1 Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 3.1 Laboratory Objective The objective of this laboratory is to understand the basic properties of sinusoids and sinusoid measurements. 3.2 Educational Objectives After performing this experiment, students should be able to: 1. Understand the properties of sinusoids. 2. Understand sinusoidal manipulation 3. Use a function generator 4. Obtain measurements using an oscilloscope 3.3 Background Sinusoids are sine or cosine waveforms that can describe many engineering phenomena. Any oscillatory motion can be described using sinusoids. Many types of electrical signals such as square, triangle, and sawtooth waves are modeled using sinusoids. Their manipulation incurs the understanding of certain quantities that describe sinusoidal behavior. These quantities are described below. 3.3.1 Sinusoid Characteristics Amplitude The amplitude A of a sine wave describes the height of the hills and valleys of a sinusoid. It carries the physical units of what the sinusoid is describing (volts, amps, meters, etc.). Frequency There are two types of frequencies that can describe a sinusoid. The normal frequency f is how many times the sinusoid repeats per unit time. It has units of cycles per second (s-1) or Hertz (Hz). The angular frequency ω is how many radians pass per second. Consequently, ω has units of radians per second. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 2 Period The period T is how long a sinusoid takes to repeat one complete cycle. The period is measured in seconds. Phase The phase φ of a sinusoid causes a horizontal shift along the t-axis. The phase has units of radians. TimeShift The time shift ts of a sinusoid is a horizontal shift along the t-axis and is a time measurement of the phase. The time shift has units of seconds. NOTE: A sine wave and a cosine wave only differ by a phase shift of 90° or ?2 radians. In reality, they are the same waveform but with a different φ value. 3.3.2 Sinusoidal Relationships Figure 3.1: Sinusoid The general equation of a sinusoid is given below and refers to Figure 3.1. ?(?) = ????(?? +?) (3.1) The angular frequency is related to the normal frequency by Equation 3.2. ?= 2?? (3.2) The angular frequency is also related to the period by Equation 3.3. ?=2?? (3.3) By inspection, the normal frequency is related to the period by Equation 3.4. ? =1? (3.4) ?? Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 3 The time shift is related to the phase (radians) and the frequency by Equation 3.5. ??= ∅2?? (3.5) 3.3.3 Equipment 3.3.3.1 Inductors Inductors are electrical components that resist a change in the flow of current passing through them. They are essentially coils of wire. Inductors are electromagnets too. They are represented in schematics using the following symbol and physically using the following equipment (with or without exposed wire): Figure 3.2: Symbol and Physical Example for Inductors 3.3.3.2 Capacitors Capacitors are electrical components that store energy. This enables engineers to store electrical energy from an input source such as a battery. Some capacitors are polarized and therefore have a negative and positive plate. One plate is straight, representing the positive terminal on the device, and the other is curved, representing the negative one. Polarized capacitors are represented in schematics using the following symbol and physically using the following equipment: Figure 3.3: Symbol and Physical Example for Capacitors 3.3.3.3 Function Generator A function generator is used to create different types of electrical waveforms over a wide range of frequencies. It generates standard sine, square, and triangle waveforms and uses the analog output channel. 3.3.3.5 Oscilloscope An oscilloscope is a type of electronic test instrument that allows observation of constantly varying voltages, usually as a two-dimensional plot of one or more signals as a function of time. It displays voltage data over time for the analysis of one or two voltage measurements taken from the analog input channels of the Oscilloscope. The observed waveform can be analyzed for amplitude, frequency, time interval and more. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 4 3.4 Procedure Follow the steps outlined below after the instructor has explained how to use the laboratory equipment 3.4.1 Sinusoidal Measurements 1. Connect the output channel of the Function Generator to the channel one of the Oscilloscope. 2. Complete Table 3.1 using the given values for voltage and frequency. Table 3.1: Sinusoid Measurements Function Generator Oscilloscope (Measured) Calculated Voltage Amplitude, A (V ) Frequency (Hz) 2*A (Vp−p ) f (Hz) T (sec) ω (rad/sec) T (sec) 2.5 1000 3 5000 3.4.2 Circuit Measurements 1. Connect the circuit in figure 3.4 below with the given resistor and capacitor NOTE: Vs from the circuit comes from the Function Generator using a BNC connector. Figure 3.4: RC Circuit Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 5 2. Using the alligator to BNC cables, connect channel one of the Oscilloscope across the capacitor and complete Table 3.2 Table 3.2: Capacitor Sinusoid Function Generator Oscilloscope (Measured) Calculated Vs (Volts) Frequency (Hz) Vc (volts) f (Hz) T (sec) ω (rad/sec) 2.5 100 3. Disconnect channel one and connect channel two of the oscilloscope across the resistor and complete table 3.3. Table 3.3: Resistor Sinusoid Function Generator Oscilloscope (Measured) Calculated Vs (Volts) Frequency (Hz) VR (volts) f (Hz) T (sec) ω (rad/sec) 2.5 100 4. Leaving channel two connected across the resistor, clip the positive lead to the positive side of the capacitor and complete table 3.4 Table 3.4: Phase Difference Function Generator Oscilloscope (Measured) Calculated Vs (volts) Frequency (Hz) Divisions Time/Div (sec) ts (sec) ɸ (rad) ɸ (degrees) 2.5 100 5. Using the data from Tables 3.2, 3.3, and 3.4, plot the capacitor sinusoidal equation and the resistor sinusoidal equation on the same graph using MATLAB. HINT: Plot over one period. 6. Kirchoff’s Voltage Law states that ??(?)=??(?)+??(?). Calculate Vs by hand using the following equation and Tables 3.2 and 3.3 ??(?)=√??2+??2???(??−???−1(????)) Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 6 3.5 New MATLAB Commands hold on  This command allows multiple graphs to be placed on the same XY axis and is placed after the first plot statement. legend (’string 1’, ’string2’, ‘string3’)  This command adds a legend to the plot. Strings must be placed in the order as the plots were generated. plot (x, y, ‘line specifiers’)  This command plots the data and uses line specifiers to differentiate between different plots on the same XY axis. In this lab, only use different line styles from the table below. Table 3.5: Line specifiers for the plot() command sqrt(X)  This command produces the square root of the elements of X. NOTE: The “help” command in MATLAB can be used to find a description and example for functions such as input.  For example, type “help input” in the command window to learn more about the input function. NOTE: Refer to section the “MATLAB Commands” sections from prior labs for previously discussed material that you may also need in order to complete this assignment. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 7 3.6 Lab Report Requirements 1. Complete Tables 3.1, 3.2, 3.3, 3.4 (5 points each) 2. Show hand calculations for all four tables. Insert after this page (5 points each) 3. Draw the two sinusoids by hand from table 3.1. Label amplitude, period, and phase. Insert after this page. (5 points) 4. Insert MATLAB plot of Vc and VR as obtained from data in Tables 3.2 and 3.3 after this page. (5 points each) 5. Show hand calculations for Vs(t). Insert after this page. (5 points) 6. Using the data from the Tables, write: (10 points) a) Vc(t) = b) VR(t) = 7. Also, ???(?)=2.5???(628?). Write your Vs below and give reasons why they are different. (10 points) a) Vs(t) = b) Reasons: 8. Write an executive summary for this lab describing what you have done, and learned. (20 points)

1 Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 3.1 Laboratory Objective The objective of this laboratory is to understand the basic properties of sinusoids and sinusoid measurements. 3.2 Educational Objectives After performing this experiment, students should be able to: 1. Understand the properties of sinusoids. 2. Understand sinusoidal manipulation 3. Use a function generator 4. Obtain measurements using an oscilloscope 3.3 Background Sinusoids are sine or cosine waveforms that can describe many engineering phenomena. Any oscillatory motion can be described using sinusoids. Many types of electrical signals such as square, triangle, and sawtooth waves are modeled using sinusoids. Their manipulation incurs the understanding of certain quantities that describe sinusoidal behavior. These quantities are described below. 3.3.1 Sinusoid Characteristics Amplitude The amplitude A of a sine wave describes the height of the hills and valleys of a sinusoid. It carries the physical units of what the sinusoid is describing (volts, amps, meters, etc.). Frequency There are two types of frequencies that can describe a sinusoid. The normal frequency f is how many times the sinusoid repeats per unit time. It has units of cycles per second (s-1) or Hertz (Hz). The angular frequency ω is how many radians pass per second. Consequently, ω has units of radians per second. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 2 Period The period T is how long a sinusoid takes to repeat one complete cycle. The period is measured in seconds. Phase The phase φ of a sinusoid causes a horizontal shift along the t-axis. The phase has units of radians. TimeShift The time shift ts of a sinusoid is a horizontal shift along the t-axis and is a time measurement of the phase. The time shift has units of seconds. NOTE: A sine wave and a cosine wave only differ by a phase shift of 90° or ?2 radians. In reality, they are the same waveform but with a different φ value. 3.3.2 Sinusoidal Relationships Figure 3.1: Sinusoid The general equation of a sinusoid is given below and refers to Figure 3.1. ?(?) = ????(?? +?) (3.1) The angular frequency is related to the normal frequency by Equation 3.2. ?= 2?? (3.2) The angular frequency is also related to the period by Equation 3.3. ?=2?? (3.3) By inspection, the normal frequency is related to the period by Equation 3.4. ? =1? (3.4) ?? Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 3 The time shift is related to the phase (radians) and the frequency by Equation 3.5. ??= ∅2?? (3.5) 3.3.3 Equipment 3.3.3.1 Inductors Inductors are electrical components that resist a change in the flow of current passing through them. They are essentially coils of wire. Inductors are electromagnets too. They are represented in schematics using the following symbol and physically using the following equipment (with or without exposed wire): Figure 3.2: Symbol and Physical Example for Inductors 3.3.3.2 Capacitors Capacitors are electrical components that store energy. This enables engineers to store electrical energy from an input source such as a battery. Some capacitors are polarized and therefore have a negative and positive plate. One plate is straight, representing the positive terminal on the device, and the other is curved, representing the negative one. Polarized capacitors are represented in schematics using the following symbol and physically using the following equipment: Figure 3.3: Symbol and Physical Example for Capacitors 3.3.3.3 Function Generator A function generator is used to create different types of electrical waveforms over a wide range of frequencies. It generates standard sine, square, and triangle waveforms and uses the analog output channel. 3.3.3.5 Oscilloscope An oscilloscope is a type of electronic test instrument that allows observation of constantly varying voltages, usually as a two-dimensional plot of one or more signals as a function of time. It displays voltage data over time for the analysis of one or two voltage measurements taken from the analog input channels of the Oscilloscope. The observed waveform can be analyzed for amplitude, frequency, time interval and more. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 4 3.4 Procedure Follow the steps outlined below after the instructor has explained how to use the laboratory equipment 3.4.1 Sinusoidal Measurements 1. Connect the output channel of the Function Generator to the channel one of the Oscilloscope. 2. Complete Table 3.1 using the given values for voltage and frequency. Table 3.1: Sinusoid Measurements Function Generator Oscilloscope (Measured) Calculated Voltage Amplitude, A (V ) Frequency (Hz) 2*A (Vp−p ) f (Hz) T (sec) ω (rad/sec) T (sec) 2.5 1000 3 5000 3.4.2 Circuit Measurements 1. Connect the circuit in figure 3.4 below with the given resistor and capacitor NOTE: Vs from the circuit comes from the Function Generator using a BNC connector. Figure 3.4: RC Circuit Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 5 2. Using the alligator to BNC cables, connect channel one of the Oscilloscope across the capacitor and complete Table 3.2 Table 3.2: Capacitor Sinusoid Function Generator Oscilloscope (Measured) Calculated Vs (Volts) Frequency (Hz) Vc (volts) f (Hz) T (sec) ω (rad/sec) 2.5 100 3. Disconnect channel one and connect channel two of the oscilloscope across the resistor and complete table 3.3. Table 3.3: Resistor Sinusoid Function Generator Oscilloscope (Measured) Calculated Vs (Volts) Frequency (Hz) VR (volts) f (Hz) T (sec) ω (rad/sec) 2.5 100 4. Leaving channel two connected across the resistor, clip the positive lead to the positive side of the capacitor and complete table 3.4 Table 3.4: Phase Difference Function Generator Oscilloscope (Measured) Calculated Vs (volts) Frequency (Hz) Divisions Time/Div (sec) ts (sec) ɸ (rad) ɸ (degrees) 2.5 100 5. Using the data from Tables 3.2, 3.3, and 3.4, plot the capacitor sinusoidal equation and the resistor sinusoidal equation on the same graph using MATLAB. HINT: Plot over one period. 6. Kirchoff’s Voltage Law states that ??(?)=??(?)+??(?). Calculate Vs by hand using the following equation and Tables 3.2 and 3.3 ??(?)=√??2+??2???(??−???−1(????)) Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 6 3.5 New MATLAB Commands hold on  This command allows multiple graphs to be placed on the same XY axis and is placed after the first plot statement. legend (’string 1’, ’string2’, ‘string3’)  This command adds a legend to the plot. Strings must be placed in the order as the plots were generated. plot (x, y, ‘line specifiers’)  This command plots the data and uses line specifiers to differentiate between different plots on the same XY axis. In this lab, only use different line styles from the table below. Table 3.5: Line specifiers for the plot() command sqrt(X)  This command produces the square root of the elements of X. NOTE: The “help” command in MATLAB can be used to find a description and example for functions such as input.  For example, type “help input” in the command window to learn more about the input function. NOTE: Refer to section the “MATLAB Commands” sections from prior labs for previously discussed material that you may also need in order to complete this assignment. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 7 3.6 Lab Report Requirements 1. Complete Tables 3.1, 3.2, 3.3, 3.4 (5 points each) 2. Show hand calculations for all four tables. Insert after this page (5 points each) 3. Draw the two sinusoids by hand from table 3.1. Label amplitude, period, and phase. Insert after this page. (5 points) 4. Insert MATLAB plot of Vc and VR as obtained from data in Tables 3.2 and 3.3 after this page. (5 points each) 5. Show hand calculations for Vs(t). Insert after this page. (5 points) 6. Using the data from the Tables, write: (10 points) a) Vc(t) = b) VR(t) = 7. Also, ???(?)=2.5???(628?). Write your Vs below and give reasons why they are different. (10 points) a) Vs(t) = b) Reasons: 8. Write an executive summary for this lab describing what you have done, and learned. (20 points)

info@checkyourstudy.com
Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

The objectification of women has been a very controversial topic … Read More...
Learning Objectives This part begins with what are probably the basic questions for a designer of a computing sytem’s human interface: • How should the functionality of the system be described and presented to the user? • How can the design of the interface help the user to understand and successfully use the system? Learning Goals At the conclusion of this module you will be able to: • define the user’s movement among the displays that make up the system; • the addition of visual and spatial cues to the information organization; and • methods of structuring and presenting the interface. Introduction This module deals with the development and utilization of a system. We all have systems for doing things. For instance, we may have a system for handling routine situations around the house that makes sense only to us. Or, we may be oriented toward systems that have a more widespread understanding such as personal finance or how to fill out our IRS forms. When humans use a system, whether natural or man-made, they do so based on their understanding of that system. A totally accurate understanding of a system is not a necessary condition for effective use of that system. Key Terms Systems, User Model, Model, Metaphor, Concept Modeling The Development of Human Systems I. The organization of knowledge about a phenomenon or system constitutes the human’s conceptual model of that system. Information gained from experience with a system contributes to the model, and the model in turn provides a reference or guide for future experience with the system. A. (Reinstein and Hersh, 1984) – a set of concepts a person gradually acquires to explain the behavior of a system. …. That enables that person to understand and interact with the system. 1. For the user, the important thing about a model is its ability to predict: when confronted with unfamiliar or incompletely understood situations, the user relies on their model, their conceptual understanding of the system, to make educated guesses about how to proceed. If the user’s model accurately reflects the effects of the system, then he will be more successful in learning and using the system, and likely will perceive the system as easy to use. 2. Because the model can server this important role in design of helping to create an understandable and predictable system, the creation of the user’s conceptual model should be the first task of system development. One of the more important examples of the use of conceptual model, the XEROX Star office automation system (whose design greatly influenced Apple’s Lisa and Macintosh systems), started with thirty man-years of design work on the user interface before either the hardware or the system software was designed (Smith, Irby, Kimball, Verplank and Harselm, 1982). 3. The conceptual model does not have to be an accurate representation of how the system actually functions. Indeed, it can be quite different from reality, and in most if not all circumstances for systems as complex as computers, should be. 4. The model may be a myth or metaphor, that explains the system: it “suggests that the computer is like something with which the user is already familiar” (Rubinstein and Hersh, 1984, p. 43), or provides a simple explanation of the system which can be used to predict the system’s behavior. 5. ….the conceptual models people form are based on their interactions with an environment … “people who have different roles within an environment … will form different conceptual systems of those environments. 6. People whose essential interaction with an environment is to create it will almost inevitably have an understanding and conceptualization of it which is different from those whose major interaction with it is to use it” Action Assignment Based on the readings for this module, please identify a personal “system” with which you act and perform within. This should be from personal experience and one that assists in providing a model for organization, understanding and problem solving.

Learning Objectives This part begins with what are probably the basic questions for a designer of a computing sytem’s human interface: • How should the functionality of the system be described and presented to the user? • How can the design of the interface help the user to understand and successfully use the system? Learning Goals At the conclusion of this module you will be able to: • define the user’s movement among the displays that make up the system; • the addition of visual and spatial cues to the information organization; and • methods of structuring and presenting the interface. Introduction This module deals with the development and utilization of a system. We all have systems for doing things. For instance, we may have a system for handling routine situations around the house that makes sense only to us. Or, we may be oriented toward systems that have a more widespread understanding such as personal finance or how to fill out our IRS forms. When humans use a system, whether natural or man-made, they do so based on their understanding of that system. A totally accurate understanding of a system is not a necessary condition for effective use of that system. Key Terms Systems, User Model, Model, Metaphor, Concept Modeling The Development of Human Systems I. The organization of knowledge about a phenomenon or system constitutes the human’s conceptual model of that system. Information gained from experience with a system contributes to the model, and the model in turn provides a reference or guide for future experience with the system. A. (Reinstein and Hersh, 1984) – a set of concepts a person gradually acquires to explain the behavior of a system. …. That enables that person to understand and interact with the system. 1. For the user, the important thing about a model is its ability to predict: when confronted with unfamiliar or incompletely understood situations, the user relies on their model, their conceptual understanding of the system, to make educated guesses about how to proceed. If the user’s model accurately reflects the effects of the system, then he will be more successful in learning and using the system, and likely will perceive the system as easy to use. 2. Because the model can server this important role in design of helping to create an understandable and predictable system, the creation of the user’s conceptual model should be the first task of system development. One of the more important examples of the use of conceptual model, the XEROX Star office automation system (whose design greatly influenced Apple’s Lisa and Macintosh systems), started with thirty man-years of design work on the user interface before either the hardware or the system software was designed (Smith, Irby, Kimball, Verplank and Harselm, 1982). 3. The conceptual model does not have to be an accurate representation of how the system actually functions. Indeed, it can be quite different from reality, and in most if not all circumstances for systems as complex as computers, should be. 4. The model may be a myth or metaphor, that explains the system: it “suggests that the computer is like something with which the user is already familiar” (Rubinstein and Hersh, 1984, p. 43), or provides a simple explanation of the system which can be used to predict the system’s behavior. 5. ….the conceptual models people form are based on their interactions with an environment … “people who have different roles within an environment … will form different conceptual systems of those environments. 6. People whose essential interaction with an environment is to create it will almost inevitably have an understanding and conceptualization of it which is different from those whose major interaction with it is to use it” Action Assignment Based on the readings for this module, please identify a personal “system” with which you act and perform within. This should be from personal experience and one that assists in providing a model for organization, understanding and problem solving.

You have had the unique opportunity to develop a career plan in this academic program. By determining career goals and objectives, you should have become insightful and capable of assessing your current skills and abilities and their respective usefulness in attaining that ideal position. According to your plan, what training and education may be required before advancement is possible with respect to your future plans? What is the biggest obstacle you face in search of success?

You have had the unique opportunity to develop a career plan in this academic program. By determining career goals and objectives, you should have become insightful and capable of assessing your current skills and abilities and their respective usefulness in attaining that ideal position. According to your plan, what training and education may be required before advancement is possible with respect to your future plans? What is the biggest obstacle you face in search of success?

We can’t escape from the reality that if we wish … Read More...
Question 10 (1 point) In contrast to Freud’s theory, object relations theorists Question 10 options: focus on internal drives and conflicts. are interested in the intellectual and emotional development of the infant. are interested in an infant’s relationship with his or her parents. do not believe that children develop unconscious representations of significant objects in their environment. ________________________________________ Question 11 (1 point) The psychologists who developed the frustration aggression hypothesis used or adapted each of the following concepts from Freudian theory except one. Which one? Question 11 options: displacement sublimation catharsis reinforcement Question 12 (1 point) Although he changed his mind during his career, which of the following did Freud eventually decide was the cause of human aggression? Question 12 options: a death instinct frustration projection unresolved Oedipal conflicts Question 13 (1 point) Freud wrote about all of the following types of anxiety except one. Which one? Question 13 options: reality anxiety neurotic anxiety moral anxiety performance anxiety Question 14 (1 point) Which of the following is true about neurotic anxiety, as conceived by Freud? Question 14 options: It is experienced when id impulses are close to breaking into consciousness. It prevents the ego from utilizing defense mechanisms. It is created when id impulses violate society’s moral code. People experiencing neurotic anxiety usually are aware of what is making them anxious. Question 15 (1 point) One explanation for why aggression leads to more aggression is that it is reinforced by the cathartic release of tension. Question 15 options: True False ________________________________________ ________________________________________ Question 1 (1 point) A man is said to have one personality trait that dominates his personality. Allport would identify this personality trait as a Question 1 options: 1) common trait. 2) central trait. 3) cardinal trait. 4) secondary trait. Question 2 (1 point) Which of the following is true about the trait approach to personality? Question 2 options: 1) Trait researchers generally are not interested in understanding and predicting the behavior of a single individual. 2) It is not easy to make comparisons across people with the trait approach. 3) The trait approach has been responsible for generating a number of useful approaches to psychotherapy. 4) Trait theorists place a greater emphasis on discovering the mechanisms underlying behavior than do theorists from other approaches to personality. Question 3 (1 point) Many researchers fail to produce strong links between personality traits and behavior. Epstein has argued that the reason for this failure is because Question 3 options: 1) researchers don’t perform the correct statistical analysis. 2) researchers don’t measure personality traits correctly. 3) researchers don’t measure behavior correctly. 4) none of the above Question 4 (1 point) Which theorist had a strong influence on Henry Murray’s theorizing about personality? Question 4 options: 1) Gordon Allport 2) Alfred Adler 3) Sigmund Freud 4) Carl Jung Question 5 (1 point) Sometimes test makers include the same test questions more than once on the test. This is done to detect which potential problem? Question 5 options: 1) faking good 2) faking bad 3) carelessness and sabotage 4) social desirability

Question 10 (1 point) In contrast to Freud’s theory, object relations theorists Question 10 options: focus on internal drives and conflicts. are interested in the intellectual and emotional development of the infant. are interested in an infant’s relationship with his or her parents. do not believe that children develop unconscious representations of significant objects in their environment. ________________________________________ Question 11 (1 point) The psychologists who developed the frustration aggression hypothesis used or adapted each of the following concepts from Freudian theory except one. Which one? Question 11 options: displacement sublimation catharsis reinforcement Question 12 (1 point) Although he changed his mind during his career, which of the following did Freud eventually decide was the cause of human aggression? Question 12 options: a death instinct frustration projection unresolved Oedipal conflicts Question 13 (1 point) Freud wrote about all of the following types of anxiety except one. Which one? Question 13 options: reality anxiety neurotic anxiety moral anxiety performance anxiety Question 14 (1 point) Which of the following is true about neurotic anxiety, as conceived by Freud? Question 14 options: It is experienced when id impulses are close to breaking into consciousness. It prevents the ego from utilizing defense mechanisms. It is created when id impulses violate society’s moral code. People experiencing neurotic anxiety usually are aware of what is making them anxious. Question 15 (1 point) One explanation for why aggression leads to more aggression is that it is reinforced by the cathartic release of tension. Question 15 options: True False ________________________________________ ________________________________________ Question 1 (1 point) A man is said to have one personality trait that dominates his personality. Allport would identify this personality trait as a Question 1 options: 1) common trait. 2) central trait. 3) cardinal trait. 4) secondary trait. Question 2 (1 point) Which of the following is true about the trait approach to personality? Question 2 options: 1) Trait researchers generally are not interested in understanding and predicting the behavior of a single individual. 2) It is not easy to make comparisons across people with the trait approach. 3) The trait approach has been responsible for generating a number of useful approaches to psychotherapy. 4) Trait theorists place a greater emphasis on discovering the mechanisms underlying behavior than do theorists from other approaches to personality. Question 3 (1 point) Many researchers fail to produce strong links between personality traits and behavior. Epstein has argued that the reason for this failure is because Question 3 options: 1) researchers don’t perform the correct statistical analysis. 2) researchers don’t measure personality traits correctly. 3) researchers don’t measure behavior correctly. 4) none of the above Question 4 (1 point) Which theorist had a strong influence on Henry Murray’s theorizing about personality? Question 4 options: 1) Gordon Allport 2) Alfred Adler 3) Sigmund Freud 4) Carl Jung Question 5 (1 point) Sometimes test makers include the same test questions more than once on the test. This is done to detect which potential problem? Question 5 options: 1) faking good 2) faking bad 3) carelessness and sabotage 4) social desirability

No expert has answered this question yet. You can browse … Read More...
2. Career development process is complex and rapidly evolving and new theories are continually developing presenting challenges to traditional understandings. Discuss why an understanding of career development processes is critical to management, employee and organizational success.

2. Career development process is complex and rapidly evolving and new theories are continually developing presenting challenges to traditional understandings. Discuss why an understanding of career development processes is critical to management, employee and organizational success.

Studies are at the present extrapolative huge employment income in … Read More...
2. When Protagoras said “Man is the measure of all things,” why was this a different and new way of seeing the world? To what degree does contemporary US culture agree with Protagoras?

2. When Protagoras said “Man is the measure of all things,” why was this a different and new way of seeing the world? To what degree does contemporary US culture agree with Protagoras?

  2.    When Protagoras said “Man is the measure of … Read More...
. What behaviors indicate psychological distress? Name 5 and explain.

. What behaviors indicate psychological distress? Name 5 and explain.

The term ‘distress’ is commonly used in nursing literature to … Read More...
“How to Date a Black girl, Brown girl, Halfie or White girl” written by Junot Diaz

“How to Date a Black girl, Brown girl, Halfie or White girl” written by Junot Diaz

A story “How to Date a Black girl, Brown girl, … Read More...