The full range of essential dietary amino acids is provided by all of the following except Question 25 options: legumes beans with rice peanut butter on whole wheat bread poultry

The full range of essential dietary amino acids is provided by all of the following except Question 25 options: legumes beans with rice peanut butter on whole wheat bread poultry

info@checkyourstudy.com The full range of essential dietary amino acids is … Read More...
Lab #03 Studying Beam Flexion Summary: Beams are fundamental structural elements used in a variety of engineering applications and have been studied for centuries. Beams can be assembled to create large structures that carry heavy loads, such as motor vehicle traffic. Beams are also used in micro- or nano-scale accelerometers to delicately measure and detect motions that trigger the deployment of an airbag. From a technical standpoint, a beam is a structure that supports transverse load. Transverse load is load that is perpendicular to the long axis of the beam. As a result, of transverse load, beams undergo bending, in which the beam develops a curvature. As the beam bends, material fibers along the beam’s long axis are forced to stretch or contract, which in turn causes a resistance to the bending. The fibers that are the farthest away from the center of the beam are forced to stretch or contract the most and thus, material at these extremities is the most important to resist bending and deflection. This topic is studied quantitatively in Strength of Materials (CE-303). Purpose: The purpose of this assignment is to accomplish the following goals: • Develop a simple experiment to achieve a goal. • Statistically and observationally analyze your data and interpret the results. • Summarize and present your data, results and interpretations. Procedure: 1. Working as a team, develop a procedure to carefully document the amount of bending a beam under-goes as loads are placed on it (this is your experimental protocol). You must select at least two different beam styles. 2. Collect the data points your experimental protocol calls for. You should conduct at least three trials and the order of data collection within those trials should be randomized. 3. Using the provided Excel deflection calculator, calculate the “predicted” deflection for each of the trials in your protocol. 4. Please observe the following MAXIMUM test torques to avoid damaging the beams. • Width Effect Beams: Small beam: 48 in-lbs, Medium beam: 80 in-lbs, Large beam: 120 in-lbs • Depth Effect Beams: Small beam: 8 in-lbs, Medium beam: 48 in-lbs, Large beam: 160 in-lbs Report and Presentation Requirements: 1. Title Page: Should include the title of the lab experiment, groups individual names (in alphabetical order by last name), data collection date, report due date, and course name and section. 2. Introduction: Briefly explain what you are trying to accomplish with this experiment. 3. Hypothesis Development: Should clearly state the three hypotheses, with respect to distance, beam size, and calculated versus actual deflection. Be sure to include logic to support your educated guess. 4. Method: Explain each activity performed during the data collection and analysis process. Provide a list of the equipment used and its purpose. 5. Analysis and Results: (1) Using the raw data, provide a table of descriptive statistics (mean, variance, and range) for each beam at each distance. (2) Provide a data table (average across 3 trials) showing the deflection for each beam at each distance. (3) Create one or more charts demonstrating the difference, if any, between the calculated and observed deflection for each beam. (4) Use the t-Test: Paired Two Sample for Means in Excel to determine if there is a statistically significant difference between predicted (calculated) deflection and actual (observed) deflection, assuming α = 0.05. Show the results for each beam. Note: To add in the Data Analysis package (under the data tab), go to Office Button -> Excel Options -> Add-Ins -> Manage Excel Add-Ins -> GO… -> check Analysis TookPak and click OK. For each table or chart, provide a description and explanation of what is being displayed. 6. Conclusions: Restate the hypotheses and explain whether or not the educated guess was correct. Include limitations of the experiment (in other words, describe other factors that would make the experiment better or possible errors associated with the experiment). Provide suggestions for future research. 7. Last Page: Include, at the end of the document, a summary of all the tasks required to complete the assignment, and which member or members of the group were principally responsible for completing those tasks. This should be in the form of a simple list. 8. Presentation: Summarize the report, excluding the last page. Due Date: This assignment is to be completed and turned in at the beginning of your laboratory meeting during the week of 11th March. Microsoft office package: Excel: Data tab functions, round, drag-drop, $-sign functions, Beginning of analysis toolpak-t-tests

Lab #03 Studying Beam Flexion Summary: Beams are fundamental structural elements used in a variety of engineering applications and have been studied for centuries. Beams can be assembled to create large structures that carry heavy loads, such as motor vehicle traffic. Beams are also used in micro- or nano-scale accelerometers to delicately measure and detect motions that trigger the deployment of an airbag. From a technical standpoint, a beam is a structure that supports transverse load. Transverse load is load that is perpendicular to the long axis of the beam. As a result, of transverse load, beams undergo bending, in which the beam develops a curvature. As the beam bends, material fibers along the beam’s long axis are forced to stretch or contract, which in turn causes a resistance to the bending. The fibers that are the farthest away from the center of the beam are forced to stretch or contract the most and thus, material at these extremities is the most important to resist bending and deflection. This topic is studied quantitatively in Strength of Materials (CE-303). Purpose: The purpose of this assignment is to accomplish the following goals: • Develop a simple experiment to achieve a goal. • Statistically and observationally analyze your data and interpret the results. • Summarize and present your data, results and interpretations. Procedure: 1. Working as a team, develop a procedure to carefully document the amount of bending a beam under-goes as loads are placed on it (this is your experimental protocol). You must select at least two different beam styles. 2. Collect the data points your experimental protocol calls for. You should conduct at least three trials and the order of data collection within those trials should be randomized. 3. Using the provided Excel deflection calculator, calculate the “predicted” deflection for each of the trials in your protocol. 4. Please observe the following MAXIMUM test torques to avoid damaging the beams. • Width Effect Beams: Small beam: 48 in-lbs, Medium beam: 80 in-lbs, Large beam: 120 in-lbs • Depth Effect Beams: Small beam: 8 in-lbs, Medium beam: 48 in-lbs, Large beam: 160 in-lbs Report and Presentation Requirements: 1. Title Page: Should include the title of the lab experiment, groups individual names (in alphabetical order by last name), data collection date, report due date, and course name and section. 2. Introduction: Briefly explain what you are trying to accomplish with this experiment. 3. Hypothesis Development: Should clearly state the three hypotheses, with respect to distance, beam size, and calculated versus actual deflection. Be sure to include logic to support your educated guess. 4. Method: Explain each activity performed during the data collection and analysis process. Provide a list of the equipment used and its purpose. 5. Analysis and Results: (1) Using the raw data, provide a table of descriptive statistics (mean, variance, and range) for each beam at each distance. (2) Provide a data table (average across 3 trials) showing the deflection for each beam at each distance. (3) Create one or more charts demonstrating the difference, if any, between the calculated and observed deflection for each beam. (4) Use the t-Test: Paired Two Sample for Means in Excel to determine if there is a statistically significant difference between predicted (calculated) deflection and actual (observed) deflection, assuming α = 0.05. Show the results for each beam. Note: To add in the Data Analysis package (under the data tab), go to Office Button -> Excel Options -> Add-Ins -> Manage Excel Add-Ins -> GO… -> check Analysis TookPak and click OK. For each table or chart, provide a description and explanation of what is being displayed. 6. Conclusions: Restate the hypotheses and explain whether or not the educated guess was correct. Include limitations of the experiment (in other words, describe other factors that would make the experiment better or possible errors associated with the experiment). Provide suggestions for future research. 7. Last Page: Include, at the end of the document, a summary of all the tasks required to complete the assignment, and which member or members of the group were principally responsible for completing those tasks. This should be in the form of a simple list. 8. Presentation: Summarize the report, excluding the last page. Due Date: This assignment is to be completed and turned in at the beginning of your laboratory meeting during the week of 11th March. Microsoft office package: Excel: Data tab functions, round, drag-drop, $-sign functions, Beginning of analysis toolpak-t-tests

info@checkyourstudy.com
Take Home Exam 3: Special Note Before Starting the Exam: If you scan your solutions to the exam and save it as a pdf or image file and put it on dropbox and I can not read it or open it, you will not receive credit for the exam. Furthermore, if you write the solutions up in word, latex ect. and give me a print out, which does not include all the pages you will not get credit for the missing pages. Also if your folder on dropbox is not clearly labeled and I can not find your exam then you will not get credit for the exam. Finally, please make sure you put your name on the exam!! Math 2100 Exam 3, Out of Class, Due by December 8th, 2015 at 5:00 pm. Name: Problem 1. (15 points) A random variable is said to have the (standard) Cauchy distribution if its PDF is given by f (x) = 1 π 1 1+ x2 , −∞< x <∞ This problem uses computer simulations to demonstrate that a) samples from this distribution often have extreme outliers (a consequence of the heavy tails of the distribution), and b) the sample mean is prone to the same type of outliers. Below is a graph of the pdf a) (5 points) The R commands x=rcauchy(500); summary(x) generate a random sample of size 500 from the Cauchy distribution and display the sample’s five number summary; Report the five number summary and the interquartile range, and comment on whether or not the smallest and largest numbers generated from this sample of 500 are outliers. Repeat this 10 times. b) (5 points) The R commands m=matrix(rcauchy(50000), nrow=500); xb=apply(m,1,mean);summary(xb) generate the matrix m that has 500 rows, each of which is a sample of size n=100 from the Cauchy distribution, compute the 500 sample means and store them in xb. and display the five number summary xb. Repeat these commands 10 times, and report the 10 sets of five number summaries. Compare with the 10 sets of five number summaries from part (a), and comment on whether or not the distribution of the averages seems to be more prone to extreme outliers as that of the individual observations. c) (5 points) Why does this happen? (hint: try to calculate E(X) and V(X) for this distribution) and does the LLN and CLT apply for samples from a Cauchy distribution? Hint: E(X) is undefined for this distribution unless you use the Cauchy Principle Value as such for the mean lim a→∞ xf (x)dx −a a∫ In addition x2 1+ x2 dx = x2 +1−1 1+ x2 dx = 1− 1 1+ x2 " # $ % & ' ∫ ∫ ∫ dx 1 1+ x2 dx = tan−1 ∫ x +C Problem 2. (5 points) A marketing expert for a pasta-making company believes that 40% of pasta lovers prefer lasagna. If 9 out of 20 pasta lovers choose lasagna over other pastas, what can be concluded about the expert's claim? Use a 0.05 level of significance. Problem 3. (10 points) A coin is tossed 20 times, resulting in 5 heads. Is this sufficient evidence to reject the hypothesis that the coin is balanced in favor of the alternative that heads occur less than 50% of the time (essentially is this significant evidence to claim that the coin is unbalanced in favor of tails)? Use a 0.05 level of significance. Problem 4. (25 points) Since the chemical benzene may cause cancer, the federal government has set the maximum allowable benzene concentration in the workplace at 1 part per million (1 ppm) Suppose that a steel manufacturing plant is under investigation for possible violations regarding benzene level. The Occupational Safety and Health Administration (OSHA) will analyze 14 air samples over a one-month period. Assume normality of the population from which the samples were drawn. a) (3 points) What is an appropriate null hypothesis for this scenario? (Give this in symbols) b) (3 points) What is an appropriate alternative hypothesis for this scenario? (Give this in symbols) c) (3 points) What kind of hypothesis test is this: left-tailed, right-tailed or two-tailed? Explain how you picked your answer. d) (3 points) Is this a one-sample t-test or a one-sample test using a normal distribution? Explain how you picked your answer. e) (4 points) If the test using this sample of size 14 is to be done at the 1% significance level, calculate the critical value(s) and describe the rejection region(s) for the test statistic. Show your work. f) (5 points) OHSA finds the following for their sample of size 14: a mean benzene level of 1.51 ppm and a standard deviation of 1.415 ppm. What should be concluded at the 1% significance level? Support your answer with calculation(s) and reasoning. g) (4 points) Calculate the p-value for this test and verify that this answer would lead to the same conclusion you made in part f. Problem 5. (15 points) A normally distributed random variable Y possesses a mean of μ = 20 and a standard deviation of σ = 5. A random sample of n = 31 observations is to be selected. Let X be the sample average. (X in this problem is really x _ ) a)(5 points) Describe the sampling distribution of X (i.e. describe the distribution of X and give μx, σx ) b) (5 points) Find the z-score of x = 22 c) (5 points) Find P(X ≥ 22) = Problem 6. (10 points) A restaurants receipts show that the cost of customers' dinners has a distribution with a mean of $54 and a standard deviation of $18. What is the probability that the next 100 customers will spend a total of at least $5800 on dinner? Problem 7. (10 points) The operations manager of a large production plant would like to estimate the mean amount of time a worker takes to assemble a new electronic component. Assume that the standard deviation of this assembly time is 3.6 minutes and is normally distributed. a) (3 points) After observing 120 workers assembling similar devices, the manager noticed that their average time was 16.2 minutes. Construct a 92% confidence interval for the mean assembly time. b) (2 points) How many workers should be involved in this study in order to have the mean assembly time estimated up to ± 15 seconds with 92% confidence? c) (5 points) Construct a 92% confidence interval if instead of observing 120 workers assembling similar devices, rather the manager observes 25 workers and notice their average time was 16.2 minutes with a standard deviation of 4.0 minutes. Problem 8. (10 points): A manufacturer of candy must monitor the temperature at which the candies are baked. Too much variation will cause inconsistency in the taste of the candy. Past records show that the standard deviation of the temperature has been 1.2oF . A random sample of 30 batches of candy is selected, and the sample standard deviation of the temperature is 2.1oF . a. (5 points) At the 0.05 level of significance, is there evidence that the population standard deviation has increased above 1.2oF ? b. (3 points) What assumption do you need to make in order to perform this test? c. (2 points) Compute the p-value in (a) and interpret its meaning.

Take Home Exam 3: Special Note Before Starting the Exam: If you scan your solutions to the exam and save it as a pdf or image file and put it on dropbox and I can not read it or open it, you will not receive credit for the exam. Furthermore, if you write the solutions up in word, latex ect. and give me a print out, which does not include all the pages you will not get credit for the missing pages. Also if your folder on dropbox is not clearly labeled and I can not find your exam then you will not get credit for the exam. Finally, please make sure you put your name on the exam!! Math 2100 Exam 3, Out of Class, Due by December 8th, 2015 at 5:00 pm. Name: Problem 1. (15 points) A random variable is said to have the (standard) Cauchy distribution if its PDF is given by f (x) = 1 π 1 1+ x2 , −∞< x <∞ This problem uses computer simulations to demonstrate that a) samples from this distribution often have extreme outliers (a consequence of the heavy tails of the distribution), and b) the sample mean is prone to the same type of outliers. Below is a graph of the pdf a) (5 points) The R commands x=rcauchy(500); summary(x) generate a random sample of size 500 from the Cauchy distribution and display the sample’s five number summary; Report the five number summary and the interquartile range, and comment on whether or not the smallest and largest numbers generated from this sample of 500 are outliers. Repeat this 10 times. b) (5 points) The R commands m=matrix(rcauchy(50000), nrow=500); xb=apply(m,1,mean);summary(xb) generate the matrix m that has 500 rows, each of which is a sample of size n=100 from the Cauchy distribution, compute the 500 sample means and store them in xb. and display the five number summary xb. Repeat these commands 10 times, and report the 10 sets of five number summaries. Compare with the 10 sets of five number summaries from part (a), and comment on whether or not the distribution of the averages seems to be more prone to extreme outliers as that of the individual observations. c) (5 points) Why does this happen? (hint: try to calculate E(X) and V(X) for this distribution) and does the LLN and CLT apply for samples from a Cauchy distribution? Hint: E(X) is undefined for this distribution unless you use the Cauchy Principle Value as such for the mean lim a→∞ xf (x)dx −a a∫ In addition x2 1+ x2 dx = x2 +1−1 1+ x2 dx = 1− 1 1+ x2 " # $ % & ' ∫ ∫ ∫ dx 1 1+ x2 dx = tan−1 ∫ x +C Problem 2. (5 points) A marketing expert for a pasta-making company believes that 40% of pasta lovers prefer lasagna. If 9 out of 20 pasta lovers choose lasagna over other pastas, what can be concluded about the expert's claim? Use a 0.05 level of significance. Problem 3. (10 points) A coin is tossed 20 times, resulting in 5 heads. Is this sufficient evidence to reject the hypothesis that the coin is balanced in favor of the alternative that heads occur less than 50% of the time (essentially is this significant evidence to claim that the coin is unbalanced in favor of tails)? Use a 0.05 level of significance. Problem 4. (25 points) Since the chemical benzene may cause cancer, the federal government has set the maximum allowable benzene concentration in the workplace at 1 part per million (1 ppm) Suppose that a steel manufacturing plant is under investigation for possible violations regarding benzene level. The Occupational Safety and Health Administration (OSHA) will analyze 14 air samples over a one-month period. Assume normality of the population from which the samples were drawn. a) (3 points) What is an appropriate null hypothesis for this scenario? (Give this in symbols) b) (3 points) What is an appropriate alternative hypothesis for this scenario? (Give this in symbols) c) (3 points) What kind of hypothesis test is this: left-tailed, right-tailed or two-tailed? Explain how you picked your answer. d) (3 points) Is this a one-sample t-test or a one-sample test using a normal distribution? Explain how you picked your answer. e) (4 points) If the test using this sample of size 14 is to be done at the 1% significance level, calculate the critical value(s) and describe the rejection region(s) for the test statistic. Show your work. f) (5 points) OHSA finds the following for their sample of size 14: a mean benzene level of 1.51 ppm and a standard deviation of 1.415 ppm. What should be concluded at the 1% significance level? Support your answer with calculation(s) and reasoning. g) (4 points) Calculate the p-value for this test and verify that this answer would lead to the same conclusion you made in part f. Problem 5. (15 points) A normally distributed random variable Y possesses a mean of μ = 20 and a standard deviation of σ = 5. A random sample of n = 31 observations is to be selected. Let X be the sample average. (X in this problem is really x _ ) a)(5 points) Describe the sampling distribution of X (i.e. describe the distribution of X and give μx, σx ) b) (5 points) Find the z-score of x = 22 c) (5 points) Find P(X ≥ 22) = Problem 6. (10 points) A restaurants receipts show that the cost of customers' dinners has a distribution with a mean of $54 and a standard deviation of $18. What is the probability that the next 100 customers will spend a total of at least $5800 on dinner? Problem 7. (10 points) The operations manager of a large production plant would like to estimate the mean amount of time a worker takes to assemble a new electronic component. Assume that the standard deviation of this assembly time is 3.6 minutes and is normally distributed. a) (3 points) After observing 120 workers assembling similar devices, the manager noticed that their average time was 16.2 minutes. Construct a 92% confidence interval for the mean assembly time. b) (2 points) How many workers should be involved in this study in order to have the mean assembly time estimated up to ± 15 seconds with 92% confidence? c) (5 points) Construct a 92% confidence interval if instead of observing 120 workers assembling similar devices, rather the manager observes 25 workers and notice their average time was 16.2 minutes with a standard deviation of 4.0 minutes. Problem 8. (10 points): A manufacturer of candy must monitor the temperature at which the candies are baked. Too much variation will cause inconsistency in the taste of the candy. Past records show that the standard deviation of the temperature has been 1.2oF . A random sample of 30 batches of candy is selected, and the sample standard deviation of the temperature is 2.1oF . a. (5 points) At the 0.05 level of significance, is there evidence that the population standard deviation has increased above 1.2oF ? b. (3 points) What assumption do you need to make in order to perform this test? c. (2 points) Compute the p-value in (a) and interpret its meaning.

No expert has answered this question yet. You can browse … Read More...
Calculate the ratio of the highest to lowest frequencies of electromagnetic waves the eye can see, given the wavelength range of visible light is from 380 to 760 nm. A. 3 B. 4 C. 2 + D. 6 E. 7

Calculate the ratio of the highest to lowest frequencies of electromagnetic waves the eye can see, given the wavelength range of visible light is from 380 to 760 nm. A. 3 B. 4 C. 2 + D. 6 E. 7

info@checkyourstudy.com Calculate the ratio of the highest to lowest frequencies … Read More...
Critical Thinking: Comprehensive Sexual Education versus Abstinence-Only The Bush Administration spent over 175 million dollars annually on abstinence-only sex education programs. These programs could only discuss the failure rates of other methods, nothing more (Ott and Santelli, 2007). Comprehensive programs educate students on a range of contraceptive options – including abstinence. Two separate studies now indicate that comprehensive programs delay the start of sexual activity and cut teen pregnancy when compared to abstinence-only education programs (Ott and Santelli, 2007; Center for the Advancement of Health, 2008).

Critical Thinking: Comprehensive Sexual Education versus Abstinence-Only The Bush Administration spent over 175 million dollars annually on abstinence-only sex education programs. These programs could only discuss the failure rates of other methods, nothing more (Ott and Santelli, 2007). Comprehensive programs educate students on a range of contraceptive options – including abstinence. Two separate studies now indicate that comprehensive programs delay the start of sexual activity and cut teen pregnancy when compared to abstinence-only education programs (Ott and Santelli, 2007; Center for the Advancement of Health, 2008).

info@checkyourstudy.com
Materials Chemistry for Engineers 1. In the van der Waals corrections to the Ideal Gas Law: (P + a/V2)(V – b) = nRT (a) What do a and b correct for from the Ideal Gas Law? (b) How would one determine a and b experimentally? Describe a proposed experiment and data analysis method for your experiment. 2. (a) What are the assumptions of the Ideal Gas Law? How did van der Waal modify these assumptions to come up with his equation of state? (b) what is an equation of state, in general? Describe in your own words. 3. Given the following data: Material a b_____ (l2.atm/mole2) (l/mole) N2 1.39 0.03913 NH3 4.17 0.03107 Aniline 26.50 0.1369 Benzene 18.00 0.1154 (a) Plot P vs. T for each gas using the van der Waals equation of state. Assume that you have a 1 liter volume and 1 mole of gas and plot the temperature on the x-axis from room temperature to 1400 K (pressures should range from about 0 atm to about 120 atm, depending on the gas). Plot the Ideal Gas Law with the other data on one plot. Are the interactions between molecules attractive or repulsive at low temperature? How do you know? What is happening with the gases at high temperature? Is one of the gases different from the others at 1400 K? (b) Discuss the nature of the intermolecular interaction that creates the deviation from ideality for each material. Are there induced dipole-induced dipole interactions, iondipole interactions, etc. for each of the different gases? Draw their chemical structures. 4. Ethane (CH3CH3) and fluoromethane (CH3F) have the same number of electrons and are essentially the same size. However, ethane has a boiling point of 184.5 K and fluoromethane has a boiling point of 194.7 K. Explain this 10 degree difference in boiling point in terms of the van der Waals forces present. Bonus, what is the size of each molecule? Show your calculation/sources.

Materials Chemistry for Engineers 1. In the van der Waals corrections to the Ideal Gas Law: (P + a/V2)(V – b) = nRT (a) What do a and b correct for from the Ideal Gas Law? (b) How would one determine a and b experimentally? Describe a proposed experiment and data analysis method for your experiment. 2. (a) What are the assumptions of the Ideal Gas Law? How did van der Waal modify these assumptions to come up with his equation of state? (b) what is an equation of state, in general? Describe in your own words. 3. Given the following data: Material a b_____ (l2.atm/mole2) (l/mole) N2 1.39 0.03913 NH3 4.17 0.03107 Aniline 26.50 0.1369 Benzene 18.00 0.1154 (a) Plot P vs. T for each gas using the van der Waals equation of state. Assume that you have a 1 liter volume and 1 mole of gas and plot the temperature on the x-axis from room temperature to 1400 K (pressures should range from about 0 atm to about 120 atm, depending on the gas). Plot the Ideal Gas Law with the other data on one plot. Are the interactions between molecules attractive or repulsive at low temperature? How do you know? What is happening with the gases at high temperature? Is one of the gases different from the others at 1400 K? (b) Discuss the nature of the intermolecular interaction that creates the deviation from ideality for each material. Are there induced dipole-induced dipole interactions, iondipole interactions, etc. for each of the different gases? Draw their chemical structures. 4. Ethane (CH3CH3) and fluoromethane (CH3F) have the same number of electrons and are essentially the same size. However, ethane has a boiling point of 184.5 K and fluoromethane has a boiling point of 194.7 K. Explain this 10 degree difference in boiling point in terms of the van der Waals forces present. Bonus, what is the size of each molecule? Show your calculation/sources.

No expert has answered this question yet. You can browse … Read More...
Operational amplifiers are often used to amplify a sensor output. This problem will walk you through the design of a simple temperature measuring device based on a platinum wire sensor. Goal: Build a circuit that will provide a calibrated output between .32V and 2.12V for temperatures sensed between 0°C and 100°C. (The final circuit can be seen at the end of this homework but we will work out each stage in turn.) The platinum wire sensor has a resistance of 100Ω at 0°C and 138.5Ω at 100°C, or a change of 0.385Ω/°C. (The arrow through the resistor in the circuit indicates it is a variable resistor.) A 0.5mA source is used to excite the platinum wire resistor to obtain a voltage. The first stage of our circuit will be to buffer the output of the sensor so we do not load the sensor circuit by drawing off any of the .5mA current to the op amp. A. (10 points) What is V1 when the temperature is 0°C, 1°C, 20°C and 100°C? (Use at least four decimal points.) B. (10 points)The output voltage of the resistor changes by I*ΔRT where I =0.5mA and ΔRT = 0.385Ω/°C. It is too small, so we need amplify this so the V2 output in the second stage of this circuit will be 5mV per degree using a non-inverting amplifier. So we want 5mV = (I*ΔRT * gain) per degree centigrade. What is the required gain for this circuit? Choose values of R1 and R2 between 1k and 100kΩ to achieve this. Choose Rin to be 1K-10kΩ. C. (10 points) What is V2 for a temperature of 0°C and for 1°C. What is the difference between the two voltages? (Hint: The difference should be exactly 5mV! The resistance of the platinum wire will be 100.385Ω @ 1°C.) D. (10 extra credit points) We would like for the output voltage, V2, to be 0V when the temperature is 0°C. This can be done by adding a third stage with an offset voltage in the circuit below. Find Voffset so that VC = 0V when the temperature is 0°C. Let R3 =R4 = R5 and pick appropriate values of the resistors between 1k and 10kΩ. (Hint: V2= the voltage when the temperature is 0°C you found in part C. Find Voffset so that Vc =0V. Superposition may a good technique to use here. You can analyze the circuit when V2=0 and the offset is activated and then you can analyze the circuit when V2 = the value from part C and the offset voltage is zero.) What is Voffset? What values did you chose for the resistors? What is VC when the temperature is is 0°C, 1°C, 20°C and 100°C? E. The voltage VC should now be 0V when the temperature is 0°C and increase by 10mV for every degree centigrade. We need to multiply this by 1.8, the factor to convert a degree Centigrade to a degree Fahrenheit. The output of this stage, V4, should range from 0V to 1.80V and then we will add an offset to change the VF output range to 0.32V to 2.12V in the last stage. The following circuit can be used. Note that this circuit uses inverting amplifiers instead of non-inverting amplifiers. (10 extra credit points) Find the correct resistor values for R7, R8 so that V4 will range between 0V to -1.80V when the temperature is sensed between 0°C and 100°C. (10 extra credit points) Find Voffset2 and then determine VF at 0°C, 1°C, 20°C and 100°C so the VF will range from 0.32V to 2.12V. (Hint: When VC = 0V at 0°C, the V4 output of this stage will also be 0V. Determine the offset voltage so VF = 0.32V. Choose R9 = R10 = R11 = 1kΩ, so at 0°C, VF = 0.32V = VR10 with the current going from the output back through R10 to zero volts, then down through R11 and the Voffset2 source. Since VR10=VR11=0.32V, determine Voffset2. When the temperature is 100°C the output should be 2.12V.)

Operational amplifiers are often used to amplify a sensor output. This problem will walk you through the design of a simple temperature measuring device based on a platinum wire sensor. Goal: Build a circuit that will provide a calibrated output between .32V and 2.12V for temperatures sensed between 0°C and 100°C. (The final circuit can be seen at the end of this homework but we will work out each stage in turn.) The platinum wire sensor has a resistance of 100Ω at 0°C and 138.5Ω at 100°C, or a change of 0.385Ω/°C. (The arrow through the resistor in the circuit indicates it is a variable resistor.) A 0.5mA source is used to excite the platinum wire resistor to obtain a voltage. The first stage of our circuit will be to buffer the output of the sensor so we do not load the sensor circuit by drawing off any of the .5mA current to the op amp. A. (10 points) What is V1 when the temperature is 0°C, 1°C, 20°C and 100°C? (Use at least four decimal points.) B. (10 points)The output voltage of the resistor changes by I*ΔRT where I =0.5mA and ΔRT = 0.385Ω/°C. It is too small, so we need amplify this so the V2 output in the second stage of this circuit will be 5mV per degree using a non-inverting amplifier. So we want 5mV = (I*ΔRT * gain) per degree centigrade. What is the required gain for this circuit? Choose values of R1 and R2 between 1k and 100kΩ to achieve this. Choose Rin to be 1K-10kΩ. C. (10 points) What is V2 for a temperature of 0°C and for 1°C. What is the difference between the two voltages? (Hint: The difference should be exactly 5mV! The resistance of the platinum wire will be 100.385Ω @ 1°C.) D. (10 extra credit points) We would like for the output voltage, V2, to be 0V when the temperature is 0°C. This can be done by adding a third stage with an offset voltage in the circuit below. Find Voffset so that VC = 0V when the temperature is 0°C. Let R3 =R4 = R5 and pick appropriate values of the resistors between 1k and 10kΩ. (Hint: V2= the voltage when the temperature is 0°C you found in part C. Find Voffset so that Vc =0V. Superposition may a good technique to use here. You can analyze the circuit when V2=0 and the offset is activated and then you can analyze the circuit when V2 = the value from part C and the offset voltage is zero.) What is Voffset? What values did you chose for the resistors? What is VC when the temperature is is 0°C, 1°C, 20°C and 100°C? E. The voltage VC should now be 0V when the temperature is 0°C and increase by 10mV for every degree centigrade. We need to multiply this by 1.8, the factor to convert a degree Centigrade to a degree Fahrenheit. The output of this stage, V4, should range from 0V to 1.80V and then we will add an offset to change the VF output range to 0.32V to 2.12V in the last stage. The following circuit can be used. Note that this circuit uses inverting amplifiers instead of non-inverting amplifiers. (10 extra credit points) Find the correct resistor values for R7, R8 so that V4 will range between 0V to -1.80V when the temperature is sensed between 0°C and 100°C. (10 extra credit points) Find Voffset2 and then determine VF at 0°C, 1°C, 20°C and 100°C so the VF will range from 0.32V to 2.12V. (Hint: When VC = 0V at 0°C, the V4 output of this stage will also be 0V. Determine the offset voltage so VF = 0.32V. Choose R9 = R10 = R11 = 1kΩ, so at 0°C, VF = 0.32V = VR10 with the current going from the output back through R10 to zero volts, then down through R11 and the Voffset2 source. Since VR10=VR11=0.32V, determine Voffset2. When the temperature is 100°C the output should be 2.12V.)

A) At 0 deg C —> R =100 Ohm, I … Read More...
Assignment 5 Due: 11:59pm on Wednesday, March 5, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 6.13 A hand presses down on the book in the figure. Part A Is the normal force of the table on the book larger than, smaller than, or equal to ? ANSWER: Correct mg Equal to Larger than Smaller than mg mg mg Problem 6.2 The three ropes in the figure are tied to a small, very light ring. Two of these ropes are anchored to walls at right angles with the tensions shown in the figure. Part A What is the magnitude of the tension in the third rope? Express your answer using two significant figures. ANSWER: Correct Part B What is the direction of the tension in the third rope? Express your answer using two significant figures. T  3 T3 = 94 N T  3 Typesetting math: 100% ANSWER: Correct The Normal Force When an object rests on a surface, there is always a force perpendicular to the surface; we call this the normal force, denoted by . The two questions to the right will explore the normal force. Part A A man attempts to pick up his suitcase of weight by pulling straight up on the handle. However, he is unable to lift the suitcase from the floor. Which statement about the magnitude of the normal force acting on the suitcase is true during the time that the man pulls upward on the suitcase? Hint 1. How to approach this problem First, identify the forces that act on the suitcase and draw a free-body diagram. Then use the fact that the suitcase is in equilibrium, , to examine how the forces acting on the suitcase relate to each other. Hint 2. Identify the correct free-body diagram Which of the figures represents the free-body diagram of the suitcase while the man is pulling on the handle with a force of magnitude ? = 58   below horizontal n ws n F = 0 fpull Typesetting math: 100% ANSWER: ANSWER: Correct Part B A B C D The magnitude of the normal force is equal to the magnitude of the weight of the suitcase. The magnitude of the normal force is equal to the magnitude of the weight of the suitcase minus the magnitude of the force of the pull. The magnitude of the normal force is equal to the sum of the magnitude of the force of the pull and the magnitude of the suitcase’s weight. The magnitude of the normal force is greater than the magnitude of the weight of the suitcase. Typesetting math: 100% Now assume that the man of weight is tired and decides to sit on his suitcase. Which statement about the magnitude of the normal force acting on the suitcase is true during the time that the man is sitting on the suitcase? Hint 1. Identify the correct free-body diagram. Which of the figures represents the free-body diagram while the man is sitting atop the suitcase? Here the vector labeled is a force that has the same magnitude as the man’s weight. ANSWER: wm n wm Typesetting math: 100% ANSWER: Correct Recognize that the normal force acting on an object is not always equal to the weight of that object. This is an important point to understand. Problem 6.5 A construction worker with a weight of 880 stands on a roof that is sloped at 18 . Part A What is the magnitude of the normal force of the roof on the worker? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct A B C D The magnitude of the normal force is equal to the magnitude of the suitcase’s weight. The magnitude of the normal force is equal to the magnitude of the suitcase’s weight minus the magnitude of the man’s weight. The magnitude of the normal force is equal to the sum of the magnitude of the man’s weight and the magnitude of the suitcase’s weight. The magnitude of the normal force is less than the magnitude of the suitcase’s weight. N  n = 840 N Typesetting math: 100% Problem 6.6 In each of the two free-body diagrams, the forces are acting on a 3.0 object. Part A For diagram , find the value of , the -component of the acceleration. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B For diagram the part A, find the value of the -component of the acceleration. Express your answer to two significant figures and include the appropriate units. ANSWER: kg ax x ax = -0.67 m s2 ay, y Typesetting math: 100% Correct Part C For diagram , find the value of , the -component of the acceleration. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D For diagram the part C, find the value of , the -component of the acceleration. Express your answer to two significant figures and include the appropriate units. ANSWER: ay = 0 m s2 ax x ax = 0.67 m s2 ay y Typesetting math: 100% Correct Problem 6.7 In each of the two free-body diagrams, the forces are acting on a 3.0 object. Part A Find the value of , the component of the acceleration in diagram (a). Express your answer to two significant figures and include the appropriate units. ANSWER: Correct ay = 0 m s2 kg ax x ax = 0.99 m s2 Typesetting math: 100% Part B Find the value of , the component of the acceleration in diagram (a). Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C Find the value of , the component of the acceleration in diagram (b). Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D Find the value of , the component of the acceleration in diagram (b). Express your answer to two significant figures and include the appropriate units. ANSWER: Correct ay y ay = 0 m s2 ax x ax = -0.18 m s2 ay y ay = 0 m s2 Typesetting math: 100% Problem 6.10 A horizontal rope is tied to a 53.0 box on frictionless ice. What is the tension in the rope if: Part A The box is at rest? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part B The box moves at a steady = 4.80 ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part C The box = 4.80 and = 4.60 ? Express your answer to three significant figures and include the appropriate units. ANSWER: kg T = 0 N vx m/s T = 0 N vx m/s ax m/s2 Typesetting math: 100% Correct Problem 6.14 It takes the elevator in a skyscraper 4.5 to reach its cruising speed of 11 . A 60 passenger gets aboard on the ground floor. Part A What is the passenger’s weight before the elevator starts moving? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the passenger’s weight while the elevator is speeding up? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the passenger’s weight after the elevator reaches its cruising speed? T = 244 N s m/s kg w = 590 N w = 730 N Typesetting math: 100% Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Block on an Incline A block lies on a plane raised an angle from the horizontal. Three forces act upon the block: , the force of gravity; , the normal force; and , the force of friction. The coefficient of friction is large enough to prevent the block from sliding . Part A Consider coordinate system a, with the x axis along the plane. Which forces lie along the axes? ANSWER: w = 590 N  F  w F n F  f Typesetting math: 100% Correct Part B Which forces lie along the axes of the coordinate system b, in which the y axis is vertical? ANSWER: Correct only only only and and and and and F  f F  n F  w F  f F  n F  f F  w F  n F w F  f F  n F w only only only and and and and and F  f F  n F  w F  f F  n F  f F  w F  n F w F  f F  n F w Typesetting math: 100% Usually the best advice is to choose coordinate system so that the acceleration of the system is directly along one of the coordinate axes. If the system isn’t accelerating, then you are better off choosing the coordinate system with the most vectors along the coordinate axes. But now you are going to ignore that advice. You will find the normal force, , using vertical coordinate system b. In these coordinates you will find the magnitude appearing in both the x and y equations, each multiplied by a trigonometric function. Part C Because the block is not moving, the sum of the y components of the forces acting on the block must be zero. Find an expression for the sum of the y components of the forces acting on the block, using coordinate system b. Express your answer in terms of some or all of the variables , , , and . Hint 1. Find the y component of Write an expression for , the y component of the force , using coordinate system b. Express your answer in terms of and . Hint 1. Some geometry help – a useful angle The smaller angle between and the y-axis is also , as shown in the figure. ANSWER: F  n Fn Fn Ff Fw  F n Fny F  n Fn  F  n  Typesetting math: 100% Hint 2. Find the y component of Write an expression for , the y component of the force , using coordinate system b. Express your answer in terms of and . Hint 1. Some geometry help – a useful angle The smaller angle between and the x-axis is also , as shown in the figure. ANSWER: ANSWER: Fny = Fncos() F f Ffy F f Ff  F  f  Ffy = Ffsin() Fy = 0 = Fncos() + Ffsin() − Fw Typesetting math: 100% Correct Part D Because the block is not moving, the sum of the x components of the forces acting on the block must be zero. Find an expression for the sum of the x components of the forces acting on the block, using coordinate system b. Express your answer in terms of some or all of the variables , , , and . Hint 1. Find the x component of Write an expression for , the x component of the force , using coordinate system b. Express your answer in terms of and . ANSWER: ANSWER: Correct Part E To find the magnitude of the normal force, you must express in terms of since is an unknown. Using the equations you found in the two previous parts, find an expression for involving and but not . Hint 1. How to approach the problem From your answers to the previous two parts you should have two force equations ( and ). Combine these equations to eliminate . The key is to multiply the Fn Ff Fw  F n Fnx F  n Fn  Fnx = −Fnsin() Fx = 0 = −Fnsin() + Ffcos() Fn Fw Ff Fn Fw  Ff Typesetting math: 100% Fy = 0 Fx = 0 Ff equation for the y components by and the equation for the x components by , then add or subtract the two equations to eliminate the term . An alternative motivation for the algebra is to eliminate the trig functions in front of by using the trig identity . At the very least this would result in an equation that is simple to solve for . ANSWER: Correct Congratulations on working this through. Now realize that in coordinate system a, which is aligned with the plane, the y-coordinate equation is , which leads immediately to the result obtained here for . CONCLUSION: A thoughtful examination of which coordinate system to choose can save a lot of algebra. Contact Forces Introduced Learning Goal: To introduce contact forces (normal and friction forces) and to understand that, except for friction forces under certain circumstances, these forces must be determined from: net Force = ma. Two solid objects cannot occupy the same space at the same time. Indeed, when the objects touch, they exert repulsive normal forces on each other, as well as frictional forces that resist their slipping relative to each other. These contact forces arise from a complex interplay between the electrostatic forces between the electrons and ions in the objects and the laws of quantum mechanics. As two surfaces are pushed together these forces increase exponentially over an atomic distance scale, easily becoming strong enough to distort the bulk material in the objects if they approach too close. In everyday experience, contact forces are limited by the deformation or acceleration of the objects, rather than by the fundamental interatomic forces. Hence, we can conclude the following: The magnitude of contact forces is determined by , that is, by the other forces on, and acceleration of, the contacting bodies. The only exception is that the frictional forces cannot exceed (although they can be smaller than this or even zero). Normal and friction forces Two types of contact forces operate in typical mechanics problems, the normal and frictional forces, usually designated by and (or , or something similar) respectively. These are the components of the overall contact force: perpendicular to and parallel to the plane of contact. Kinetic friction when surfaces slide cos  sin  Ff cos() sin() Fn sin2() + cos2 () = 1 Fn Fn = Fwcos() Fy = Fn − FW cos() = 0 Fn F = ma μn n f Ffric n f Typesetting math: 100% When one surface is sliding past the other, experiments show three things about the friction force (denoted ): The frictional force opposes the relative motion at the 1. point of contact, 2. is proportional to the normal force, and 3. the ratio of the magnitude of the frictional force to that of the normal force is fairly constant over a wide range of speeds. The constant of proportionality is called the coefficient of kinetic friction, often designated . As long as the sliding continues, the frictional force is then (valid when the surfaces slide by each other). Static friction when surfaces don’t slide When there is no relative motion of the surfaces, the frictional force can assume any value from zero up to a maximum , where is the coefficient of static friction. Invariably, is larger than , in agreement with the observation that when a force is large enough that something breaks loose and starts to slide, it often accelerates. The frictional force for surfaces with no relative motion is therefore (valid when the contacting surfaces have no relative motion). The actual magnitude and direction of the static friction force are such that it (together with other forces on the object) causes the object to remain motionless with respect to the contacting surface as long as the static friction force required does not exceed . The equation is valid only when the surfaces are on the verge of sliding. Part A When two objects slide by one another, which of the following statements about the force of friction between them, is true? ANSWER: Correct Part B fk fk μk fk = μkn μsn μs μs μk fs ! μsn μsn fs = μsn The frictional force is always equal to . The frictional force is always less than . The frictional force is determined by other forces on the objects so it can be either equal to or less than . μkn μkn μkn Typesetting math: 100% When two objects are in contact with no relative motion, which of the following statements about the frictional force between them, is true? ANSWER: Correct For static friction, the actual magnitude and direction of the friction force are such that it, together with any other forces present, will cause the object to have the observed acceleration. The magnitude of the force cannot exceed . If the magnitude of static friction needed to keep acceleration equal to zero exceeds , then the object will slide subject to the resistance of kinetic friction. Do not automatically assume that unless you are considering a situation in which the magnitude of the static friction force is as large as possible (i.e., when determining at what point an object will just begin to slip). Whether the actual magnitude of the friction force is 0, less than , or equal to depends on the magnitude of the other forces (if any) as well as the acceleration of the object through . Part C When a board with a box on it is slowly tilted to larger and larger angle, common experience shows that the box will at some point “break loose” and start to accelerate down the board. The box begins to slide once the component of gravity acting parallel to the board just begins to exceeds the maximum force of static friction. Which of the following is the most general explanation for why the box accelerates down the board? ANSWER: The frictional force is always equal to . The frictional force is always less than . The frictional force is determined by other forces on the objects so it can be either equal to or less than . μsn μsn μsn μsn μsn fs = μsn μsn μsn F = ma Fg The force of kinetic friction is smaller than that of maximum static friction, but remains the same. Once the box is moving, is smaller than the force of maximum static friction but larger than the force of kinetic friction. Once the box is moving, is larger than the force of maximum static friction. When the box is stationary, equals the force of static friction, but once the box starts moving, the sliding reduces the normal force, which in turn reduces the friction. Fg Fg Fg Fg Typesetting math: 100% Correct At the point when the box finally does “break loose,” you know that the component of the box’s weight that is parallel to the board just exceeds (i.e., this component of gravitational force on the box has just reached a magnitude such that the force of static friction, which has a maximum value of , can no longer oppose it.) For the box to then accelerate, there must be a net force on the box along the board. Thus, the component of the box’s weight parallel to the board must be greater than the force of kinetic friction. Therefore the force of kinetic friction must be less than the force of static friction which implies , as expected. Part D Consider a problem in which a car of mass is on a road tilted at an angle . The normal force Select the best answer. ANSWER: Correct The key point is that contact forces must be determined from Newton’s equation. In the problem described above, there is not enough information given to determine the normal force (e.g., the acceleration is unknown). Each of the answer options is valid under some conditions ( , the car is sliding down an icy incline, or the car is going around a banked turn), but in fact none is likely to be correct if there are other forces on the car or if the car is accelerating. Do not memorize values for the normal force valid in different problems–you must determine from . Problem 6.17 Bonnie and Clyde are sliding a 323 bank safe across the floor to their getaway car. The safe slides with a constant speed if Clyde pushes from behind with 375 of force while Bonnie pulls forward on a rope with 335 of force. μsn μsn μkn μsn μk < μs M  is found using n = Mg n = Mg cos() n = Mg cos() F  = Ma  = 0 n F = ma kg N N Typesetting math: 100% Part A What is the safe's coefficient of kinetic friction on the bank floor? ANSWER: Correct Problem 6.19 A crate is placed on a horizontal conveyor belt. The materials are such that and . Part A Draw a free-body diagram showing all the forces on the crate if the conveyer belt runs at constant speed. Draw the force vectors with their tails at the dot. The orientation of your vectors will be graded. The exact length of your vectors will not be graded but the relative length of one to the other will be graded. ANSWER: 0.224 10 kg μs = 0.5 μk = 0.3 Typesetting math: 100% Correct Part B Draw a free-body diagram showing all the forces on the crate if the conveyer belt is speeding up. Draw the force vectors with their tails at the dot. The orientation of your vectors will be graded. The exact length of your vectors will not be graded but the relative length of one to the other will be graded. ANSWER: Typesetting math: 100% Correct Part C What is the maximum acceleration the belt can have without the crate slipping? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct amax = 4.9 m s2 Typesetting math: 100% Problem 6.28 A 1100 steel beam is supported by two ropes. Part A What is the tension in rope 1? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the tension in rope 2? Express your answer to two significant figures and include the appropriate units. ANSWER: kg T1 = 7000 N Typesetting math: 100% Correct Problem 6.35 The position of a 1.4 mass is given by , where is in seconds. Part A What is the net horizontal force on the mass at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the net horizontal force on the mass at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 6.39 T2 = 4800 N kg x = (2t3 − 3t2 )m t t = 0 s F = -8.4 N t = 1 s F = 8.4 N Typesetting math: 100% A rifle with a barrel length of 61 fires a 8 bullet with a horizontal speed of 400 . The bullet strikes a block of wood and penetrates to a depth of 11 . Part A What resistive force (assumed to be constant) does the wood exert on the bullet? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How long does it take the bullet to come to rest after entering the wood? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 6.45 You and your friend Peter are putting new shingles on a roof pitched at 21 . You're sitting on the very top of the roof when Peter, who is at the edge of the roof directly below you, 5.0 away, asks you for the box of nails. Rather than carry the 2.0 box of nails down to Peter, you decide to give the box a push and have it slide down to him. Part A If the coefficient of kinetic friction between the box and the roof is 0.55, with what speed should you push the box to have it gently come to rest right at the edge of the roof? Express your answer to two significant figures and include the appropriate units. cm g m/s cm fk = 5800 N = 5.5×10−4 t s  m kg Typesetting math: 100% ANSWER: Correct Problem 6.54 The 2.0 wood box in the figure slides down a vertical wood wall while you push on it at a 45 angle. Part A What magnitude of force should you apply to cause the box to slide down at a constant speed? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct v = 3.9 ms kg  F = 23 N Typesetting math: 100% Score Summary: Your score on this assignment is 98.8%. You received 114.57 out of a possible total of 116 points. Typesetting math: 100%

Assignment 5 Due: 11:59pm on Wednesday, March 5, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 6.13 A hand presses down on the book in the figure. Part A Is the normal force of the table on the book larger than, smaller than, or equal to ? ANSWER: Correct mg Equal to Larger than Smaller than mg mg mg Problem 6.2 The three ropes in the figure are tied to a small, very light ring. Two of these ropes are anchored to walls at right angles with the tensions shown in the figure. Part A What is the magnitude of the tension in the third rope? Express your answer using two significant figures. ANSWER: Correct Part B What is the direction of the tension in the third rope? Express your answer using two significant figures. T  3 T3 = 94 N T  3 Typesetting math: 100% ANSWER: Correct The Normal Force When an object rests on a surface, there is always a force perpendicular to the surface; we call this the normal force, denoted by . The two questions to the right will explore the normal force. Part A A man attempts to pick up his suitcase of weight by pulling straight up on the handle. However, he is unable to lift the suitcase from the floor. Which statement about the magnitude of the normal force acting on the suitcase is true during the time that the man pulls upward on the suitcase? Hint 1. How to approach this problem First, identify the forces that act on the suitcase and draw a free-body diagram. Then use the fact that the suitcase is in equilibrium, , to examine how the forces acting on the suitcase relate to each other. Hint 2. Identify the correct free-body diagram Which of the figures represents the free-body diagram of the suitcase while the man is pulling on the handle with a force of magnitude ? = 58   below horizontal n ws n F = 0 fpull Typesetting math: 100% ANSWER: ANSWER: Correct Part B A B C D The magnitude of the normal force is equal to the magnitude of the weight of the suitcase. The magnitude of the normal force is equal to the magnitude of the weight of the suitcase minus the magnitude of the force of the pull. The magnitude of the normal force is equal to the sum of the magnitude of the force of the pull and the magnitude of the suitcase’s weight. The magnitude of the normal force is greater than the magnitude of the weight of the suitcase. Typesetting math: 100% Now assume that the man of weight is tired and decides to sit on his suitcase. Which statement about the magnitude of the normal force acting on the suitcase is true during the time that the man is sitting on the suitcase? Hint 1. Identify the correct free-body diagram. Which of the figures represents the free-body diagram while the man is sitting atop the suitcase? Here the vector labeled is a force that has the same magnitude as the man’s weight. ANSWER: wm n wm Typesetting math: 100% ANSWER: Correct Recognize that the normal force acting on an object is not always equal to the weight of that object. This is an important point to understand. Problem 6.5 A construction worker with a weight of 880 stands on a roof that is sloped at 18 . Part A What is the magnitude of the normal force of the roof on the worker? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct A B C D The magnitude of the normal force is equal to the magnitude of the suitcase’s weight. The magnitude of the normal force is equal to the magnitude of the suitcase’s weight minus the magnitude of the man’s weight. The magnitude of the normal force is equal to the sum of the magnitude of the man’s weight and the magnitude of the suitcase’s weight. The magnitude of the normal force is less than the magnitude of the suitcase’s weight. N  n = 840 N Typesetting math: 100% Problem 6.6 In each of the two free-body diagrams, the forces are acting on a 3.0 object. Part A For diagram , find the value of , the -component of the acceleration. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B For diagram the part A, find the value of the -component of the acceleration. Express your answer to two significant figures and include the appropriate units. ANSWER: kg ax x ax = -0.67 m s2 ay, y Typesetting math: 100% Correct Part C For diagram , find the value of , the -component of the acceleration. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D For diagram the part C, find the value of , the -component of the acceleration. Express your answer to two significant figures and include the appropriate units. ANSWER: ay = 0 m s2 ax x ax = 0.67 m s2 ay y Typesetting math: 100% Correct Problem 6.7 In each of the two free-body diagrams, the forces are acting on a 3.0 object. Part A Find the value of , the component of the acceleration in diagram (a). Express your answer to two significant figures and include the appropriate units. ANSWER: Correct ay = 0 m s2 kg ax x ax = 0.99 m s2 Typesetting math: 100% Part B Find the value of , the component of the acceleration in diagram (a). Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C Find the value of , the component of the acceleration in diagram (b). Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D Find the value of , the component of the acceleration in diagram (b). Express your answer to two significant figures and include the appropriate units. ANSWER: Correct ay y ay = 0 m s2 ax x ax = -0.18 m s2 ay y ay = 0 m s2 Typesetting math: 100% Problem 6.10 A horizontal rope is tied to a 53.0 box on frictionless ice. What is the tension in the rope if: Part A The box is at rest? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part B The box moves at a steady = 4.80 ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part C The box = 4.80 and = 4.60 ? Express your answer to three significant figures and include the appropriate units. ANSWER: kg T = 0 N vx m/s T = 0 N vx m/s ax m/s2 Typesetting math: 100% Correct Problem 6.14 It takes the elevator in a skyscraper 4.5 to reach its cruising speed of 11 . A 60 passenger gets aboard on the ground floor. Part A What is the passenger’s weight before the elevator starts moving? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the passenger’s weight while the elevator is speeding up? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the passenger’s weight after the elevator reaches its cruising speed? T = 244 N s m/s kg w = 590 N w = 730 N Typesetting math: 100% Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Block on an Incline A block lies on a plane raised an angle from the horizontal. Three forces act upon the block: , the force of gravity; , the normal force; and , the force of friction. The coefficient of friction is large enough to prevent the block from sliding . Part A Consider coordinate system a, with the x axis along the plane. Which forces lie along the axes? ANSWER: w = 590 N  F  w F n F  f Typesetting math: 100% Correct Part B Which forces lie along the axes of the coordinate system b, in which the y axis is vertical? ANSWER: Correct only only only and and and and and F  f F  n F  w F  f F  n F  f F  w F  n F w F  f F  n F w only only only and and and and and F  f F  n F  w F  f F  n F  f F  w F  n F w F  f F  n F w Typesetting math: 100% Usually the best advice is to choose coordinate system so that the acceleration of the system is directly along one of the coordinate axes. If the system isn’t accelerating, then you are better off choosing the coordinate system with the most vectors along the coordinate axes. But now you are going to ignore that advice. You will find the normal force, , using vertical coordinate system b. In these coordinates you will find the magnitude appearing in both the x and y equations, each multiplied by a trigonometric function. Part C Because the block is not moving, the sum of the y components of the forces acting on the block must be zero. Find an expression for the sum of the y components of the forces acting on the block, using coordinate system b. Express your answer in terms of some or all of the variables , , , and . Hint 1. Find the y component of Write an expression for , the y component of the force , using coordinate system b. Express your answer in terms of and . Hint 1. Some geometry help – a useful angle The smaller angle between and the y-axis is also , as shown in the figure. ANSWER: F  n Fn Fn Ff Fw  F n Fny F  n Fn  F  n  Typesetting math: 100% Hint 2. Find the y component of Write an expression for , the y component of the force , using coordinate system b. Express your answer in terms of and . Hint 1. Some geometry help – a useful angle The smaller angle between and the x-axis is also , as shown in the figure. ANSWER: ANSWER: Fny = Fncos() F f Ffy F f Ff  F  f  Ffy = Ffsin() Fy = 0 = Fncos() + Ffsin() − Fw Typesetting math: 100% Correct Part D Because the block is not moving, the sum of the x components of the forces acting on the block must be zero. Find an expression for the sum of the x components of the forces acting on the block, using coordinate system b. Express your answer in terms of some or all of the variables , , , and . Hint 1. Find the x component of Write an expression for , the x component of the force , using coordinate system b. Express your answer in terms of and . ANSWER: ANSWER: Correct Part E To find the magnitude of the normal force, you must express in terms of since is an unknown. Using the equations you found in the two previous parts, find an expression for involving and but not . Hint 1. How to approach the problem From your answers to the previous two parts you should have two force equations ( and ). Combine these equations to eliminate . The key is to multiply the Fn Ff Fw  F n Fnx F  n Fn  Fnx = −Fnsin() Fx = 0 = −Fnsin() + Ffcos() Fn Fw Ff Fn Fw  Ff Typesetting math: 100% Fy = 0 Fx = 0 Ff equation for the y components by and the equation for the x components by , then add or subtract the two equations to eliminate the term . An alternative motivation for the algebra is to eliminate the trig functions in front of by using the trig identity . At the very least this would result in an equation that is simple to solve for . ANSWER: Correct Congratulations on working this through. Now realize that in coordinate system a, which is aligned with the plane, the y-coordinate equation is , which leads immediately to the result obtained here for . CONCLUSION: A thoughtful examination of which coordinate system to choose can save a lot of algebra. Contact Forces Introduced Learning Goal: To introduce contact forces (normal and friction forces) and to understand that, except for friction forces under certain circumstances, these forces must be determined from: net Force = ma. Two solid objects cannot occupy the same space at the same time. Indeed, when the objects touch, they exert repulsive normal forces on each other, as well as frictional forces that resist their slipping relative to each other. These contact forces arise from a complex interplay between the electrostatic forces between the electrons and ions in the objects and the laws of quantum mechanics. As two surfaces are pushed together these forces increase exponentially over an atomic distance scale, easily becoming strong enough to distort the bulk material in the objects if they approach too close. In everyday experience, contact forces are limited by the deformation or acceleration of the objects, rather than by the fundamental interatomic forces. Hence, we can conclude the following: The magnitude of contact forces is determined by , that is, by the other forces on, and acceleration of, the contacting bodies. The only exception is that the frictional forces cannot exceed (although they can be smaller than this or even zero). Normal and friction forces Two types of contact forces operate in typical mechanics problems, the normal and frictional forces, usually designated by and (or , or something similar) respectively. These are the components of the overall contact force: perpendicular to and parallel to the plane of contact. Kinetic friction when surfaces slide cos  sin  Ff cos() sin() Fn sin2() + cos2 () = 1 Fn Fn = Fwcos() Fy = Fn − FW cos() = 0 Fn F = ma μn n f Ffric n f Typesetting math: 100% When one surface is sliding past the other, experiments show three things about the friction force (denoted ): The frictional force opposes the relative motion at the 1. point of contact, 2. is proportional to the normal force, and 3. the ratio of the magnitude of the frictional force to that of the normal force is fairly constant over a wide range of speeds. The constant of proportionality is called the coefficient of kinetic friction, often designated . As long as the sliding continues, the frictional force is then (valid when the surfaces slide by each other). Static friction when surfaces don’t slide When there is no relative motion of the surfaces, the frictional force can assume any value from zero up to a maximum , where is the coefficient of static friction. Invariably, is larger than , in agreement with the observation that when a force is large enough that something breaks loose and starts to slide, it often accelerates. The frictional force for surfaces with no relative motion is therefore (valid when the contacting surfaces have no relative motion). The actual magnitude and direction of the static friction force are such that it (together with other forces on the object) causes the object to remain motionless with respect to the contacting surface as long as the static friction force required does not exceed . The equation is valid only when the surfaces are on the verge of sliding. Part A When two objects slide by one another, which of the following statements about the force of friction between them, is true? ANSWER: Correct Part B fk fk μk fk = μkn μsn μs μs μk fs ! μsn μsn fs = μsn The frictional force is always equal to . The frictional force is always less than . The frictional force is determined by other forces on the objects so it can be either equal to or less than . μkn μkn μkn Typesetting math: 100% When two objects are in contact with no relative motion, which of the following statements about the frictional force between them, is true? ANSWER: Correct For static friction, the actual magnitude and direction of the friction force are such that it, together with any other forces present, will cause the object to have the observed acceleration. The magnitude of the force cannot exceed . If the magnitude of static friction needed to keep acceleration equal to zero exceeds , then the object will slide subject to the resistance of kinetic friction. Do not automatically assume that unless you are considering a situation in which the magnitude of the static friction force is as large as possible (i.e., when determining at what point an object will just begin to slip). Whether the actual magnitude of the friction force is 0, less than , or equal to depends on the magnitude of the other forces (if any) as well as the acceleration of the object through . Part C When a board with a box on it is slowly tilted to larger and larger angle, common experience shows that the box will at some point “break loose” and start to accelerate down the board. The box begins to slide once the component of gravity acting parallel to the board just begins to exceeds the maximum force of static friction. Which of the following is the most general explanation for why the box accelerates down the board? ANSWER: The frictional force is always equal to . The frictional force is always less than . The frictional force is determined by other forces on the objects so it can be either equal to or less than . μsn μsn μsn μsn μsn fs = μsn μsn μsn F = ma Fg The force of kinetic friction is smaller than that of maximum static friction, but remains the same. Once the box is moving, is smaller than the force of maximum static friction but larger than the force of kinetic friction. Once the box is moving, is larger than the force of maximum static friction. When the box is stationary, equals the force of static friction, but once the box starts moving, the sliding reduces the normal force, which in turn reduces the friction. Fg Fg Fg Fg Typesetting math: 100% Correct At the point when the box finally does “break loose,” you know that the component of the box’s weight that is parallel to the board just exceeds (i.e., this component of gravitational force on the box has just reached a magnitude such that the force of static friction, which has a maximum value of , can no longer oppose it.) For the box to then accelerate, there must be a net force on the box along the board. Thus, the component of the box’s weight parallel to the board must be greater than the force of kinetic friction. Therefore the force of kinetic friction must be less than the force of static friction which implies , as expected. Part D Consider a problem in which a car of mass is on a road tilted at an angle . The normal force Select the best answer. ANSWER: Correct The key point is that contact forces must be determined from Newton’s equation. In the problem described above, there is not enough information given to determine the normal force (e.g., the acceleration is unknown). Each of the answer options is valid under some conditions ( , the car is sliding down an icy incline, or the car is going around a banked turn), but in fact none is likely to be correct if there are other forces on the car or if the car is accelerating. Do not memorize values for the normal force valid in different problems–you must determine from . Problem 6.17 Bonnie and Clyde are sliding a 323 bank safe across the floor to their getaway car. The safe slides with a constant speed if Clyde pushes from behind with 375 of force while Bonnie pulls forward on a rope with 335 of force. μsn μsn μkn μsn μk < μs M  is found using n = Mg n = Mg cos() n = Mg cos() F  = Ma  = 0 n F = ma kg N N Typesetting math: 100% Part A What is the safe's coefficient of kinetic friction on the bank floor? ANSWER: Correct Problem 6.19 A crate is placed on a horizontal conveyor belt. The materials are such that and . Part A Draw a free-body diagram showing all the forces on the crate if the conveyer belt runs at constant speed. Draw the force vectors with their tails at the dot. The orientation of your vectors will be graded. The exact length of your vectors will not be graded but the relative length of one to the other will be graded. ANSWER: 0.224 10 kg μs = 0.5 μk = 0.3 Typesetting math: 100% Correct Part B Draw a free-body diagram showing all the forces on the crate if the conveyer belt is speeding up. Draw the force vectors with their tails at the dot. The orientation of your vectors will be graded. The exact length of your vectors will not be graded but the relative length of one to the other will be graded. ANSWER: Typesetting math: 100% Correct Part C What is the maximum acceleration the belt can have without the crate slipping? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct amax = 4.9 m s2 Typesetting math: 100% Problem 6.28 A 1100 steel beam is supported by two ropes. Part A What is the tension in rope 1? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the tension in rope 2? Express your answer to two significant figures and include the appropriate units. ANSWER: kg T1 = 7000 N Typesetting math: 100% Correct Problem 6.35 The position of a 1.4 mass is given by , where is in seconds. Part A What is the net horizontal force on the mass at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the net horizontal force on the mass at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 6.39 T2 = 4800 N kg x = (2t3 − 3t2 )m t t = 0 s F = -8.4 N t = 1 s F = 8.4 N Typesetting math: 100% A rifle with a barrel length of 61 fires a 8 bullet with a horizontal speed of 400 . The bullet strikes a block of wood and penetrates to a depth of 11 . Part A What resistive force (assumed to be constant) does the wood exert on the bullet? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How long does it take the bullet to come to rest after entering the wood? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 6.45 You and your friend Peter are putting new shingles on a roof pitched at 21 . You're sitting on the very top of the roof when Peter, who is at the edge of the roof directly below you, 5.0 away, asks you for the box of nails. Rather than carry the 2.0 box of nails down to Peter, you decide to give the box a push and have it slide down to him. Part A If the coefficient of kinetic friction between the box and the roof is 0.55, with what speed should you push the box to have it gently come to rest right at the edge of the roof? Express your answer to two significant figures and include the appropriate units. cm g m/s cm fk = 5800 N = 5.5×10−4 t s  m kg Typesetting math: 100% ANSWER: Correct Problem 6.54 The 2.0 wood box in the figure slides down a vertical wood wall while you push on it at a 45 angle. Part A What magnitude of force should you apply to cause the box to slide down at a constant speed? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct v = 3.9 ms kg  F = 23 N Typesetting math: 100% Score Summary: Your score on this assignment is 98.8%. You received 114.57 out of a possible total of 116 points. Typesetting math: 100%

Assignment 5 Due: 11:59pm on Wednesday, March 5, 2014 You … Read More...