Many people believe that choosing a job and choosing a career are the same. You know my position; I believe a JOB is Just over Broke. What is your position? Explain the differences between a job and a career.

Many people believe that choosing a job and choosing a career are the same. You know my position; I believe a JOB is Just over Broke. What is your position? Explain the differences between a job and a career.

A job is essentially one thing an individual do to … Read More...
Discussion Question – GPS Apps Read Ethics and Issues 2-2 on page 70 of your textbook. If you have a smart phone, have you noticed apps that require location? Should app makers be able to require you to enable tracking or track your activity without your knowledge? Why or why not? What information should they be able to track? Should police be able to track GPS data without warrants? Would you use apps that post your location to social networks? After considering the above questions, write one paragraph for enabling tracking and one against. Your third paragraph: what conclusions have you drawn taking the research and your own experience?

Discussion Question – GPS Apps Read Ethics and Issues 2-2 on page 70 of your textbook. If you have a smart phone, have you noticed apps that require location? Should app makers be able to require you to enable tracking or track your activity without your knowledge? Why or why not? What information should they be able to track? Should police be able to track GPS data without warrants? Would you use apps that post your location to social networks? After considering the above questions, write one paragraph for enabling tracking and one against. Your third paragraph: what conclusions have you drawn taking the research and your own experience?

info@checkyourstudy.com
Why does the primary somatosensory area have a larger section dedicated to the fingers and hand, than to the feet and toes? Select one: the fingers and hand are how we take in more sensory information from our surroundings than the feet and toes the fingers and hand are above the spinal cord termination while the feet and toes are below it the feet and toes require more motor area so they get less somatosensory area the feet and toes are not innervated the fingers and hand do not have motor area sections, so they are controlled by the somatosensory area

Why does the primary somatosensory area have a larger section dedicated to the fingers and hand, than to the feet and toes? Select one: the fingers and hand are how we take in more sensory information from our surroundings than the feet and toes the fingers and hand are above the spinal cord termination while the feet and toes are below it the feet and toes require more motor area so they get less somatosensory area the feet and toes are not innervated the fingers and hand do not have motor area sections, so they are controlled by the somatosensory area

Why does the primary somatosensory area have a larger section … Read More...
Not too long ago, major manufacturer of smart phone sync cables wanted to produce one final production run of the old cable before starting production of a new cable. Because millions of old devices still require the old cables, the manufacturer was comfortable using previous demand as a starting point for determining how many cables to make, and what order for materials they should place. In the past, the company had produced135, 000 cables every 90 days, with a standard deviation of demand of 15,000 cables every 90 days. Every cables old earned $10 profit. The cables cost $20 to make. How many cables should they produce in that last production run?

Not too long ago, major manufacturer of smart phone sync cables wanted to produce one final production run of the old cable before starting production of a new cable. Because millions of old devices still require the old cables, the manufacturer was comfortable using previous demand as a starting point for determining how many cables to make, and what order for materials they should place. In the past, the company had produced135, 000 cables every 90 days, with a standard deviation of demand of 15,000 cables every 90 days. Every cables old earned $10 profit. The cables cost $20 to make. How many cables should they produce in that last production run?

    Cables produced per 90 days 135000 SD per … Read More...
You have had the unique opportunity to develop a career plan in this academic program. By determining career goals and objectives, you should have become insightful and capable of assessing your current skills and abilities and their respective usefulness in attaining that ideal position. According to your plan, what training and education may be required before advancement is possible with respect to your future plans? What is the biggest obstacle you face in search of success?

You have had the unique opportunity to develop a career plan in this academic program. By determining career goals and objectives, you should have become insightful and capable of assessing your current skills and abilities and their respective usefulness in attaining that ideal position. According to your plan, what training and education may be required before advancement is possible with respect to your future plans? What is the biggest obstacle you face in search of success?

We can’t escape from the reality that if we wish … Read More...
MAE 384: Advanced Mathematical Methods for Engineers Spring 2015 Homework #8 Due: Wednesday, April 8, in or before class. Note: Problems 2 (extra credit) and 3 have to be solved by hand. Problems 1 and 5 require MATLAB. The item 1(a) must be shown by hand. Problem 4 can be done either in Matlab or by hand. 1. Consider the following ODE: d y d x = ?8 y with y(0) = 3 on 0 < x < 5, (a) Calculate the largest step size required to maintain stability of the numerical solution to this equation using explicit Euler method. (b) Choose a step size two times smaller than this value. Solve the ODE with explicit Euler method using this step size. (c) Choose a step size two times larger than this value. Solve the ODE with explicit Euler method using this step size. (d) Now repeat parts (b) and (c) with implicit Euler method. (e) Plot all the solutions, including the analytical solution to this problem, on the same plot. Discuss your results. 2. Extra credit. Investigate the stability of the following numerical schemes on the example of an ODE d y d x = ? y with > 0. Show whether the scheme is conditionally or unconditionally stable. Derive the stability threshold if the scheme is conditionally stable. (a) The semi-implicit trapezoidal method: yi+1 = yi + 1 2 (f(xi; yi) + f(xi+1; yi+1)) h (b) The explicit midpoint method: yi+1 = yi + f  xi+1=2; yi + f(xi; yi) h 2  h 3. Solve Problem 25.1 from the textbook with third-order Runge-Kutta (page 734) and fourth-order Runge Kutta (page 735) methods with h = 0:5. Plot your results on the same plot. Also, include results from (a),(b),(c) from the two previous homeworks, on the same plot. 4. Solve Problem 25.2 from the textbook with third-order Runge-Kutta (page 734) and fourth-order Runge Kutta (page 735) methods with h = 0:25. Plot your results on the same plot. Also, include results from (a),(b),(c) from the two previous homeworks, on the same plot. There is a typo in this problem. The interval should be from t=0 to 1, not x=0 to 1. 5. For the following rst-order ODE d y d t = t2 ? 2 y t with y(1) = 2, the purpose will be to write MATLAB functions that solve this equation from t = 1 to t = 4 with 1 of 2 MAE 384: Advanced Mathematical Methods for Engineers Spring 2015 (a) Third-order Runge-Kutta (page 734) (b) Fourth-order Runge-Kutta (page 735) For each method, (a) Write the MATLAB function that solves the ODE by using the number of intervals N as an input argument. (b) Solve the ODE using your MATLAB function for N equal to 8, 16, 32, 64. Calculate the step size h inside the function. (c) Calculate the EL2 errors between the true solution and the numerical solution for each N (consult HW6 for the true solution). The following plots should be presented: 1. Plot your solutions for the methods (a), (b), along with the analytical solution, explicit Euler solution from HW6, and solutions to problem 5 (a) – (c) from HW7, on the same plot for N = 8. Do not print out the values at your grid points. 2. Plot your solutions for the methods (a), (b), along with the analytical solution, explicit Euler solution from HW6, and solutions to problem 5 (a) – (c) from HW7, on the same plot for N = 32. Do not print out the values at your grid points. 3. Plot the values of EL2 errors for the methods (a), (b), as well as for the explicit Euler method from HW6, and solutions to problem 5 (a) – (c) from HW7, as a function of h, on the same plot. What do you observe? 4. Plot the values of EL2 errors for all the methods (a)-(c), as well as for the explicit Euler method from HW6, and solutions to problem 5 (a) – (c) from HW7, as a function of h, on the same plot, but in log-log scale. Discuss how you can estimate the order of convergence for each method from this plot. Estimate the order of convergence for each method. 5. Plot the values of EL2 errors for all the methods (a)-(c), as well as for the explicit Euler method from HW6, and solutions to problem 5 (a) – (c) from HW7, as a function of N, on the same plot, but in log-log scale. Discuss how you can estimate the order of convergence for each method from this plot. Estimate the order of convergence for each method. 6. Discuss whether your convergence results for each method correspond to the known order of accuracy for each method. Explain why or why not. 2 of 2

MAE 384: Advanced Mathematical Methods for Engineers Spring 2015 Homework #8 Due: Wednesday, April 8, in or before class. Note: Problems 2 (extra credit) and 3 have to be solved by hand. Problems 1 and 5 require MATLAB. The item 1(a) must be shown by hand. Problem 4 can be done either in Matlab or by hand. 1. Consider the following ODE: d y d x = ?8 y with y(0) = 3 on 0 < x < 5, (a) Calculate the largest step size required to maintain stability of the numerical solution to this equation using explicit Euler method. (b) Choose a step size two times smaller than this value. Solve the ODE with explicit Euler method using this step size. (c) Choose a step size two times larger than this value. Solve the ODE with explicit Euler method using this step size. (d) Now repeat parts (b) and (c) with implicit Euler method. (e) Plot all the solutions, including the analytical solution to this problem, on the same plot. Discuss your results. 2. Extra credit. Investigate the stability of the following numerical schemes on the example of an ODE d y d x = ? y with > 0. Show whether the scheme is conditionally or unconditionally stable. Derive the stability threshold if the scheme is conditionally stable. (a) The semi-implicit trapezoidal method: yi+1 = yi + 1 2 (f(xi; yi) + f(xi+1; yi+1)) h (b) The explicit midpoint method: yi+1 = yi + f  xi+1=2; yi + f(xi; yi) h 2  h 3. Solve Problem 25.1 from the textbook with third-order Runge-Kutta (page 734) and fourth-order Runge Kutta (page 735) methods with h = 0:5. Plot your results on the same plot. Also, include results from (a),(b),(c) from the two previous homeworks, on the same plot. 4. Solve Problem 25.2 from the textbook with third-order Runge-Kutta (page 734) and fourth-order Runge Kutta (page 735) methods with h = 0:25. Plot your results on the same plot. Also, include results from (a),(b),(c) from the two previous homeworks, on the same plot. There is a typo in this problem. The interval should be from t=0 to 1, not x=0 to 1. 5. For the following rst-order ODE d y d t = t2 ? 2 y t with y(1) = 2, the purpose will be to write MATLAB functions that solve this equation from t = 1 to t = 4 with 1 of 2 MAE 384: Advanced Mathematical Methods for Engineers Spring 2015 (a) Third-order Runge-Kutta (page 734) (b) Fourth-order Runge-Kutta (page 735) For each method, (a) Write the MATLAB function that solves the ODE by using the number of intervals N as an input argument. (b) Solve the ODE using your MATLAB function for N equal to 8, 16, 32, 64. Calculate the step size h inside the function. (c) Calculate the EL2 errors between the true solution and the numerical solution for each N (consult HW6 for the true solution). The following plots should be presented: 1. Plot your solutions for the methods (a), (b), along with the analytical solution, explicit Euler solution from HW6, and solutions to problem 5 (a) – (c) from HW7, on the same plot for N = 8. Do not print out the values at your grid points. 2. Plot your solutions for the methods (a), (b), along with the analytical solution, explicit Euler solution from HW6, and solutions to problem 5 (a) – (c) from HW7, on the same plot for N = 32. Do not print out the values at your grid points. 3. Plot the values of EL2 errors for the methods (a), (b), as well as for the explicit Euler method from HW6, and solutions to problem 5 (a) – (c) from HW7, as a function of h, on the same plot. What do you observe? 4. Plot the values of EL2 errors for all the methods (a)-(c), as well as for the explicit Euler method from HW6, and solutions to problem 5 (a) – (c) from HW7, as a function of h, on the same plot, but in log-log scale. Discuss how you can estimate the order of convergence for each method from this plot. Estimate the order of convergence for each method. 5. Plot the values of EL2 errors for all the methods (a)-(c), as well as for the explicit Euler method from HW6, and solutions to problem 5 (a) – (c) from HW7, as a function of N, on the same plot, but in log-log scale. Discuss how you can estimate the order of convergence for each method from this plot. Estimate the order of convergence for each method. 6. Discuss whether your convergence results for each method correspond to the known order of accuracy for each method. Explain why or why not. 2 of 2

Order of accuracy for Maximum step size for numerical stability … Read More...
In the movie Bubble Boy, Jimmy lives inside a plastic bubble where he is protected from all outside agents. Which type of disease would require a child to live inside a plastic bubble? Select one: an autoimmune disease systemic lupus erythematosus multiple sclerosis AIDS a total immune deficiency

In the movie Bubble Boy, Jimmy lives inside a plastic bubble where he is protected from all outside agents. Which type of disease would require a child to live inside a plastic bubble? Select one: an autoimmune disease systemic lupus erythematosus multiple sclerosis AIDS a total immune deficiency

In the movie Bubble Boy, Jimmy lives inside a plastic … Read More...
5. Provide a brief discussion with supporting evidence to the following inquiry: With the responsibility of overseeing career development processes, how does management equip employees with skills that impact their performance in an efficient and effective manner?

5. Provide a brief discussion with supporting evidence to the following inquiry: With the responsibility of overseeing career development processes, how does management equip employees with skills that impact their performance in an efficient and effective manner?

Career development can facilitate we attain superior contentment and accomplishment. … Read More...