm e}=\frac{1}{2}kx^2}. When all three types of energy change, the law of conservation of energy for an object of mass \texttip{m}{m} can be written as K U Ki + Ui = Kf + Uf Typesetting math: 91% \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}. The gravitational force and the elastic force are two examples of conservative forces. What if nonconservative forces, such as friction, also act within the system? In that case, the total mechanical energy would change. The law of conservation of energy is then written as \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2+W_{\rm nc}=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}, where \texttip{W_{\rm nc}}{W_nc} represents the work done by the nonconservative forces acting on the object between the initial and the final moments. The work \texttip{W_{\rm nc}}{W_nc} is usually negative; that is, the nonconservative forces tend to decrease, or dissipate, the mechanical energy of the system. In this problem, we will consider the following situation as depicted in the diagram : A block of mass \texttip{m}{m} slides at a speed \texttip{v}{v} along a horizontal, smooth table. It next slides down a smooth ramp, descending a height \texttip{h}{h}, and then slides along a horizontal rough floor, stopping eventually. Assume that the block slides slowly enough so that it does not lose contact with the supporting surfaces (table, ramp, or floor). You will analyze the motion of the block at different moments using the law of conservation of energy. Part A Which word in the statement of this problem allows you to assume that the table is frictionless? ANSWER: Part B straight smooth horizontal Typesetting math: 91% This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H Typesetting math: 91% This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Sliding In Socks Suppose that the coefficient of kinetic friction between Zak’s feet and the floor, while wearing socks, is 0.250. Knowing this, Zak decides to get a running start and then slide across the floor. Part A If Zak’s speed is 3.00 \rm m/s when he starts to slide, what distance \texttip{d}{d} will he slide before stopping? Express your answer in meters. ANSWER: Typesetting math: 91% Part B This question will be shown after you complete previous question(s). Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. \rm m Typesetting math: 91%

please email info@checkyourstudy.com
http://www.econlib.org/library/Smith/smWN1.html#B.I,%20Ch.1,%20Of%20the%20Division%20of%20Labor What does Smith mean by division of labor, and how does it affect production? A. He means that each person does their own work to benefit themselves by creating goods. This creates well-crafted goods. B. He argues that in order to become more efficient, we need to put everyone in the same workhouses and eliminate division. C. He says that the division of labor provides farmers with the opportunity to become involved in manufacturing. D. He means that each person makes one small part of a good very quickly, but this is bad for the quality of production overall. E. He means that by having each individual specialize in one thing, they can work together to create products more efficiently and effectively. Which of the following is NOT an example of the circumstances by which the division of labor improves efficiency? A. A doll-making company stops allowing each employee to make one whole doll each and instead appoints each employee to create one part of the doll. B. A family of rug makers buys a loom to speed up their production. C. A mechanic opens a new shop to be nearer to the market. D. A factory changes the responsibilities of its employees so that one group handles heavy boxes and the other group does precision sewing. E. A baker who used to make a dozen cookies at a time buys a giant mixer and oven that enable him to make 20 dozen cookies at a time. Considering the global system of states, what do you think the allegory of the pins has to offer? A. It suggests that there could be a natural harmony of interests among states because they can divide labor among themselves to the benefit of everyone. B. It suggests that states can never be secure enough to cooperate because every state is equally capable of producing the same things. C. It suggests that a central authority is necessary to help states cooperate, in the same way that a manager oversees operations at a factory. D. The allegory of the pins is a great way to think about how wars come about, because states won’t cooperate with each other like pin-makers do. E. The allegory of the pins shows us that there is no natural harmony of interests between states. Smith sees the development of industry, technology, and the division of labor as A. generally positive but not progressive. The lives of many people may improve, but the world will generally stay the same. B. generally positive and progressive. The world is improving because of these changes, and it will continue to improve. C. generally negative. The creation of new technologies and the division of labor are harmful to all humans, both the wealthy and the poor. D. generally negative. The creation of the division of labor only benefits the wealthy at the expense of the poor. E. both positive and negative. Smith thinks that technology hurts us, while the division of labor helps society progress and develop. http://www.youtube.com/watch?v=RUwS1uAdUcI What point is Hans Rosling trying to make when he describes the global health pre-test? A. He is trying to show how the average person has no idea of the true state of global health. B. He is trying to illustrate how we tend to carry around outdated notions about the state of global health. C. He is trying to make us see that the less-developed countries are far worse off than we ever thought. D. He is trying to drive home the idea that global health has not improved over time despite foreign aid and improvements in medicine. E. He is trying to warn us about the rapid growth in world population. Rosling shows us that we tend to think about global health in terms of “we and them.” Who are the “we” and who are the “them”? A. “We” refers to academics, students, and scholars; “them” refers to the uneducated. B. “We” refers to the average person; “them” refers to politicians and global leaders. C. “We” refers to the wealthy; “them” refers to the poor. D. “We” refers to the Western world; “them” refers to the Third World. E. “We” refers to students; “them” refers to professors. In the life expectancy and fertility rate demonstration, what do the statistics reveal? A. Over time, developed countries produced small families and long lives, whereas developing countries produced large families and short lives. B. The world today looks much like it did in 1962 despite our attempts to help poorer countries develop. C. All countries in the world, even the poorer ones, are trending toward longer lives and smaller families. D. Developed countries are trending toward smaller families but shorter lives. E. All countries tend to make gains and losses in fertility and lifespan, but in the long run there is no significant change. What point does Rosling make about life expectancy in Vietnam as compared to the United States? To what does he attribute the change? A. He indicates that economic change preceded social change. B. He suggests that markets and free trade resulted in the increase in life expectancy. C. He says that the data indicates that the Vietnam War contributed to the decrease in life expectancy during that time, but that it recovered shortly thereafter. D. He says that social change in Asia preceded economic change, and life expectancy in Vietnam increased despite the war. E. He indicates that Vietnam was equal to the United States in life expectancy before the war. According to Rosling, how are regional statistics about child survival rates and GDP potentially misleading? A. Countries have an incentive to lie about the actual survival rates because they want foreign assistance. B. Statistics for the individual countries in a region are often vastly different. C. Regional statistics give us a strong sense of how we can understand development within one region, but it does not allow us to compare across regions. D. The data available over time and from countries within regions is often poorly collected and incomplete. E. Child survival rates cannot be compared regionally, since each culture has a different sense of how important children are. What is Rosling’s main point about statistical databases? A. The data is available but not readily accessible, so we need to create networks to solve that problem. B. The data that comes from these databases is often flawed and unreliable. C. It doesn’t matter whether we have access to these databases because the data can’t be used in an interesting way. D. Statistics can’t tell us very much, but we should do our best to make use of the information we do have. E. The information that could be true is too hard to sort out from what isn’t true because we don’t know how strong the data really is. http://www.marxists.org/archive/lenin/works/1916/imp-hsc/ch10.htm#v22zz99h-298-GUESS Click the link at left to read Chapter 10 of Imperialism, The Highest Stage of Capitalism, then answer the questions below. According to Lenin, what is the fundamental source of a monopoly? A. It is a natural effect of human behavior. B. It is the result of governments and police systems. C. Its source is rooted in democracy. D. It comes from the concentration of production at a high stage. E. It is what follows a socialist system. What are the principal types or manifestations of monopoly capitalism? A. Monopolistic capitalist associations like cartels, syndicates and trusts; and monopolies as a result of colonial policy. B. Monopolization of raw materials and monopolization of finance capital. C. Monopolization of governing structures and monopolies of oligarchies. D. Monopolist capitalist associations like cartels, syndicates and trusts; and monopolies as a result of colonial policy AND monopolization of raw materials and monopolization of finance capital. E. Monopolization of raw materials and monopolization of finance capital AND monopolization of governing structures and monopolies of oligarchies. What is the definition of a rentier state according to Lenin? A. A state that colonizes other states. B. A state whose bourgeoisie live off the export of capital. C. A poor state. D. A wealthy state. E. A colonized state. Overall Lenin’s analysis of the state of capitalism is concerned with: A. The interactions between states. B. The interactions within states. C. The ownership of industry and organizations. D. The interactions within states AND the ownership of industry and organizations. E. All of these options. http://view.vzaar.com/1194665/flashplayer Watch the video at left, and then answer the questions below. The Marshall Plan was developed by the United States after World War II. What was its purpose? A. to feed the hungry of Europe B. to stem the spread of communism C. to maintain an American military presence in Europe D. to feed the hungry of Europe AND to stem the spread of communism E. to stem the spread of communism AND to maintain an American military presence in Europe What kind of aid was sent at first? A. foods, fertilizers, and machines for agriculture B. books, paper, and radios for education C. clothing, medical supplies, and construction equipment D. mostly cash in the form of loans and grants E. people with business expertise to help develop the economy What kind of aid did the United States send to Greece to help its farmers? A. tractors B. mules C. seeds D. fertilizer E. all of these options What was one way that the United States influenced public opinion in Italy during the elections described in the video? A. The United States provided significant food aid to Italy so that the Italians would be inclined to vote against the Communists. B. The Italians had been impressed by the strength and loyalty of the American soldiers, and were inclined to listen to them during the elections. C. There was a large number of young Italians who followed American fashion and culture. D. Italian immigrants in the United States wrote letters to their families in Italy urging them not to vote for Communists. E. The Greeks showed the Italians how much the Americans had helped them, warning that supporting a Communist candidate would mean sacrificing American aid. How did Pope Pius XII undermine the strength of the Communist Party in Italy? A. He encouraged Italians to go out and vote. B. He warned that the Communist Party would legalize abortion. C. He excommunicated many members of the Communist Party. D. He made a speech in support of capitalism. E. He declared that Communists should not be baptized. http://www.youtube.com/watch?v=KVhWqwnZ1eM Use the video at left to answer the questions below. Hans Rosling shares how his students discuss “we” versus “them.” To whom are his students referring? A. the United States and Mexico B. Christians and Muslims C. Democrats and Republicans D. Europe and Asia E. none of these options According to Rosling, what factors contribute to a better quality of life for people in developing countries? A. family planning B. soap and water C. investment D. vaccinations E. all of these options Using his data, Rosling demonstrates a great shift in Mexico. What change does his data demonstrate? A. a decrease in drug usage B. a decrease in the number of jobs available C. an increase in average life expenctancy D. an increase in the rate of violent crime E. all of these options Instead of “developing” and “developed,” Rosling divides countries into four categories. Which of the following is NOT one of them? A. high-income countries B. middle-income countries C. low-income countries D. no-income countries E. collapsing countries Rosling discusses the increased life expectancy in both China and the United States. How are the situations different? A. The U.S. and China are on different continents. B. The life expectancy in China rose much higher than it did in the U.S. C. China first expanded its life expectancy and then grew economically, whereas the U.S. did the reverse. D. Average income and life expectancy steadily increased in the U.S., but they steadily decreased in China. E. all of these options Rosling shows a chart that demonstrates the regional income distribution of the world from 1970 to 2015. During that time, what has happened in South and East Asia? A. Money has flowed out of Asia to developing countries in Africa. B. The average income of citizens of South and East Asia has increased over the last 30 years. C. The average income of citizens of South and East Asia has decreased over the last 30 years. D. The average income of citizens of South and East Asia has surpassed that of Europe and North America. E. There has been no change. Click here to access GapMinder, the data visualizer that Hans Rosling uses. In 2010, which of the following countries had both a higher per-capita GDP and a higher life expectancy than the United States? A. France B. Japan C. Denmark D. Singapore E. Kuwait http://www.garretthardinsociety.org/articles/art_tragedy_of_the_commons.html http://www.youtube.com/watch?v=8a4S23uXIcM The Tragedy of the Commons What is the rough definition of the “commons” given in the article? A. any private property on which others trespass B. behavior that everyone considers to be normal C. a cow that lives in a herd D. government-administered benefits, like unemployment or Social Security E. a shared resource What does Hardin mean by describing pollution as a reverse tragedy of the commons? A. Rather than causing a problem, it resolves a problem. B. Pollution costs us money rather than making us money. C. We are putting something into the commons rather than removing something from it. D. It starts at the other end of the biological pyramid. E. Humans see less of it as time goes on. Hardin says “the air and waters surrounding us cannot readily be fenced, and so the tragedy of the commons as a cesspool must be prevented by different means.” What are those means? A. establishing more international treaties to protect the environment B. using laws or taxes to make the polluter pay for pollution C. punishing consumers for generating waste D. raising awareness about environmental issues E. developing greener products Pacific Garbage Dump According to the news report, what percent of the Gyre is made of plastic? A. 50 percent B. 60 percent C. 70 percent D. 80 percent E. 90 percent Where does the majority of the plastic in the Gyre come from? A. barges that dump trash in the ocean B. storm drains from land C. people throwing litter off boats into the ocean D. remnants from movie sets filmed at sea E. fishing boats processing their catch What does Charles Moore mean by the “throwaway concept”? A. the habitual use of disposable plastic packaging B. the mistaken view that marine ecosystems are infinitely renewable C. a general lack of interest in recycling D. the willingness to discard effective but small-scale environmental policies in deference to broader E. people throwing away their lives in pursuit of money In what way does the Great Pacific Gyre represent issues like global warming a tragedy of the commons? A. because all the plastic trash in it comes from the United States B. because it kills the albatross and makes it impossible for them to reproduce C. surbecause the countries rounding the Pacific Ocean are polluting the water in a way that affects the quality of the resource for all, but no one is specifically accountable for it D. because it causes marine life to compete for increasingly scarce nutrients in the ocean E. because nations in the region all collectively agreed to dump their trash in the Pacific http://www.npr.org/news/specials/climate/video/ http://ngm.nationalgeographic.com/climateconnections/climate-map http://www.npr.org/news/specials/climate/video/wildchronicles.html Use the links provided at left to answer the questions below. Global Warming: It’s All About Carbon How does carbon give us fuel? A. When you burn things that contain carbon the bonds break, giving off energy. B. Burning things creates carbon out of other elements as a result of combustion. C. Carbon is created after oxygen and hydrogen get released. D. Carbon bonds are created thereby giving off energy. E. Carbon is made into fuel by refining oil. National Geographic Climate Map What geographic areas have seen the most significant changes in temperature? A. The African continent. B. The Pacific Ocean. C. The Atlantic Ocean. D. The Arctic Ocean. E. The Indian Ocean. Why does it matter that rain fall steadily rather than in downpours? A. For those countries accustomed to steady rain fall, downpours are actually more efficient ways to catch water. B. Downpours in regions accustomed to steady fall makes them more prone to flooding and damage. C. In general, as long as regions get either steady fall or downpours most things will stay the same. D. Downpours are always more beneficial to crop growth than steady rain. E. Steady rain is always more beneficial to crop growth than downpours. Climate Change Threatens Kona Coffee What is unique about the climate in Hawaii, making it a good place to grow coffee? A. The elevation is high, the nights are cool and the days are humid. B. The elevation is low, the nights are warm and the days are dry. C. The elevation is high, the nights are warm and the days are dry. D. The elevation is low, the nights are cool and the days are dry. E. The elevation is high, the nights are warm and the days are humid. What specific temperature pattern have experts noted about the region where Kona coffee is grown in Hawaii? A. There has been no significant change but the bean production has dropped. B. The nights have warmed up, even though the days have cooled. C. There has been an increase in bean production with the change in climate. D. The nights have cooled even more so than before. E. There has been universally hot days all the way around.

http://www.econlib.org/library/Smith/smWN1.html#B.I,%20Ch.1,%20Of%20the%20Division%20of%20Labor What does Smith mean by division of labor, and how does it affect production? A. He means that each person does their own work to benefit themselves by creating goods. This creates well-crafted goods. B. He argues that in order to become more efficient, we need to put everyone in the same workhouses and eliminate division. C. He says that the division of labor provides farmers with the opportunity to become involved in manufacturing. D. He means that each person makes one small part of a good very quickly, but this is bad for the quality of production overall. E. He means that by having each individual specialize in one thing, they can work together to create products more efficiently and effectively. Which of the following is NOT an example of the circumstances by which the division of labor improves efficiency? A. A doll-making company stops allowing each employee to make one whole doll each and instead appoints each employee to create one part of the doll. B. A family of rug makers buys a loom to speed up their production. C. A mechanic opens a new shop to be nearer to the market. D. A factory changes the responsibilities of its employees so that one group handles heavy boxes and the other group does precision sewing. E. A baker who used to make a dozen cookies at a time buys a giant mixer and oven that enable him to make 20 dozen cookies at a time. Considering the global system of states, what do you think the allegory of the pins has to offer? A. It suggests that there could be a natural harmony of interests among states because they can divide labor among themselves to the benefit of everyone. B. It suggests that states can never be secure enough to cooperate because every state is equally capable of producing the same things. C. It suggests that a central authority is necessary to help states cooperate, in the same way that a manager oversees operations at a factory. D. The allegory of the pins is a great way to think about how wars come about, because states won’t cooperate with each other like pin-makers do. E. The allegory of the pins shows us that there is no natural harmony of interests between states. Smith sees the development of industry, technology, and the division of labor as A. generally positive but not progressive. The lives of many people may improve, but the world will generally stay the same. B. generally positive and progressive. The world is improving because of these changes, and it will continue to improve. C. generally negative. The creation of new technologies and the division of labor are harmful to all humans, both the wealthy and the poor. D. generally negative. The creation of the division of labor only benefits the wealthy at the expense of the poor. E. both positive and negative. Smith thinks that technology hurts us, while the division of labor helps society progress and develop. http://www.youtube.com/watch?v=RUwS1uAdUcI What point is Hans Rosling trying to make when he describes the global health pre-test? A. He is trying to show how the average person has no idea of the true state of global health. B. He is trying to illustrate how we tend to carry around outdated notions about the state of global health. C. He is trying to make us see that the less-developed countries are far worse off than we ever thought. D. He is trying to drive home the idea that global health has not improved over time despite foreign aid and improvements in medicine. E. He is trying to warn us about the rapid growth in world population. Rosling shows us that we tend to think about global health in terms of “we and them.” Who are the “we” and who are the “them”? A. “We” refers to academics, students, and scholars; “them” refers to the uneducated. B. “We” refers to the average person; “them” refers to politicians and global leaders. C. “We” refers to the wealthy; “them” refers to the poor. D. “We” refers to the Western world; “them” refers to the Third World. E. “We” refers to students; “them” refers to professors. In the life expectancy and fertility rate demonstration, what do the statistics reveal? A. Over time, developed countries produced small families and long lives, whereas developing countries produced large families and short lives. B. The world today looks much like it did in 1962 despite our attempts to help poorer countries develop. C. All countries in the world, even the poorer ones, are trending toward longer lives and smaller families. D. Developed countries are trending toward smaller families but shorter lives. E. All countries tend to make gains and losses in fertility and lifespan, but in the long run there is no significant change. What point does Rosling make about life expectancy in Vietnam as compared to the United States? To what does he attribute the change? A. He indicates that economic change preceded social change. B. He suggests that markets and free trade resulted in the increase in life expectancy. C. He says that the data indicates that the Vietnam War contributed to the decrease in life expectancy during that time, but that it recovered shortly thereafter. D. He says that social change in Asia preceded economic change, and life expectancy in Vietnam increased despite the war. E. He indicates that Vietnam was equal to the United States in life expectancy before the war. According to Rosling, how are regional statistics about child survival rates and GDP potentially misleading? A. Countries have an incentive to lie about the actual survival rates because they want foreign assistance. B. Statistics for the individual countries in a region are often vastly different. C. Regional statistics give us a strong sense of how we can understand development within one region, but it does not allow us to compare across regions. D. The data available over time and from countries within regions is often poorly collected and incomplete. E. Child survival rates cannot be compared regionally, since each culture has a different sense of how important children are. What is Rosling’s main point about statistical databases? A. The data is available but not readily accessible, so we need to create networks to solve that problem. B. The data that comes from these databases is often flawed and unreliable. C. It doesn’t matter whether we have access to these databases because the data can’t be used in an interesting way. D. Statistics can’t tell us very much, but we should do our best to make use of the information we do have. E. The information that could be true is too hard to sort out from what isn’t true because we don’t know how strong the data really is. http://www.marxists.org/archive/lenin/works/1916/imp-hsc/ch10.htm#v22zz99h-298-GUESS Click the link at left to read Chapter 10 of Imperialism, The Highest Stage of Capitalism, then answer the questions below. According to Lenin, what is the fundamental source of a monopoly? A. It is a natural effect of human behavior. B. It is the result of governments and police systems. C. Its source is rooted in democracy. D. It comes from the concentration of production at a high stage. E. It is what follows a socialist system. What are the principal types or manifestations of monopoly capitalism? A. Monopolistic capitalist associations like cartels, syndicates and trusts; and monopolies as a result of colonial policy. B. Monopolization of raw materials and monopolization of finance capital. C. Monopolization of governing structures and monopolies of oligarchies. D. Monopolist capitalist associations like cartels, syndicates and trusts; and monopolies as a result of colonial policy AND monopolization of raw materials and monopolization of finance capital. E. Monopolization of raw materials and monopolization of finance capital AND monopolization of governing structures and monopolies of oligarchies. What is the definition of a rentier state according to Lenin? A. A state that colonizes other states. B. A state whose bourgeoisie live off the export of capital. C. A poor state. D. A wealthy state. E. A colonized state. Overall Lenin’s analysis of the state of capitalism is concerned with: A. The interactions between states. B. The interactions within states. C. The ownership of industry and organizations. D. The interactions within states AND the ownership of industry and organizations. E. All of these options. http://view.vzaar.com/1194665/flashplayer Watch the video at left, and then answer the questions below. The Marshall Plan was developed by the United States after World War II. What was its purpose? A. to feed the hungry of Europe B. to stem the spread of communism C. to maintain an American military presence in Europe D. to feed the hungry of Europe AND to stem the spread of communism E. to stem the spread of communism AND to maintain an American military presence in Europe What kind of aid was sent at first? A. foods, fertilizers, and machines for agriculture B. books, paper, and radios for education C. clothing, medical supplies, and construction equipment D. mostly cash in the form of loans and grants E. people with business expertise to help develop the economy What kind of aid did the United States send to Greece to help its farmers? A. tractors B. mules C. seeds D. fertilizer E. all of these options What was one way that the United States influenced public opinion in Italy during the elections described in the video? A. The United States provided significant food aid to Italy so that the Italians would be inclined to vote against the Communists. B. The Italians had been impressed by the strength and loyalty of the American soldiers, and were inclined to listen to them during the elections. C. There was a large number of young Italians who followed American fashion and culture. D. Italian immigrants in the United States wrote letters to their families in Italy urging them not to vote for Communists. E. The Greeks showed the Italians how much the Americans had helped them, warning that supporting a Communist candidate would mean sacrificing American aid. How did Pope Pius XII undermine the strength of the Communist Party in Italy? A. He encouraged Italians to go out and vote. B. He warned that the Communist Party would legalize abortion. C. He excommunicated many members of the Communist Party. D. He made a speech in support of capitalism. E. He declared that Communists should not be baptized. http://www.youtube.com/watch?v=KVhWqwnZ1eM Use the video at left to answer the questions below. Hans Rosling shares how his students discuss “we” versus “them.” To whom are his students referring? A. the United States and Mexico B. Christians and Muslims C. Democrats and Republicans D. Europe and Asia E. none of these options According to Rosling, what factors contribute to a better quality of life for people in developing countries? A. family planning B. soap and water C. investment D. vaccinations E. all of these options Using his data, Rosling demonstrates a great shift in Mexico. What change does his data demonstrate? A. a decrease in drug usage B. a decrease in the number of jobs available C. an increase in average life expenctancy D. an increase in the rate of violent crime E. all of these options Instead of “developing” and “developed,” Rosling divides countries into four categories. Which of the following is NOT one of them? A. high-income countries B. middle-income countries C. low-income countries D. no-income countries E. collapsing countries Rosling discusses the increased life expectancy in both China and the United States. How are the situations different? A. The U.S. and China are on different continents. B. The life expectancy in China rose much higher than it did in the U.S. C. China first expanded its life expectancy and then grew economically, whereas the U.S. did the reverse. D. Average income and life expectancy steadily increased in the U.S., but they steadily decreased in China. E. all of these options Rosling shows a chart that demonstrates the regional income distribution of the world from 1970 to 2015. During that time, what has happened in South and East Asia? A. Money has flowed out of Asia to developing countries in Africa. B. The average income of citizens of South and East Asia has increased over the last 30 years. C. The average income of citizens of South and East Asia has decreased over the last 30 years. D. The average income of citizens of South and East Asia has surpassed that of Europe and North America. E. There has been no change. Click here to access GapMinder, the data visualizer that Hans Rosling uses. In 2010, which of the following countries had both a higher per-capita GDP and a higher life expectancy than the United States? A. France B. Japan C. Denmark D. Singapore E. Kuwait http://www.garretthardinsociety.org/articles/art_tragedy_of_the_commons.html http://www.youtube.com/watch?v=8a4S23uXIcM The Tragedy of the Commons What is the rough definition of the “commons” given in the article? A. any private property on which others trespass B. behavior that everyone considers to be normal C. a cow that lives in a herd D. government-administered benefits, like unemployment or Social Security E. a shared resource What does Hardin mean by describing pollution as a reverse tragedy of the commons? A. Rather than causing a problem, it resolves a problem. B. Pollution costs us money rather than making us money. C. We are putting something into the commons rather than removing something from it. D. It starts at the other end of the biological pyramid. E. Humans see less of it as time goes on. Hardin says “the air and waters surrounding us cannot readily be fenced, and so the tragedy of the commons as a cesspool must be prevented by different means.” What are those means? A. establishing more international treaties to protect the environment B. using laws or taxes to make the polluter pay for pollution C. punishing consumers for generating waste D. raising awareness about environmental issues E. developing greener products Pacific Garbage Dump According to the news report, what percent of the Gyre is made of plastic? A. 50 percent B. 60 percent C. 70 percent D. 80 percent E. 90 percent Where does the majority of the plastic in the Gyre come from? A. barges that dump trash in the ocean B. storm drains from land C. people throwing litter off boats into the ocean D. remnants from movie sets filmed at sea E. fishing boats processing their catch What does Charles Moore mean by the “throwaway concept”? A. the habitual use of disposable plastic packaging B. the mistaken view that marine ecosystems are infinitely renewable C. a general lack of interest in recycling D. the willingness to discard effective but small-scale environmental policies in deference to broader E. people throwing away their lives in pursuit of money In what way does the Great Pacific Gyre represent issues like global warming a tragedy of the commons? A. because all the plastic trash in it comes from the United States B. because it kills the albatross and makes it impossible for them to reproduce C. surbecause the countries rounding the Pacific Ocean are polluting the water in a way that affects the quality of the resource for all, but no one is specifically accountable for it D. because it causes marine life to compete for increasingly scarce nutrients in the ocean E. because nations in the region all collectively agreed to dump their trash in the Pacific http://www.npr.org/news/specials/climate/video/ http://ngm.nationalgeographic.com/climateconnections/climate-map http://www.npr.org/news/specials/climate/video/wildchronicles.html Use the links provided at left to answer the questions below. Global Warming: It’s All About Carbon How does carbon give us fuel? A. When you burn things that contain carbon the bonds break, giving off energy. B. Burning things creates carbon out of other elements as a result of combustion. C. Carbon is created after oxygen and hydrogen get released. D. Carbon bonds are created thereby giving off energy. E. Carbon is made into fuel by refining oil. National Geographic Climate Map What geographic areas have seen the most significant changes in temperature? A. The African continent. B. The Pacific Ocean. C. The Atlantic Ocean. D. The Arctic Ocean. E. The Indian Ocean. Why does it matter that rain fall steadily rather than in downpours? A. For those countries accustomed to steady rain fall, downpours are actually more efficient ways to catch water. B. Downpours in regions accustomed to steady fall makes them more prone to flooding and damage. C. In general, as long as regions get either steady fall or downpours most things will stay the same. D. Downpours are always more beneficial to crop growth than steady rain. E. Steady rain is always more beneficial to crop growth than downpours. Climate Change Threatens Kona Coffee What is unique about the climate in Hawaii, making it a good place to grow coffee? A. The elevation is high, the nights are cool and the days are humid. B. The elevation is low, the nights are warm and the days are dry. C. The elevation is high, the nights are warm and the days are dry. D. The elevation is low, the nights are cool and the days are dry. E. The elevation is high, the nights are warm and the days are humid. What specific temperature pattern have experts noted about the region where Kona coffee is grown in Hawaii? A. There has been no significant change but the bean production has dropped. B. The nights have warmed up, even though the days have cooled. C. There has been an increase in bean production with the change in climate. D. The nights have cooled even more so than before. E. There has been universally hot days all the way around.

http://www.econlib.org/library/Smith/smWN1.html#B.I,%20Ch.1,%20Of%20the%20Division%20of%20Labor What does Smith mean by division of labor, and … Read More...