Project Four: Revisiting English 1010 (Literacy, Language, and Culture: An Exploration of the African American Experience) The MultiMedia Reflective Portfolio Project Overview This project will provide us with the opportunity to use a combination of textual, digital, and oral tools to: 1) reflect on and display what we have learned about African American literacy, language, and culture; and 2) reflect on and display what we have learned about the process of composing a literacy narrative, informative summary, media analysis, and multimedia reflective portfolio project. Ultimately, this project will provide us with the opportunity to use multimedia tools and applications to reflect on and display our experience as knowledge users and knowledge makers in this course (specifically as it relates to the English 1010 Learning Outcomes). ___________________________________________________________________ Introduction/Rationale/Assignment Prompt: This reflective assignment, which is the last major assignment of the semester, consists of two parts: Part One Part One consists of a 2-3 page reflective essay in which you reflect on and display: (1) what you learned about African American literacy, language, and culture; and (2) what you learned about the process of composing a literacy narrative, informative summary, media analysis, and multimedia reflective portfolio project–specifically as the process relates to the Learning Outcomes (Reading, Writing, Reflection, and Technology Use). To do so, you must look back over the work you produced during the semester in order to locate and discuss your learning and accomplishments in these areas. While your discussion of achievements with respect to ENG 1010 Learning Outcomes is perhaps the most important goal in the Reflective Essay, the written expression of these achievements can be strengthened when it is integrated into a broader narrative that describes where you are coming from and who you are as a student. In this narrative, you may discuss, for example, how you learned and used various reading strategies in the course, or you may describe, for example, how your ability to use composition and course management technologies, like Word and Blackboard, increased. You may also address, as appropriate, how your culture, identity, or background shaped your experiences as a student in ENG 1010. You may wish to discuss, for example, some of the following issues. • Transition to college and the larger first-year experience • Negotiation of a new identity as college student (how you adjusted; how you handled it) • Membership in groups historically underrepresented in college • Language diversity • Managing life circumstances to be able to give enough time and energy to academic work In sum, the Reflective Essay should make claims about your learning and accomplishments with respect to the two areas identified above. Essentially, the reflective essay should demonstrate what you have learned and what you can do as a result of your work in ENG 1010. In this way, a successful Reflective Essay will inspire confidence that you are prepared to move forward into your next composition courses, beginning with ENG 1020, and into the larger academic discourse community. Part Two Part Two consists of an electronic multimedia portfolio containing 3-5 selected pieces of the work you produced this semester (essay topic proposals, reading responses, essay outlines, essay first or final drafts, in-class assignments, etc.) that you can use as evidence of your learning and accomplishments and to support the claims you made in your reflective essay. ___________________________________________________________________ English 1010 Learning Outcomes Reading ● Develop reading strategies to explain, paraphrase, and summarize college-level material. ● Analyze college-level material to identify evidence that supports broader claims. Writing ● Plan and compose a well-organized thesis-driven text that engages with college-level material and is supported by relevant and sufficient evidence. ● Develop a flexible revision process that incorporates feedback to rewrite multiple drafts of a text for clarity (e.g. argument, organization, support, and audience awareness). Reflection ● Use reflective writing to evaluate and revise writing processes and drafts ● Use reflective writing to assess and articulate skill development in relation to course learning outcomes. Technology Use ● Navigate institutional web-based interfaces, such as course websites, university email, and Blackboard Learn™, to find, access and submit course material. ● Use computer-based composition technologies, including word processing software (e.g. Microsoft Word, PowerPoint), to compose college-level texts. ● Use computer-based composition technologies to read and annotate course readings and texts authored by students (e.g. peer review). Your Final Draft Should: • meet the requirements as outlined in the “Introduction/Rationale/Assignment Prompt” section above. Points for This Project • First Draft: 20 Points • Final Draft: 130 Points • Oral Presentation: 30 Points Refer to the Course Schedule (Syllabus) for Assignment Due Dates. _______________________________________________________________ Evaluation: You will be evaluated based on content, organization, and mechanics.

Project Four: Revisiting English 1010 (Literacy, Language, and Culture: An Exploration of the African American Experience) The MultiMedia Reflective Portfolio Project Overview This project will provide us with the opportunity to use a combination of textual, digital, and oral tools to: 1) reflect on and display what we have learned about African American literacy, language, and culture; and 2) reflect on and display what we have learned about the process of composing a literacy narrative, informative summary, media analysis, and multimedia reflective portfolio project. Ultimately, this project will provide us with the opportunity to use multimedia tools and applications to reflect on and display our experience as knowledge users and knowledge makers in this course (specifically as it relates to the English 1010 Learning Outcomes). ___________________________________________________________________ Introduction/Rationale/Assignment Prompt: This reflective assignment, which is the last major assignment of the semester, consists of two parts: Part One Part One consists of a 2-3 page reflective essay in which you reflect on and display: (1) what you learned about African American literacy, language, and culture; and (2) what you learned about the process of composing a literacy narrative, informative summary, media analysis, and multimedia reflective portfolio project–specifically as the process relates to the Learning Outcomes (Reading, Writing, Reflection, and Technology Use). To do so, you must look back over the work you produced during the semester in order to locate and discuss your learning and accomplishments in these areas. While your discussion of achievements with respect to ENG 1010 Learning Outcomes is perhaps the most important goal in the Reflective Essay, the written expression of these achievements can be strengthened when it is integrated into a broader narrative that describes where you are coming from and who you are as a student. In this narrative, you may discuss, for example, how you learned and used various reading strategies in the course, or you may describe, for example, how your ability to use composition and course management technologies, like Word and Blackboard, increased. You may also address, as appropriate, how your culture, identity, or background shaped your experiences as a student in ENG 1010. You may wish to discuss, for example, some of the following issues. • Transition to college and the larger first-year experience • Negotiation of a new identity as college student (how you adjusted; how you handled it) • Membership in groups historically underrepresented in college • Language diversity • Managing life circumstances to be able to give enough time and energy to academic work In sum, the Reflective Essay should make claims about your learning and accomplishments with respect to the two areas identified above. Essentially, the reflective essay should demonstrate what you have learned and what you can do as a result of your work in ENG 1010. In this way, a successful Reflective Essay will inspire confidence that you are prepared to move forward into your next composition courses, beginning with ENG 1020, and into the larger academic discourse community. Part Two Part Two consists of an electronic multimedia portfolio containing 3-5 selected pieces of the work you produced this semester (essay topic proposals, reading responses, essay outlines, essay first or final drafts, in-class assignments, etc.) that you can use as evidence of your learning and accomplishments and to support the claims you made in your reflective essay. ___________________________________________________________________ English 1010 Learning Outcomes Reading ● Develop reading strategies to explain, paraphrase, and summarize college-level material. ● Analyze college-level material to identify evidence that supports broader claims. Writing ● Plan and compose a well-organized thesis-driven text that engages with college-level material and is supported by relevant and sufficient evidence. ● Develop a flexible revision process that incorporates feedback to rewrite multiple drafts of a text for clarity (e.g. argument, organization, support, and audience awareness). Reflection ● Use reflective writing to evaluate and revise writing processes and drafts ● Use reflective writing to assess and articulate skill development in relation to course learning outcomes. Technology Use ● Navigate institutional web-based interfaces, such as course websites, university email, and Blackboard Learn™, to find, access and submit course material. ● Use computer-based composition technologies, including word processing software (e.g. Microsoft Word, PowerPoint), to compose college-level texts. ● Use computer-based composition technologies to read and annotate course readings and texts authored by students (e.g. peer review). Your Final Draft Should: • meet the requirements as outlined in the “Introduction/Rationale/Assignment Prompt” section above. Points for This Project • First Draft: 20 Points • Final Draft: 130 Points • Oral Presentation: 30 Points Refer to the Course Schedule (Syllabus) for Assignment Due Dates. _______________________________________________________________ Evaluation: You will be evaluated based on content, organization, and mechanics.

No expert has answered this question yet. You can browse … Read More...
Assignment 10 Due: 11:59pm on Wednesday, April 23, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 12.3 Part A The figure shows three rotating disks, all of equal mass. Rank in order, from largest to smallest, their rotational kinetic energies to . Rank from largest to smallest. To rank items as equivalent, overlap them. ANSWER: Ka Kc Correct Conceptual Question 12.6 You have two steel solid spheres. Sphere 2 has twice the radius of sphere 1. Part A By what factor does the moment of inertia of sphere 2 exceed the moment of inertia of sphere 1? ANSWER: I2 I1 Correct Problem 12.2 A high-speed drill reaches 2500 in 0.59 . Part A What is the drill’s angular acceleration? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B Through how many revolutions does it turn during this first 0.59 ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct I2/I1 = 32 rpm s  = 440 rad s2 s  = 12 rev Constant Angular Acceleration in the Kitchen Dario, a prep cook at an Italian restaurant, spins a salad spinner and observes that it rotates 20.0 times in 5.00 seconds and then stops spinning it. The salad spinner rotates 6.00 more times before it comes to rest. Assume that the spinner slows down with constant angular acceleration. Part A What is the angular acceleration of the salad spinner as it slows down? Express your answer numerically in degrees per second per second. Hint 1. How to approach the problem Recall from your study of kinematics the three equations of motion derived for systems undergoing constant linear acceleration. You are now studying systems undergoing constant angular acceleration and will need to work with the three analogous equations of motion. Collect your known quantities and then determine which of the angular kinematic equations is appropriate to find the angular acceleration . Hint 2. Find the angular velocity of the salad spinner while Dario is spinning it What is the angular velocity of the salad spinner as Dario is spinning it? Express your answer numerically in degrees per second. Hint 1. Converting rotations to degrees When the salad spinner spins through one revolution, it turns through 360 degrees. ANSWER: Hint 3. Find the angular distance the salad spinner travels as it comes to rest Through how many degrees does the salad spinner rotate as it comes to rest? Express your answer numerically in degrees. Hint 1. Converting rotations to degrees  0 = 1440 degrees/s  =  − 0 One revolution is equivalent to 360 degrees. ANSWER: Hint 4. Determine which equation to use You know the initial and final velocities of the system and the angular distance through which the spinner rotates as it comes to a stop. Which equation should be used to solve for the unknown constant angular acceleration ? ANSWER: ANSWER: Correct Part B How long does it take for the salad spinner to come to rest? Express your answer numerically in seconds.  = 2160 degrees   = 0 + 0t+  1 2 t2  = 0 + t = + 2( − ) 2 20 0  = -480 degrees/s2 Hint 1. How to approach the problem Again, you will need the equations of rotational kinematics that apply to situations of constant angular acceleration. Collect your known quantities and then determine which of the angular kinematic equations is appropriate to find . Hint 2. Determine which equation to use You have the initial and final velocities of the system and the angular acceleration, which you found in the previous part. Which is the best equation to use to solve for the unknown time ? ANSWER: ANSWER: Correct ± A Spinning Electric Fan An electric fan is turned off, and its angular velocity decreases uniformly from 540 to 250 in a time interval of length 4.40 . Part A Find the angular acceleration in revolutions per second per second. Hint 1. Average acceleration Recall that if the angular velocity decreases uniformly, the angular acceleration will remain constant. Therefore, the angular acceleration is just the total change in angular velocity divided by t t  = 0 + 0t+  1 2 t2  = 0 + t = + 2( − ) 2 20 0 t = 3.00 s rev/min rev/min s  the total change in time. Be careful of the sign of the angular acceleration. ANSWER: Correct Part B Find the number of revolutions made by the fan blades during the time that they are slowing down in Part A. Hint 1. Determine the correct kinematic equation Which of the following kinematic equations is best suited to this problem? Here and are the initial and final angular velocities, is the elapsed time, is the constant angular acceleration, and and are the initial and final angular displacements. Hint 1. How to chose the right equation Notice that you were given in the problem introduction the initial and final speeds, as well as the length of time between them. In this problem, you are asked to find the number of revolutions (which here is the change in angular displacement, ). If you already found the angular acceleration in Part A, you could use that as well, but you would end up using a more complex equation. Also, in general, it is somewhat favorable to use given quantities instead of quantities that you have calculated. ANSWER:  = -1.10 rev/s2 0  t  0   − 0  = 0 + t  = 0 + t+  1 2 t2 = + 2( − ) 2 20 0 − 0 = (+ )t 1 2 0 ANSWER: Correct Part C How many more seconds are required for the fan to come to rest if the angular acceleration remains constant at the value calculated in Part A? Hint 1. Finding the total time for spin down To find the total time for spin down, just calculate when the velocity will equal zero. This is accomplished by setting the initial velocity plus the acceleration multipled by the time equal to zero and then solving for the time. One can then just subtract the time it took to reach 250 from the total time. Be careful of your signs when you set up the equation. ANSWER: Correct Problem 12.8 A 100 ball and a 230 ball are connected by a 34- -long, massless, rigid rod. The balls rotate about their center of mass at 130 . Part A What is the speed of the 100 ball? Express your answer to two significant figures and include the appropriate units. ANSWER: 29.0 rev rev/min 3.79 s g g cm rpm g Correct Problem 12.10 A thin, 60.0 disk with a diameter of 9.00 rotates about an axis through its center with 0.200 of kinetic energy. Part A What is the speed of a point on the rim? Express your answer with the appropriate units. ANSWER: Correct Problem 12.12 A drum major twirls a 95- -long, 470 baton about its center of mass at 150 . Part A What is the baton’s rotational kinetic energy? Express your answer to two significant figures and include the appropriate units. ANSWER: v = 3.2 ms g cm J 3.65 ms cm g rpm K = 4.4 J Correct Net Torque on a Pulley The figure below shows two blocks suspended by a cord over a pulley. The mass of block B is twice the mass of block A, while the mass of the pulley is equal to the mass of block A. The blocks are let free to move and the cord moves on the pulley without slipping or stretching. There is no friction in the pulley axle, and the cord’s weight can be ignored. Part A Which of the following statements correctly describes the system shown in the figure? Check all that apply. Hint 1. Conditions for equilibrium If the blocks had the same mass, the system would be in equilibrium. The blocks would have zero acceleration and the tension in each part of the cord would equal the weight of each block. Both parts of the cord would then pull with equal force on the pulley, resulting in a zero net torque and no rotation of the pulley. Is this still the case in the current situation where block B has twice the mass of block A? Hint 2. Rotational analogue of Newton’s second law The net torque of all the forces acting on a rigid body is proportional to the angular acceleration of the body net  and is given by , where is the moment of inertia of the body. Hint 3. Relation between linear and angular acceleration A particle that rotates with angular acceleration has linear acceleration equal to , where is the distance of the particle from the axis of rotation. In the present case, where there is no slipping or stretching of the cord, the cord and the pulley must move together at the same speed. Therefore, if the cord moves with linear acceleration , the pulley must rotate with angular acceleration , where is the radius of the pulley. ANSWER: Correct Part B What happens when block B moves downward? Hint 1. How to approach the problem To determine whether the tensions in both parts of the cord are equal, it is convenient to write a mathematical expression for the net torque on the pulley. This will allow you to relate the tensions in the cord to the pulley’s angular acceleration. Hint 2. Find the net torque on the pulley Let’s assume that the tensions in both parts of the cord are different. Let be the tension in the right cord and the tension in the left cord. If is the radius of the pulley, what is the net torque acting on the pulley? Take the positive sense of rotation to be counterclockwise. Express your answer in terms of , , and . net = I I  a a = R R a  = a R R The acceleration of the blocks is zero. The net torque on the pulley is zero. The angular acceleration of the pulley is nonzero. T1 T2 R net T1 T2 R Hint 1. Torque The torque of a force with respect to a point is defined as the product of the magnitude times the perpendicular distance between the line of action of and the point . In other words, . ANSWER: ANSWER: Correct Note that if the pulley were stationary (as in many systems where only linear motion is studied), then the tensions in both parts of the cord would be equal. However, if the pulley rotates with a certain angular acceleration, as in the present situation, the tensions must be different. If they were equal, the pulley could not have an angular acceleration. Problem 12.18 Part A In the figure , what is the magnitude of net torque about the axle? Express your answer to two significant figures and include the appropriate units.  F  O F l F  O  = Fl net = R(T2 − T1 ) The left cord pulls on the pulley with greater force than the right cord. The left and right cord pull with equal force on the pulley. The right cord pulls on the pulley with greater force than the left cord. ANSWER: Correct Part B What is the direction of net torque about the axle? ANSWER: Correct Problem 12.22 An athlete at the gym holds a 3.5 steel ball in his hand. His arm is 78 long and has a mass of 3.6 . Assume the center of mass of the arm is at the geometrical center of the arm. Part A What is the magnitude of the torque about his shoulder if he holds his arm straight out to his side, parallel to the floor? Express your answer to two significant figures and include the appropriate units.  = 0.20 Nm Clockwise Counterclockwise kg cm kg ANSWER: Correct Part B What is the magnitude of the torque about his shoulder if he holds his arm straight, but below horizontal? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Parallel Axis Theorem The parallel axis theorem relates , the moment of inertia of an object about an axis passing through its center of mass, to , the moment of inertia of the same object about a parallel axis passing through point p. The mathematical statement of the theorem is , where is the perpendicular distance from the center of mass to the axis that passes through point p, and is the mass of the object. Part A Suppose a uniform slender rod has length and mass . The moment of inertia of the rod about about an axis that is perpendicular to the rod and that passes through its center of mass is given by . Find , the moment of inertia of the rod with respect to a parallel axis through one end of the rod. Express in terms of and . Use fractions rather than decimal numbers in your answer. Hint 1. Find the distance from the axis to the center of mass Find the distance appropriate to this problem. That is, find the perpendicular distance from the center of mass of the rod to the axis passing through one end of the rod.  = 41 Nm 45  = 29 Nm Icm Ip Ip = Icm + Md2 d M L m Icm = m 1 12 L2 Iend Iend m L d ANSWER: ANSWER: Correct Part B Now consider a cube of mass with edges of length . The moment of inertia of the cube about an axis through its center of mass and perpendicular to one of its faces is given by . Find , the moment of inertia about an axis p through one of the edges of the cube Express in terms of and . Use fractions rather than decimal numbers in your answer. Hint 1. Find the distance from the axis to the axis Find the perpendicular distance from the center of mass axis to the new edge axis (axis labeled p in the figure). ANSWER: d = L 2 Iend = mL2 3 m a Icm Icm = m 1 6 a2 Iedge Iedge m a o p d ANSWER: Correct Problem 12.26 Starting from rest, a 12- -diameter compact disk takes 2.9 to reach its operating angular velocity of 2000 . Assume that the angular acceleration is constant. The disk’s moment of inertia is . Part A How much torque is applied to the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How many revolutions does it make before reaching full speed? Express your answer using two significant figures. ANSWER: d = a 2 Iedge = 2ma2 3 cm s rpm 2.5 × 10−5 kg m2 = 1.8×10−3  Nm Correct Problem 12.23 An object’s moment of inertia is 2.20 . Its angular velocity is increasing at the rate of 3.70 . Part A What is the total torque on the object? ANSWER: Correct Problem 12.31 A 5.1 cat and a 2.5 bowl of tuna fish are at opposite ends of the 4.0- -long seesaw. N = 48 rev kgm2 rad/s2 8.14 N  m kg kg m Part A How far to the left of the pivot must a 3.8 cat stand to keep the seesaw balanced? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Static Equilibrium of the Arm You are able to hold out your arm in an outstretched horizontal position because of the action of the deltoid muscle. Assume the humerus bone has a mass , length and its center of mass is a distance from the scapula. (For this problem ignore the rest of the arm.) The deltoid muscle attaches to the humerus a distance from the scapula. The deltoid muscle makes an angle of with the horizontal, as shown. Use throughout the problem. Part A kg d = 1.4 m M1 = 3.6 kg L = 0.66 m L1 = 0.33 m L2 = 0.15 m  = 17 g = 9.8 m/s2 Find the tension in the deltoid muscle. Express the tension in newtons, to the nearest integer. Hint 1. Nature of the problem Remember that this is a statics problem, so all forces and torques are balanced (their sums equal zero). Hint 2. Origin of torque Calculate the torque about the point at which the arm attaches to the rest of the body. This allows one to balance the torques without having to worry about the undefined forces at this point. Hint 3. Adding up the torques Add up the torques about the point in which the humerus attaches to the body. Answer in terms of , , , , , and . Remember that counterclockwise torque is positive. ANSWER: ANSWER: Correct Part B Using the conditions for static equilibrium, find the magnitude of the vertical component of the force exerted by the scapula on the humerus (where the humerus attaches to the rest of the body). Express your answer in newtons, to the nearest integer. T L1 L2 M1 g T  total = 0 = L1M1g − Tsin()L2 T = 265 N Fy Hint 1. Total forces involved Recall that there are three vertical forces in this problem: the force of gravity acting on the bone, the force from the vertical component of the muscle tension, and the force exerted by the scapula on the humerus (where it attaches to the rest of the body). ANSWER: Correct Part C Now find the magnitude of the horizontal component of the force exerted by the scapula on the humerus. Express your answer in newtons, to the nearest integer. ANSWER: Correct ± Moments around a Rod A rod is bent into an L shape and attached at one point to a pivot. The rod sits on a frictionless table and the diagram is a view from above. This means that gravity can be ignored for this problem. There are three forces that are applied to the rod at different points and angles: , , and . Note that the dimensions of the bent rod are in centimeters in the figure, although the answers are requested in SI units (kilograms, meters, seconds). |Fy| = 42 N Fx |Fx| = 254 N F 1 F  2 F  3 Part A If and , what does the magnitude of have to be for there to be rotational equilibrium? Answer numerically in newtons to two significant figures. Hint 1. Finding torque about pivot from What is the magnitude of the torque | | provided by around the pivot point? Give your answer numerically in newton-meters to two significant figures. ANSWER: ANSWER: Correct Part B If the L-shaped rod has a moment of inertia , , , and again , how long a time would it take for the object to move through ( /4 radians)? Assume that as the object starts to move, each force moves with the object so as to retain its initial angle relative to the object. Express the time in seconds to two significant figures. F3 = 0 F1 = 12 N F 2 F 1   1 F  1 |  1 | = 0.36 N  m F2 = 4.5 N I = 9 kg m2 F1 = 12 N F2 = 27 N F3 = 0 t 45  Hint 1. Find the net torque about the pivot What is the magnitude of the total torque around the pivot point? Answer numerically in newton-meters to two significant figures. ANSWER: Hint 2. Calculate Given the total torque around the pivot point, what is , the magnitude of the angular acceleration? Express your answer numerically in radians per second squared to two significant figures. Hint 1. Equation for If you know the magnitude of the total torque ( ) and the rotational inertia ( ), you can then find the rotational acceleration ( ) from ANSWER: Hint 3. Description of angular kinematics Now that you know the angular acceleration, this is a problem in rotational kinematics; find the time needed to go through a given angle . For constant acceleration ( ) and starting with (where is angular speed) the relation is given by which is analogous to the expression for linear displacement ( ) with constant acceleration ( ) starting from rest, | p ivot| | p ivot| = 1.8 N  m    vot Ivot  pivot = Ipivot.  = 0.20 radians/s2    = 0   = 1  , 2 t2 x a . ANSWER: Correct Part C Now consider the situation in which and , but now a force with nonzero magnitude is acting on the rod. What does have to be to obtain equilibrium? Give a numerical answer, without trigonometric functions, in newtons, to two significant figures. Hint 1. Find the required component of Only the tangential (perpendicular) component of (call it ) provides a torque. What is ? Answer in terms of . You will need to evaluate any trigonometric functions. ANSWER: ANSWER: Correct x = 1 a 2 t2 t = 2.8 s F1 = 12 N F2 = 0 F3 F3 F 3 F  3 F3t F3t F3 F3t = 1 2 F3 F3 = 9.0 N Problem 12.32 A car tire is 55.0 in diameter. The car is traveling at a speed of 24.0 . Part A What is the tire’s rotation frequency, in rpm? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part B What is the speed of a point at the top edge of the tire? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C What is the speed of a point at the bottom edge of the tire? Express your answer as an integer and include the appropriate units. ANSWER: cm m/s 833 rpm 48.0 ms 0 ms Correct Problem 12.33 A 460 , 8.00-cm-diameter solid cylinder rolls across the floor at 1.30 . Part A What is the can’s kinetic energy? Express your answer with the appropriate units. ANSWER: Correct Problem 12.45 Part A What is the magnitude of the angular momentum of the 780 rotating bar in the figure ? g m/s 0.583 J g ANSWER: Correct Part B What is the direction of the angular momentum of the bar ? ANSWER: Correct Problem 12.46 Part A What is the magnitude of the angular momentum of the 2.20 , 4.60-cm-diameter rotating disk in the figure ? 3.27 kgm2/s into the page out of the page kg ANSWER: Correct Part B What is its direction? ANSWER: Correct Problem 12.60 A 3.0- -long ladder, as shown in the following figure, leans against a frictionless wall. The coefficient of static friction between the ladder and the floor is 0.46. 3.66×10−2 kgm /s 2 x direction -x direction y direction -y direction z direction -z direction m Part A What is the minimum angle the ladder can make with the floor without slipping? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 12.61 The 3.0- -long, 90 rigid beam in the following figure is supported at each end. An 70 student stands 2.0 from support 1.  = 47 m kg kg m Part A How much upward force does the support 1 exert on the beam? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How much upward force does the support 2 exert on the beam? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 12.63 A 44 , 5.5- -long beam is supported, but not attached to, the two posts in the figure . A 22 boy starts walking along the beam. You may want to review ( pages 330 – 334) . For help with math skills, you may want to review: F1 = 670 N F2 = 900 N kg m kg The Vector Cross Product Part A How close can he get to the right end of the beam without it falling over? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture of the four forces acting on the beam, indicating both their direction and the place on the beam that the forces are acting. Choose a coordinate system with a direction for the axis along the beam, and indicate the position of the boy. What is the net force on the beam if it is stationary? Just before the beam tips, the force of the left support on the beam is zero. Using the zero net force condition, what is the force due to the right support just before the beam tips? For the beam to remain stationary, what must be zero besides the net force on the beam? Choose a point on the beam, and compute the net torque on the beam about that point. Be sure to choose a positive direction for the rotation axis and therefore the torques. Using the zero torque condition, what is the position of the boy on the beam just prior to tipping? How far is this position from the right edge of the beam? ANSWER: Correct d = 2.0 m Problem 12.68 Flywheels are large, massive wheels used to store energy. They can be spun up slowly, then the wheel’s energy can be released quickly to accomplish a task that demands high power. An industrial flywheel has a 1.6 diameter and a mass of 270 . Its maximum angular velocity is 1500 . Part A A motor spins up the flywheel with a constant torque of 54 . How long does it take the flywheel to reach top speed? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How much energy is stored in the flywheel? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C The flywheel is disconnected from the motor and connected to a machine to which it will deliver energy. Half the energy stored in the flywheel is delivered in 2.2 . What is the average power delivered to the machine? Express your answer to two significant figures and include the appropriate units. ANSWER: m kg rpm N  m t = 250 s = 1.1×106 E J s Correct Part D How much torque does the flywheel exert on the machine? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 12.71 The 3.30 , 40.0-cm-diameter disk in the figure is spinning at 350 . Part A How much friction force must the brake apply to the rim to bring the disk to a halt in 2.10 ? P = 2.4×105 W  = 1800 Nm kg rpm s Express your answer with the appropriate units. ANSWER: Correct Problem 12.74 A 5.0 , 60- -diameter cylinder rotates on an axle passing through one edge. The axle is parallel to the floor. The cylinder is held with the center of mass at the same height as the axle, then released. Part A What is the magnitude of the cylinder’s initial angular acceleration? Express your answer to two significant figures and include the appropriate units. ANSWER: 5.76 N kg cm  = 22 rad s2 Correct Part B What is the magnitude of the cylinder’s angular velocity when it is directly below the axle? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 12.82 A 45 figure skater is spinning on the toes of her skates at 0.90 . Her arms are outstretched as far as they will go. In this orientation, the skater can be modeled as a cylindrical torso (40 , 20 average diameter, 160 tall) plus two rod-like arms (2.5 each, 67 long) attached to the outside of the torso. The skater then raises her arms straight above her head, where she appears to be a 45 , 20- -diameter, 200- -tall cylinder. Part A What is her new rotation frequency, in revolutions per second? Express your answer to two significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Score Summary:  = 6.6 rad s kg rev/s kg cm cm kg cm kg cm cm 2 = Your score on this assignment is 95.7%. You received 189.42 out of a possible total of 198 points.

Assignment 10 Due: 11:59pm on Wednesday, April 23, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 12.3 Part A The figure shows three rotating disks, all of equal mass. Rank in order, from largest to smallest, their rotational kinetic energies to . Rank from largest to smallest. To rank items as equivalent, overlap them. ANSWER: Ka Kc Correct Conceptual Question 12.6 You have two steel solid spheres. Sphere 2 has twice the radius of sphere 1. Part A By what factor does the moment of inertia of sphere 2 exceed the moment of inertia of sphere 1? ANSWER: I2 I1 Correct Problem 12.2 A high-speed drill reaches 2500 in 0.59 . Part A What is the drill’s angular acceleration? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B Through how many revolutions does it turn during this first 0.59 ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct I2/I1 = 32 rpm s  = 440 rad s2 s  = 12 rev Constant Angular Acceleration in the Kitchen Dario, a prep cook at an Italian restaurant, spins a salad spinner and observes that it rotates 20.0 times in 5.00 seconds and then stops spinning it. The salad spinner rotates 6.00 more times before it comes to rest. Assume that the spinner slows down with constant angular acceleration. Part A What is the angular acceleration of the salad spinner as it slows down? Express your answer numerically in degrees per second per second. Hint 1. How to approach the problem Recall from your study of kinematics the three equations of motion derived for systems undergoing constant linear acceleration. You are now studying systems undergoing constant angular acceleration and will need to work with the three analogous equations of motion. Collect your known quantities and then determine which of the angular kinematic equations is appropriate to find the angular acceleration . Hint 2. Find the angular velocity of the salad spinner while Dario is spinning it What is the angular velocity of the salad spinner as Dario is spinning it? Express your answer numerically in degrees per second. Hint 1. Converting rotations to degrees When the salad spinner spins through one revolution, it turns through 360 degrees. ANSWER: Hint 3. Find the angular distance the salad spinner travels as it comes to rest Through how many degrees does the salad spinner rotate as it comes to rest? Express your answer numerically in degrees. Hint 1. Converting rotations to degrees  0 = 1440 degrees/s  =  − 0 One revolution is equivalent to 360 degrees. ANSWER: Hint 4. Determine which equation to use You know the initial and final velocities of the system and the angular distance through which the spinner rotates as it comes to a stop. Which equation should be used to solve for the unknown constant angular acceleration ? ANSWER: ANSWER: Correct Part B How long does it take for the salad spinner to come to rest? Express your answer numerically in seconds.  = 2160 degrees   = 0 + 0t+  1 2 t2  = 0 + t = + 2( − ) 2 20 0  = -480 degrees/s2 Hint 1. How to approach the problem Again, you will need the equations of rotational kinematics that apply to situations of constant angular acceleration. Collect your known quantities and then determine which of the angular kinematic equations is appropriate to find . Hint 2. Determine which equation to use You have the initial and final velocities of the system and the angular acceleration, which you found in the previous part. Which is the best equation to use to solve for the unknown time ? ANSWER: ANSWER: Correct ± A Spinning Electric Fan An electric fan is turned off, and its angular velocity decreases uniformly from 540 to 250 in a time interval of length 4.40 . Part A Find the angular acceleration in revolutions per second per second. Hint 1. Average acceleration Recall that if the angular velocity decreases uniformly, the angular acceleration will remain constant. Therefore, the angular acceleration is just the total change in angular velocity divided by t t  = 0 + 0t+  1 2 t2  = 0 + t = + 2( − ) 2 20 0 t = 3.00 s rev/min rev/min s  the total change in time. Be careful of the sign of the angular acceleration. ANSWER: Correct Part B Find the number of revolutions made by the fan blades during the time that they are slowing down in Part A. Hint 1. Determine the correct kinematic equation Which of the following kinematic equations is best suited to this problem? Here and are the initial and final angular velocities, is the elapsed time, is the constant angular acceleration, and and are the initial and final angular displacements. Hint 1. How to chose the right equation Notice that you were given in the problem introduction the initial and final speeds, as well as the length of time between them. In this problem, you are asked to find the number of revolutions (which here is the change in angular displacement, ). If you already found the angular acceleration in Part A, you could use that as well, but you would end up using a more complex equation. Also, in general, it is somewhat favorable to use given quantities instead of quantities that you have calculated. ANSWER:  = -1.10 rev/s2 0  t  0   − 0  = 0 + t  = 0 + t+  1 2 t2 = + 2( − ) 2 20 0 − 0 = (+ )t 1 2 0 ANSWER: Correct Part C How many more seconds are required for the fan to come to rest if the angular acceleration remains constant at the value calculated in Part A? Hint 1. Finding the total time for spin down To find the total time for spin down, just calculate when the velocity will equal zero. This is accomplished by setting the initial velocity plus the acceleration multipled by the time equal to zero and then solving for the time. One can then just subtract the time it took to reach 250 from the total time. Be careful of your signs when you set up the equation. ANSWER: Correct Problem 12.8 A 100 ball and a 230 ball are connected by a 34- -long, massless, rigid rod. The balls rotate about their center of mass at 130 . Part A What is the speed of the 100 ball? Express your answer to two significant figures and include the appropriate units. ANSWER: 29.0 rev rev/min 3.79 s g g cm rpm g Correct Problem 12.10 A thin, 60.0 disk with a diameter of 9.00 rotates about an axis through its center with 0.200 of kinetic energy. Part A What is the speed of a point on the rim? Express your answer with the appropriate units. ANSWER: Correct Problem 12.12 A drum major twirls a 95- -long, 470 baton about its center of mass at 150 . Part A What is the baton’s rotational kinetic energy? Express your answer to two significant figures and include the appropriate units. ANSWER: v = 3.2 ms g cm J 3.65 ms cm g rpm K = 4.4 J Correct Net Torque on a Pulley The figure below shows two blocks suspended by a cord over a pulley. The mass of block B is twice the mass of block A, while the mass of the pulley is equal to the mass of block A. The blocks are let free to move and the cord moves on the pulley without slipping or stretching. There is no friction in the pulley axle, and the cord’s weight can be ignored. Part A Which of the following statements correctly describes the system shown in the figure? Check all that apply. Hint 1. Conditions for equilibrium If the blocks had the same mass, the system would be in equilibrium. The blocks would have zero acceleration and the tension in each part of the cord would equal the weight of each block. Both parts of the cord would then pull with equal force on the pulley, resulting in a zero net torque and no rotation of the pulley. Is this still the case in the current situation where block B has twice the mass of block A? Hint 2. Rotational analogue of Newton’s second law The net torque of all the forces acting on a rigid body is proportional to the angular acceleration of the body net  and is given by , where is the moment of inertia of the body. Hint 3. Relation between linear and angular acceleration A particle that rotates with angular acceleration has linear acceleration equal to , where is the distance of the particle from the axis of rotation. In the present case, where there is no slipping or stretching of the cord, the cord and the pulley must move together at the same speed. Therefore, if the cord moves with linear acceleration , the pulley must rotate with angular acceleration , where is the radius of the pulley. ANSWER: Correct Part B What happens when block B moves downward? Hint 1. How to approach the problem To determine whether the tensions in both parts of the cord are equal, it is convenient to write a mathematical expression for the net torque on the pulley. This will allow you to relate the tensions in the cord to the pulley’s angular acceleration. Hint 2. Find the net torque on the pulley Let’s assume that the tensions in both parts of the cord are different. Let be the tension in the right cord and the tension in the left cord. If is the radius of the pulley, what is the net torque acting on the pulley? Take the positive sense of rotation to be counterclockwise. Express your answer in terms of , , and . net = I I  a a = R R a  = a R R The acceleration of the blocks is zero. The net torque on the pulley is zero. The angular acceleration of the pulley is nonzero. T1 T2 R net T1 T2 R Hint 1. Torque The torque of a force with respect to a point is defined as the product of the magnitude times the perpendicular distance between the line of action of and the point . In other words, . ANSWER: ANSWER: Correct Note that if the pulley were stationary (as in many systems where only linear motion is studied), then the tensions in both parts of the cord would be equal. However, if the pulley rotates with a certain angular acceleration, as in the present situation, the tensions must be different. If they were equal, the pulley could not have an angular acceleration. Problem 12.18 Part A In the figure , what is the magnitude of net torque about the axle? Express your answer to two significant figures and include the appropriate units.  F  O F l F  O  = Fl net = R(T2 − T1 ) The left cord pulls on the pulley with greater force than the right cord. The left and right cord pull with equal force on the pulley. The right cord pulls on the pulley with greater force than the left cord. ANSWER: Correct Part B What is the direction of net torque about the axle? ANSWER: Correct Problem 12.22 An athlete at the gym holds a 3.5 steel ball in his hand. His arm is 78 long and has a mass of 3.6 . Assume the center of mass of the arm is at the geometrical center of the arm. Part A What is the magnitude of the torque about his shoulder if he holds his arm straight out to his side, parallel to the floor? Express your answer to two significant figures and include the appropriate units.  = 0.20 Nm Clockwise Counterclockwise kg cm kg ANSWER: Correct Part B What is the magnitude of the torque about his shoulder if he holds his arm straight, but below horizontal? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Parallel Axis Theorem The parallel axis theorem relates , the moment of inertia of an object about an axis passing through its center of mass, to , the moment of inertia of the same object about a parallel axis passing through point p. The mathematical statement of the theorem is , where is the perpendicular distance from the center of mass to the axis that passes through point p, and is the mass of the object. Part A Suppose a uniform slender rod has length and mass . The moment of inertia of the rod about about an axis that is perpendicular to the rod and that passes through its center of mass is given by . Find , the moment of inertia of the rod with respect to a parallel axis through one end of the rod. Express in terms of and . Use fractions rather than decimal numbers in your answer. Hint 1. Find the distance from the axis to the center of mass Find the distance appropriate to this problem. That is, find the perpendicular distance from the center of mass of the rod to the axis passing through one end of the rod.  = 41 Nm 45  = 29 Nm Icm Ip Ip = Icm + Md2 d M L m Icm = m 1 12 L2 Iend Iend m L d ANSWER: ANSWER: Correct Part B Now consider a cube of mass with edges of length . The moment of inertia of the cube about an axis through its center of mass and perpendicular to one of its faces is given by . Find , the moment of inertia about an axis p through one of the edges of the cube Express in terms of and . Use fractions rather than decimal numbers in your answer. Hint 1. Find the distance from the axis to the axis Find the perpendicular distance from the center of mass axis to the new edge axis (axis labeled p in the figure). ANSWER: d = L 2 Iend = mL2 3 m a Icm Icm = m 1 6 a2 Iedge Iedge m a o p d ANSWER: Correct Problem 12.26 Starting from rest, a 12- -diameter compact disk takes 2.9 to reach its operating angular velocity of 2000 . Assume that the angular acceleration is constant. The disk’s moment of inertia is . Part A How much torque is applied to the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How many revolutions does it make before reaching full speed? Express your answer using two significant figures. ANSWER: d = a 2 Iedge = 2ma2 3 cm s rpm 2.5 × 10−5 kg m2 = 1.8×10−3  Nm Correct Problem 12.23 An object’s moment of inertia is 2.20 . Its angular velocity is increasing at the rate of 3.70 . Part A What is the total torque on the object? ANSWER: Correct Problem 12.31 A 5.1 cat and a 2.5 bowl of tuna fish are at opposite ends of the 4.0- -long seesaw. N = 48 rev kgm2 rad/s2 8.14 N  m kg kg m Part A How far to the left of the pivot must a 3.8 cat stand to keep the seesaw balanced? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Static Equilibrium of the Arm You are able to hold out your arm in an outstretched horizontal position because of the action of the deltoid muscle. Assume the humerus bone has a mass , length and its center of mass is a distance from the scapula. (For this problem ignore the rest of the arm.) The deltoid muscle attaches to the humerus a distance from the scapula. The deltoid muscle makes an angle of with the horizontal, as shown. Use throughout the problem. Part A kg d = 1.4 m M1 = 3.6 kg L = 0.66 m L1 = 0.33 m L2 = 0.15 m  = 17 g = 9.8 m/s2 Find the tension in the deltoid muscle. Express the tension in newtons, to the nearest integer. Hint 1. Nature of the problem Remember that this is a statics problem, so all forces and torques are balanced (their sums equal zero). Hint 2. Origin of torque Calculate the torque about the point at which the arm attaches to the rest of the body. This allows one to balance the torques without having to worry about the undefined forces at this point. Hint 3. Adding up the torques Add up the torques about the point in which the humerus attaches to the body. Answer in terms of , , , , , and . Remember that counterclockwise torque is positive. ANSWER: ANSWER: Correct Part B Using the conditions for static equilibrium, find the magnitude of the vertical component of the force exerted by the scapula on the humerus (where the humerus attaches to the rest of the body). Express your answer in newtons, to the nearest integer. T L1 L2 M1 g T  total = 0 = L1M1g − Tsin()L2 T = 265 N Fy Hint 1. Total forces involved Recall that there are three vertical forces in this problem: the force of gravity acting on the bone, the force from the vertical component of the muscle tension, and the force exerted by the scapula on the humerus (where it attaches to the rest of the body). ANSWER: Correct Part C Now find the magnitude of the horizontal component of the force exerted by the scapula on the humerus. Express your answer in newtons, to the nearest integer. ANSWER: Correct ± Moments around a Rod A rod is bent into an L shape and attached at one point to a pivot. The rod sits on a frictionless table and the diagram is a view from above. This means that gravity can be ignored for this problem. There are three forces that are applied to the rod at different points and angles: , , and . Note that the dimensions of the bent rod are in centimeters in the figure, although the answers are requested in SI units (kilograms, meters, seconds). |Fy| = 42 N Fx |Fx| = 254 N F 1 F  2 F  3 Part A If and , what does the magnitude of have to be for there to be rotational equilibrium? Answer numerically in newtons to two significant figures. Hint 1. Finding torque about pivot from What is the magnitude of the torque | | provided by around the pivot point? Give your answer numerically in newton-meters to two significant figures. ANSWER: ANSWER: Correct Part B If the L-shaped rod has a moment of inertia , , , and again , how long a time would it take for the object to move through ( /4 radians)? Assume that as the object starts to move, each force moves with the object so as to retain its initial angle relative to the object. Express the time in seconds to two significant figures. F3 = 0 F1 = 12 N F 2 F 1   1 F  1 |  1 | = 0.36 N  m F2 = 4.5 N I = 9 kg m2 F1 = 12 N F2 = 27 N F3 = 0 t 45  Hint 1. Find the net torque about the pivot What is the magnitude of the total torque around the pivot point? Answer numerically in newton-meters to two significant figures. ANSWER: Hint 2. Calculate Given the total torque around the pivot point, what is , the magnitude of the angular acceleration? Express your answer numerically in radians per second squared to two significant figures. Hint 1. Equation for If you know the magnitude of the total torque ( ) and the rotational inertia ( ), you can then find the rotational acceleration ( ) from ANSWER: Hint 3. Description of angular kinematics Now that you know the angular acceleration, this is a problem in rotational kinematics; find the time needed to go through a given angle . For constant acceleration ( ) and starting with (where is angular speed) the relation is given by which is analogous to the expression for linear displacement ( ) with constant acceleration ( ) starting from rest, | p ivot| | p ivot| = 1.8 N  m    vot Ivot  pivot = Ipivot.  = 0.20 radians/s2    = 0   = 1  , 2 t2 x a . ANSWER: Correct Part C Now consider the situation in which and , but now a force with nonzero magnitude is acting on the rod. What does have to be to obtain equilibrium? Give a numerical answer, without trigonometric functions, in newtons, to two significant figures. Hint 1. Find the required component of Only the tangential (perpendicular) component of (call it ) provides a torque. What is ? Answer in terms of . You will need to evaluate any trigonometric functions. ANSWER: ANSWER: Correct x = 1 a 2 t2 t = 2.8 s F1 = 12 N F2 = 0 F3 F3 F 3 F  3 F3t F3t F3 F3t = 1 2 F3 F3 = 9.0 N Problem 12.32 A car tire is 55.0 in diameter. The car is traveling at a speed of 24.0 . Part A What is the tire’s rotation frequency, in rpm? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part B What is the speed of a point at the top edge of the tire? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C What is the speed of a point at the bottom edge of the tire? Express your answer as an integer and include the appropriate units. ANSWER: cm m/s 833 rpm 48.0 ms 0 ms Correct Problem 12.33 A 460 , 8.00-cm-diameter solid cylinder rolls across the floor at 1.30 . Part A What is the can’s kinetic energy? Express your answer with the appropriate units. ANSWER: Correct Problem 12.45 Part A What is the magnitude of the angular momentum of the 780 rotating bar in the figure ? g m/s 0.583 J g ANSWER: Correct Part B What is the direction of the angular momentum of the bar ? ANSWER: Correct Problem 12.46 Part A What is the magnitude of the angular momentum of the 2.20 , 4.60-cm-diameter rotating disk in the figure ? 3.27 kgm2/s into the page out of the page kg ANSWER: Correct Part B What is its direction? ANSWER: Correct Problem 12.60 A 3.0- -long ladder, as shown in the following figure, leans against a frictionless wall. The coefficient of static friction between the ladder and the floor is 0.46. 3.66×10−2 kgm /s 2 x direction -x direction y direction -y direction z direction -z direction m Part A What is the minimum angle the ladder can make with the floor without slipping? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 12.61 The 3.0- -long, 90 rigid beam in the following figure is supported at each end. An 70 student stands 2.0 from support 1.  = 47 m kg kg m Part A How much upward force does the support 1 exert on the beam? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How much upward force does the support 2 exert on the beam? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 12.63 A 44 , 5.5- -long beam is supported, but not attached to, the two posts in the figure . A 22 boy starts walking along the beam. You may want to review ( pages 330 – 334) . For help with math skills, you may want to review: F1 = 670 N F2 = 900 N kg m kg The Vector Cross Product Part A How close can he get to the right end of the beam without it falling over? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture of the four forces acting on the beam, indicating both their direction and the place on the beam that the forces are acting. Choose a coordinate system with a direction for the axis along the beam, and indicate the position of the boy. What is the net force on the beam if it is stationary? Just before the beam tips, the force of the left support on the beam is zero. Using the zero net force condition, what is the force due to the right support just before the beam tips? For the beam to remain stationary, what must be zero besides the net force on the beam? Choose a point on the beam, and compute the net torque on the beam about that point. Be sure to choose a positive direction for the rotation axis and therefore the torques. Using the zero torque condition, what is the position of the boy on the beam just prior to tipping? How far is this position from the right edge of the beam? ANSWER: Correct d = 2.0 m Problem 12.68 Flywheels are large, massive wheels used to store energy. They can be spun up slowly, then the wheel’s energy can be released quickly to accomplish a task that demands high power. An industrial flywheel has a 1.6 diameter and a mass of 270 . Its maximum angular velocity is 1500 . Part A A motor spins up the flywheel with a constant torque of 54 . How long does it take the flywheel to reach top speed? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How much energy is stored in the flywheel? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C The flywheel is disconnected from the motor and connected to a machine to which it will deliver energy. Half the energy stored in the flywheel is delivered in 2.2 . What is the average power delivered to the machine? Express your answer to two significant figures and include the appropriate units. ANSWER: m kg rpm N  m t = 250 s = 1.1×106 E J s Correct Part D How much torque does the flywheel exert on the machine? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 12.71 The 3.30 , 40.0-cm-diameter disk in the figure is spinning at 350 . Part A How much friction force must the brake apply to the rim to bring the disk to a halt in 2.10 ? P = 2.4×105 W  = 1800 Nm kg rpm s Express your answer with the appropriate units. ANSWER: Correct Problem 12.74 A 5.0 , 60- -diameter cylinder rotates on an axle passing through one edge. The axle is parallel to the floor. The cylinder is held with the center of mass at the same height as the axle, then released. Part A What is the magnitude of the cylinder’s initial angular acceleration? Express your answer to two significant figures and include the appropriate units. ANSWER: 5.76 N kg cm  = 22 rad s2 Correct Part B What is the magnitude of the cylinder’s angular velocity when it is directly below the axle? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 12.82 A 45 figure skater is spinning on the toes of her skates at 0.90 . Her arms are outstretched as far as they will go. In this orientation, the skater can be modeled as a cylindrical torso (40 , 20 average diameter, 160 tall) plus two rod-like arms (2.5 each, 67 long) attached to the outside of the torso. The skater then raises her arms straight above her head, where she appears to be a 45 , 20- -diameter, 200- -tall cylinder. Part A What is her new rotation frequency, in revolutions per second? Express your answer to two significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Score Summary:  = 6.6 rad s kg rev/s kg cm cm kg cm kg cm cm 2 = Your score on this assignment is 95.7%. You received 189.42 out of a possible total of 198 points.

please email info@checkyourstudy.com
Statistical Methods (STAT 4303) Review for Final Comprehensive Exam Measures of Central Tendency, Dispersion Q.1. The data below represents the test scores obtained by students in college algebra class. 10,12,15,20,13,16,14 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) Q.2. The data below represents the test scores obtained by students in English class. 12,15,16,18,13,10,17,20 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) (f) Compare the results of Q.1 and Q.2, Which scores College Algebra or English do you think is more precise (less spread)? Q.3 Following data represents the score obtained by students in one of the exams 9, 13, 14, 15, 16, 16, 17, 19, 20, 21, 21, 22, 25, 25, 26 Create a frequency table to calculate the following descriptive statistics (a) mean (b) median (c) mode (d) first and third quartiles (e) Construct Box and Whisker plot. (f) Comment on the shape of the distribution. (g) Find inter quartile range (IQR). (h) Are there any outliers (based on IQR technique)? In the above problem, if the score 26 is replaced by 37 (i) What will happen to the mean? Will it increase, decrease or remains the same? (j) What will be the new median? (k) What can you say about the effect of outliers on mean and median? Q.4 Following data represents the score obtained by students in one of the exams 19, 14, 14, 15, 17, 16, 17, 20, 20, 21, 21, 22, 25, 25, 26, 27, 28 Create a frequency table to calculate the following descriptive statistics a) mean b) median c) mode d) first and third quartiles e) Construct Box and Whisker plot. f) Comment on the shape of the distribution. g) Find inter quartile range (IQR). h) Are there any outliers (based on IQR technique)? In the above problem, if the score 28 is replaced by 48 i) What will happen to the mean? Will it increase, decrease or remains the same? j) What will be the new median? k) What can you say about the effect of outliers on mean and median? Q.5 Consider the following data of height (in inch) and weight(in lbs). Height(x) Frequency 50 2 52 3 55 2 60 4 62 3  Find the mean height.  What is the variance of height? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.6. The following table shows the number of miles run during one week for a sample of 20 runners: Miles Mid-value (x) Frequency (f) 5.5-10.5 1 10.5-15.5 2 15.5-20.5 3 20.5-25.5 5 25.5-30.5 4 (a) Find the average (mean) miles run. (Hint: Find mid-value of mile range first) (b) What is the variance of miles run? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.7. (a) If the mean of 20 observations is 20.5, find the sum of all observations? (b) If the mean of 30 observations is 40, find the sum of all observations? Probability Q.8 Out of forty students, 14 are taking English Composition and 29 are taking Chemistry. a) How many students are in both classes? b) What is the probability that a randomly-chosen student from this group is taking only the Chemistry class? Q.9 A drawer contains 4 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and then replaced. Another ball is taken from the drawer. What is the probability that (Draw tree diagram to facilitate your calculation). (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q.10 A drawer contains 3 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and not replaced. Another ball is then taken from the drawer. Draw tree diagram to facilitate your calculation. What is the probability that (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q. 11 Missile A has 45% chance of hitting target. Missile B has 55% chance of hitting a target. What is the probability that (i) both miss the target. (ii) at least one will hit the target. (iii) exactly one will hit the target. Q. 12 A politician from D party speaks truth 65% of times; another politician from rival party speaks truth 75% of times. Both politicians were asked about their personal love affair with their own office secretary, what is the probability that (i) both lie the actual fact . (ii) at least one will speak truth. (iii) exactly one speaks the truth. (iv) both speak the truth. Q.13 The question, “Do you drink alcohol?” was asked to 220 people. Results are shown in the table. . Yes No Total Male 48 82 Female 24 66 Total (a) What is the probability of a randomly selected individual being a male also drinks? (b) What is the probability of a randomly selected individual being a female? (c) What is the probability that a randomly selected individual drinks? (d) A person is selected at random and if the person is female, what is the probability that she drinks? (e) What is the probability that a randomly selected alcoholic person is a male? Q.14 A professor, Dr. Drakula, taught courses that included statements from across the five colleges abbreviated as AH, AS, BA, ED and EN. He taught at Texas A&M University – Kingsville (TAMUK) during the span of five academic years AY09 to AY13. The following table shows the total number of graduates during AY09 to AY13. One day, he was running late to his class. He was so focused on the class that he did not stop for a red light. As soon as he crossed through the intersection, a police officer Asked him to stop. ( a ) It is turned out that the police officer was TAMUK graduate during the past five years. What is the probability that the Police Officer was from ED College? ( b ) What is the probability that the Police Officer graduated in the academic year of 2011? ( c ) If the traffic officer graduated from TAMUK in the academic year of 2011(AY11). What is the conditional probability that he graduated from the ED college? ( d ) Are the events the academic year “AY 11” and the college of Education “ED” independent? Yes or no , why? Discrete Distribution Q.15 Find k and probability for X=2 and X=4. X 1 2 3 4 5 P(X=x) 0.1 3k 0.2 2k 0.2 (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers.What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Q.16 Find k. X 3 4 5 6 7 P(X=x) k 2k 2k k 2k (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers. What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Binomial Distribution: Q.17 (a) Hospital records show that of patients suffering from a certain disease, 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover? (b) A (blindfolded) marksman finds that on the average he hits the target 4 times out of 5. If he fires 4 shots, what is the probability of (i) more than 2 hits? (ii) at least 3 misses? (c) which of the following are binomial experiments? Explain the reason. i. Telephone surveying a group of 200 people to ask if they voted for George Bush. ii. Counting the average number of dogs seen at a veterinarian’s office daily. iii. You take a survey of 50 traffic lights in a certain city, at 3 p.m., recording whether the light was red, green, or yellow at that time. iv. You are at a fair, playing “pop the balloon” with 6 darts. There are 20 balloons. 10 of the balloons have a ticket inside that say “win,” and 10 have a ticket that says “lose.” Normal Distribution Q.18 Use standard normal distribution table to find the following probabilities: (a) P(Z<2.5) (b) P(Z< -1.3) (c) P(Z>0.12) (d) P(Z> -2.15) (e) P(0.11<Z<0.22) (f) P(-0.11<Z<0.5) Q.19. Use normal distribution table to find the missing values (?). (a) P(Z< ?)=0.40 (b) P(Z< ?)=0.76 (c) P(Z> ?)=0.87 (d) P(Z> ?)=0.34 Q.20. The length of life of certain type of light bulb is normally distributed with mean=220hrs and standard deviation=20hrs. (a) Define a random variable, X A light bulb is randomly selected, what is the probability that (b) it will last will last more than 207 hrs. ? (c) it will last less than 214 hrs. (d) it will last in between 199 to 207 hrs. Q.21. The length of life of an instrument produced by a machine has a normal distribution with a mean of 22 months and standard deviation of 4 months. Find the probability that an instrument produced by this machine will last (a) less than 10 months. (b) more than 28 months (c) between 10 and 28 months. Distribution of sample mean and Central Limit Theorem (CLT) Q.22 It is assumed that weight of teenage student is normally distributed with mean=140 lbs. and standard deviation =15 lbs. A simple random sample of 40 teenage students is taken and sample mean is calculated. If several such samples of same size are taken (i) what could be the mean of all sample means. (ii) what could be the standard deviation of all sample means. (iii) will the distribution of sample means be normal ? (iv) What is CLT? Write down the distribution of sample mean in the form of ~ ( , ) 2 n X N   . Q.23 The time it takes students in a cooking school to learn to prepare seafood gumbo is a random variable with a normal distribution where the average is 3.2 hours and a standard deviation of 1.8 hours. A sample of 40 students was investigated. What is the distribution of sample mean (express in numbers)? Hypothesis Testing Q.24 The NCHS reported that the mean total cholesterol level in 2002 for all adults was 203 with standard deviation of 37. Total cholesterol levels in participants who attended the seventh examination of the Offspring in the Framingham Heart Study are summarized as follows: n=3,00, =200.3. Is there statistical evidence of a difference in mean cholesterol levels in the Framingham Offspring (means does the result form current examination differs from 2002 report)?? (Follow the steps below to reach the conclusion) (i) Define null and alternate hypothesis (Also write what is  , and x in words at the beginning) (ii) Identify the significance level ,  and check whether it is one sided or two sided test. (iii) Calculate test statistics, Z. (iv) Use standard normal table to find the p-value and state whether you reject or accept (fail to reject) the null hypothesis. (v) what is the critical value, do you reject or accept the H0. (vi) Write down the conclusion based on part (iv). Q.25 A sample of 145 boxes of Kellogg’s Raisin Bran contain in average 1.95 scoops of raisins. It is known from past experiments that the standard deviation for the number of scoops of raisins is 0.25. The manufacturer of Kellogg’s Raisin Bran claimed that in average their product contains more than 2 scoops of raisins, do you reject or accept the manufacturers claim (follow all five steps)? Q.26 It is assumed that the mean systolic blood pressure is μ = 120 mm Hg. In the Honolulu Heart Study, a sample of n = 100 people had an average systolic blood pressure of 130.1 mm Hg. The standard deviation from the population is 21.21 mm Hg. Is the group significantly different (with respect to systolic blood pressure!) from the regular population? Use 10% level of significance. Q.27 A CEO claims that at least 80 percent of the company’s 1,000,000 customers are very satisfied. Again, 100 customers are surveyed using simple random sampling. The result: 73 percent are very satisfied. Based on these results, should we accept or reject the CEO’s hypothesis? Assume a significance level of 0.05. Q.28 True/False questions (These questions are collected from previous HW, review and exam problems, see the previous solutions for answers) (a) Total sum of probability can exceed 1. (b) If you throw a die, getting 2 or any even number are independent events. (c) If you roll a die for 20 times, the probability of getting 5 in 15th roll is 20 15 . (d) A student is taking a 5 question True-False quiz but he has not been doing any work in the course and does not know the material so he randomly guesses at all the answers. Probability that he gets the first question right is 2 1 . (e) Typing in laptop and writing emails using the same laptop are independent events. (f) Normal distribution is right skewed. (g) Mean is more robust to outliers. So mean is used for data with extreme values. (h) It is possible to have no mode in the data. (i) Standard normal variable, Z has some unit. (j) Only two parameters are required to describe the entire normal distribution. (k) Mean of standard normal variable, Z is 1. (l) If p-value of more than level of significance (alpha), we reject the H0. (m) Very small p-value indicates rejection of H0. (n) H0 always contains equality sign. (o) CLT indicates that distribution of sample mean can be anything, not just normal. (p) Sample mean is always equal to population mean. (q) Variance of sample mean is less than population mean. (r) Variance of sample mean does not depend on sample size. (s) Mr. A has cancer but a medical doctor diagnosed him as “no cancer”. It is a type I error. (t) Level of significance is probability of making type II error. (u) Type II error can be controlled. (v) Type I error is more serious than type II error. (w) Type I and Type II errors are based on null hypothesis. Q.29 Type I and Type II Errors : Make statements about Type I (False Positive) and Type II errors (False Negative). (a) The Alpha-Fetoprotein (AFP) Test has both Type I and Type II error possibilities. This test screens the mother’s blood during pregnancy for AFP and determines risk. Abnormally high or low levels may indicate Down syndrome. (Hint: Take actual status as down syndrome or not) Ho: patient is healthy Ha: patient is unhealthy (b) The mechanic inspects the brake pads for the minimum allowable thickness. Ho: Vehicles breaks meet the standard for the minimum allowable thickness. Ha: Vehicles brakes do not meet the standard for the minimum allowable thickness. (c) Celiac disease is one of the diseases which can be misdiagnosed or have less diagnosis. Following table shows the actual celiac patients and their diagnosis status by medical doctors: Actual Status Yes No Diagnosed as celiac Yes 85 5 No 25 105 I. Calculate the probability of making type I and type II error rates. II. Calculate the power of the test. (Power of the test= 1- P(type II error) Answers: USEFUL FORMULAE: Descriptive Statistics Possible Outliers, any value beyond the range of Q 1.5( ) and Q 1.5( ) Range = Maximum value -Minimum value 100 where 1 ( ) (Preferred) 1 and , n fx x For data with repeats, 1 ( ) (Preferred ) OR 1 and n x x For data without repeats, 1 3 1 3 3 1 2 2 2 2 2 2 2 2 2 2 Q Q Q Q x s CV n f n f x x OR s n fx nx s n x x s n x nx s                             Discrete Distribution         ( ) ( ) ( ) ( ) { ( )} ( ) ( ) 2 2 2 2 E X x P X x V X E X E X E X xP X x Binomial Distribution Probability mass function, P(X=x)= x n x n x C p q  for x=0,1,2,…,n. E(X)=np, Var(X)=npq Hypothesis Testing based on Normal Distribution      X std X mean Z Standard Normal Variable, Probability Bayes Rule, ( ) ( and ) ( ) ( ) ( | ) P B P A B P B P A B P A B    Central Limit Theorem For large n (n>30), ~ ( , ) 2 n X N   and ˆ ~ ( , ) n pq p N p For hypothesis testing of μ, σ known           n x Z   For hypothesis testing of p n pq p p Z   ˆ ANSWERS: Q.1 (a) 14.286 (b) 14 (c) none (d) 10.24 (e) 22.40 Q.2 (a) 15.125 (b) 15.5 (c) No (d) 10.98 (e) 21.9 (f) English Q.3 (a) 18.6 (b)19 (c) 16, 21, and 25 (d) 15, 22 (f) slightly left (g) 7 (h) no outliers (i) increase (j) same Q.4 (a) 0.41 (b) 20 (c)14, 17, 20, 21,25 (d) 16.5, 25 (f) slightly right (g) 8.5 (h) no (i) increase (j) same Q.5 (a)56.57 (b) 22.26 (c) 8.34 Q.6 (a) 21 (b) 38.57 (c) 29.57 Q.7 (a) 410 (b) 1200 Q.8 (a)3 (b) 0.65 Q.9 (a) 0.082 (b) 0.29 (c)0.34 (d) 0.66 (e)0.10 (f) 0.64 Q.10 (a) 0.038 (b)0.23 (c) 0.71 (d) 0.29 (e)0.096 (f) 0.62 Q.11 (i)0.248 (ii)0.752 (iii)0.505 Q.12 (i)0.0875 (ii)0.913 (iii)0.425 (iii)0.488 Q.13 (a)0.22 (b)0.41 (c)0.33 (d)0.27 (e) 0.67 Q.14 (a) 0.13 (b) 0.18 (c)0.12 Q.15 E(X)=3.1 , V(X)=1.69, $0.2 per game, $ 4 win. Q.16 E(X)=5.125, V(X)=1.86, $0.25 loss per game, $5 loss. Q.17 (a)0.201 (b) 0.819, 0.027 Q.18 (a)0.9938 (b)0.0968 (c)0.452 (d)0.984 (e) 0.0433 (f)0.2353 Q.19 (a) -0.25 (b)0.71 (c) -1.13 (d)0.41 Q.20 (b) 0.7422 (c) 0.3821 (d) 0.1109 Q.21 (a)0.0014 (b) 0.0668 (c) 0.9318 Q.22 (a) 140 (b)2.37 Q.24 Z=-1.26, Accept null. Q.25 Z=-2.41, accept null Q.26 Z=4.76, reject H0 Q.27 Z=-1.75, reject H0 Q.28 F, F, F, T , F, F, F, T, F, T, F, F, T, T, F, F, T, F, T, F, F, T, T Q.29 (c)0.113 , 0.022 , 0.977 (or 98%)

Statistical Methods (STAT 4303) Review for Final Comprehensive Exam Measures of Central Tendency, Dispersion Q.1. The data below represents the test scores obtained by students in college algebra class. 10,12,15,20,13,16,14 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) Q.2. The data below represents the test scores obtained by students in English class. 12,15,16,18,13,10,17,20 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) (f) Compare the results of Q.1 and Q.2, Which scores College Algebra or English do you think is more precise (less spread)? Q.3 Following data represents the score obtained by students in one of the exams 9, 13, 14, 15, 16, 16, 17, 19, 20, 21, 21, 22, 25, 25, 26 Create a frequency table to calculate the following descriptive statistics (a) mean (b) median (c) mode (d) first and third quartiles (e) Construct Box and Whisker plot. (f) Comment on the shape of the distribution. (g) Find inter quartile range (IQR). (h) Are there any outliers (based on IQR technique)? In the above problem, if the score 26 is replaced by 37 (i) What will happen to the mean? Will it increase, decrease or remains the same? (j) What will be the new median? (k) What can you say about the effect of outliers on mean and median? Q.4 Following data represents the score obtained by students in one of the exams 19, 14, 14, 15, 17, 16, 17, 20, 20, 21, 21, 22, 25, 25, 26, 27, 28 Create a frequency table to calculate the following descriptive statistics a) mean b) median c) mode d) first and third quartiles e) Construct Box and Whisker plot. f) Comment on the shape of the distribution. g) Find inter quartile range (IQR). h) Are there any outliers (based on IQR technique)? In the above problem, if the score 28 is replaced by 48 i) What will happen to the mean? Will it increase, decrease or remains the same? j) What will be the new median? k) What can you say about the effect of outliers on mean and median? Q.5 Consider the following data of height (in inch) and weight(in lbs). Height(x) Frequency 50 2 52 3 55 2 60 4 62 3  Find the mean height.  What is the variance of height? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.6. The following table shows the number of miles run during one week for a sample of 20 runners: Miles Mid-value (x) Frequency (f) 5.5-10.5 1 10.5-15.5 2 15.5-20.5 3 20.5-25.5 5 25.5-30.5 4 (a) Find the average (mean) miles run. (Hint: Find mid-value of mile range first) (b) What is the variance of miles run? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.7. (a) If the mean of 20 observations is 20.5, find the sum of all observations? (b) If the mean of 30 observations is 40, find the sum of all observations? Probability Q.8 Out of forty students, 14 are taking English Composition and 29 are taking Chemistry. a) How many students are in both classes? b) What is the probability that a randomly-chosen student from this group is taking only the Chemistry class? Q.9 A drawer contains 4 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and then replaced. Another ball is taken from the drawer. What is the probability that (Draw tree diagram to facilitate your calculation). (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q.10 A drawer contains 3 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and not replaced. Another ball is then taken from the drawer. Draw tree diagram to facilitate your calculation. What is the probability that (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q. 11 Missile A has 45% chance of hitting target. Missile B has 55% chance of hitting a target. What is the probability that (i) both miss the target. (ii) at least one will hit the target. (iii) exactly one will hit the target. Q. 12 A politician from D party speaks truth 65% of times; another politician from rival party speaks truth 75% of times. Both politicians were asked about their personal love affair with their own office secretary, what is the probability that (i) both lie the actual fact . (ii) at least one will speak truth. (iii) exactly one speaks the truth. (iv) both speak the truth. Q.13 The question, “Do you drink alcohol?” was asked to 220 people. Results are shown in the table. . Yes No Total Male 48 82 Female 24 66 Total (a) What is the probability of a randomly selected individual being a male also drinks? (b) What is the probability of a randomly selected individual being a female? (c) What is the probability that a randomly selected individual drinks? (d) A person is selected at random and if the person is female, what is the probability that she drinks? (e) What is the probability that a randomly selected alcoholic person is a male? Q.14 A professor, Dr. Drakula, taught courses that included statements from across the five colleges abbreviated as AH, AS, BA, ED and EN. He taught at Texas A&M University – Kingsville (TAMUK) during the span of five academic years AY09 to AY13. The following table shows the total number of graduates during AY09 to AY13. One day, he was running late to his class. He was so focused on the class that he did not stop for a red light. As soon as he crossed through the intersection, a police officer Asked him to stop. ( a ) It is turned out that the police officer was TAMUK graduate during the past five years. What is the probability that the Police Officer was from ED College? ( b ) What is the probability that the Police Officer graduated in the academic year of 2011? ( c ) If the traffic officer graduated from TAMUK in the academic year of 2011(AY11). What is the conditional probability that he graduated from the ED college? ( d ) Are the events the academic year “AY 11” and the college of Education “ED” independent? Yes or no , why? Discrete Distribution Q.15 Find k and probability for X=2 and X=4. X 1 2 3 4 5 P(X=x) 0.1 3k 0.2 2k 0.2 (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers.What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Q.16 Find k. X 3 4 5 6 7 P(X=x) k 2k 2k k 2k (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers. What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Binomial Distribution: Q.17 (a) Hospital records show that of patients suffering from a certain disease, 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover? (b) A (blindfolded) marksman finds that on the average he hits the target 4 times out of 5. If he fires 4 shots, what is the probability of (i) more than 2 hits? (ii) at least 3 misses? (c) which of the following are binomial experiments? Explain the reason. i. Telephone surveying a group of 200 people to ask if they voted for George Bush. ii. Counting the average number of dogs seen at a veterinarian’s office daily. iii. You take a survey of 50 traffic lights in a certain city, at 3 p.m., recording whether the light was red, green, or yellow at that time. iv. You are at a fair, playing “pop the balloon” with 6 darts. There are 20 balloons. 10 of the balloons have a ticket inside that say “win,” and 10 have a ticket that says “lose.” Normal Distribution Q.18 Use standard normal distribution table to find the following probabilities: (a) P(Z<2.5) (b) P(Z< -1.3) (c) P(Z>0.12) (d) P(Z> -2.15) (e) P(0.11 ?)=0.87 (d) P(Z> ?)=0.34 Q.20. The length of life of certain type of light bulb is normally distributed with mean=220hrs and standard deviation=20hrs. (a) Define a random variable, X A light bulb is randomly selected, what is the probability that (b) it will last will last more than 207 hrs. ? (c) it will last less than 214 hrs. (d) it will last in between 199 to 207 hrs. Q.21. The length of life of an instrument produced by a machine has a normal distribution with a mean of 22 months and standard deviation of 4 months. Find the probability that an instrument produced by this machine will last (a) less than 10 months. (b) more than 28 months (c) between 10 and 28 months. Distribution of sample mean and Central Limit Theorem (CLT) Q.22 It is assumed that weight of teenage student is normally distributed with mean=140 lbs. and standard deviation =15 lbs. A simple random sample of 40 teenage students is taken and sample mean is calculated. If several such samples of same size are taken (i) what could be the mean of all sample means. (ii) what could be the standard deviation of all sample means. (iii) will the distribution of sample means be normal ? (iv) What is CLT? Write down the distribution of sample mean in the form of ~ ( , ) 2 n X N   . Q.23 The time it takes students in a cooking school to learn to prepare seafood gumbo is a random variable with a normal distribution where the average is 3.2 hours and a standard deviation of 1.8 hours. A sample of 40 students was investigated. What is the distribution of sample mean (express in numbers)? Hypothesis Testing Q.24 The NCHS reported that the mean total cholesterol level in 2002 for all adults was 203 with standard deviation of 37. Total cholesterol levels in participants who attended the seventh examination of the Offspring in the Framingham Heart Study are summarized as follows: n=3,00, =200.3. Is there statistical evidence of a difference in mean cholesterol levels in the Framingham Offspring (means does the result form current examination differs from 2002 report)?? (Follow the steps below to reach the conclusion) (i) Define null and alternate hypothesis (Also write what is  , and x in words at the beginning) (ii) Identify the significance level ,  and check whether it is one sided or two sided test. (iii) Calculate test statistics, Z. (iv) Use standard normal table to find the p-value and state whether you reject or accept (fail to reject) the null hypothesis. (v) what is the critical value, do you reject or accept the H0. (vi) Write down the conclusion based on part (iv). Q.25 A sample of 145 boxes of Kellogg’s Raisin Bran contain in average 1.95 scoops of raisins. It is known from past experiments that the standard deviation for the number of scoops of raisins is 0.25. The manufacturer of Kellogg’s Raisin Bran claimed that in average their product contains more than 2 scoops of raisins, do you reject or accept the manufacturers claim (follow all five steps)? Q.26 It is assumed that the mean systolic blood pressure is μ = 120 mm Hg. In the Honolulu Heart Study, a sample of n = 100 people had an average systolic blood pressure of 130.1 mm Hg. The standard deviation from the population is 21.21 mm Hg. Is the group significantly different (with respect to systolic blood pressure!) from the regular population? Use 10% level of significance. Q.27 A CEO claims that at least 80 percent of the company’s 1,000,000 customers are very satisfied. Again, 100 customers are surveyed using simple random sampling. The result: 73 percent are very satisfied. Based on these results, should we accept or reject the CEO’s hypothesis? Assume a significance level of 0.05. Q.28 True/False questions (These questions are collected from previous HW, review and exam problems, see the previous solutions for answers) (a) Total sum of probability can exceed 1. (b) If you throw a die, getting 2 or any even number are independent events. (c) If you roll a die for 20 times, the probability of getting 5 in 15th roll is 20 15 . (d) A student is taking a 5 question True-False quiz but he has not been doing any work in the course and does not know the material so he randomly guesses at all the answers. Probability that he gets the first question right is 2 1 . (e) Typing in laptop and writing emails using the same laptop are independent events. (f) Normal distribution is right skewed. (g) Mean is more robust to outliers. So mean is used for data with extreme values. (h) It is possible to have no mode in the data. (i) Standard normal variable, Z has some unit. (j) Only two parameters are required to describe the entire normal distribution. (k) Mean of standard normal variable, Z is 1. (l) If p-value of more than level of significance (alpha), we reject the H0. (m) Very small p-value indicates rejection of H0. (n) H0 always contains equality sign. (o) CLT indicates that distribution of sample mean can be anything, not just normal. (p) Sample mean is always equal to population mean. (q) Variance of sample mean is less than population mean. (r) Variance of sample mean does not depend on sample size. (s) Mr. A has cancer but a medical doctor diagnosed him as “no cancer”. It is a type I error. (t) Level of significance is probability of making type II error. (u) Type II error can be controlled. (v) Type I error is more serious than type II error. (w) Type I and Type II errors are based on null hypothesis. Q.29 Type I and Type II Errors : Make statements about Type I (False Positive) and Type II errors (False Negative). (a) The Alpha-Fetoprotein (AFP) Test has both Type I and Type II error possibilities. This test screens the mother’s blood during pregnancy for AFP and determines risk. Abnormally high or low levels may indicate Down syndrome. (Hint: Take actual status as down syndrome or not) Ho: patient is healthy Ha: patient is unhealthy (b) The mechanic inspects the brake pads for the minimum allowable thickness. Ho: Vehicles breaks meet the standard for the minimum allowable thickness. Ha: Vehicles brakes do not meet the standard for the minimum allowable thickness. (c) Celiac disease is one of the diseases which can be misdiagnosed or have less diagnosis. Following table shows the actual celiac patients and their diagnosis status by medical doctors: Actual Status Yes No Diagnosed as celiac Yes 85 5 No 25 105 I. Calculate the probability of making type I and type II error rates. II. Calculate the power of the test. (Power of the test= 1- P(type II error) Answers: USEFUL FORMULAE: Descriptive Statistics Possible Outliers, any value beyond the range of Q 1.5( ) and Q 1.5( ) Range = Maximum value -Minimum value 100 where 1 ( ) (Preferred) 1 and , n fx x For data with repeats, 1 ( ) (Preferred ) OR 1 and n x x For data without repeats, 1 3 1 3 3 1 2 2 2 2 2 2 2 2 2 2 Q Q Q Q x s CV n f n f x x OR s n fx nx s n x x s n x nx s                             Discrete Distribution         ( ) ( ) ( ) ( ) { ( )} ( ) ( ) 2 2 2 2 E X x P X x V X E X E X E X xP X x Binomial Distribution Probability mass function, P(X=x)= x n x n x C p q  for x=0,1,2,…,n. E(X)=np, Var(X)=npq Hypothesis Testing based on Normal Distribution      X std X mean Z Standard Normal Variable, Probability Bayes Rule, ( ) ( and ) ( ) ( ) ( | ) P B P A B P B P A B P A B    Central Limit Theorem For large n (n>30), ~ ( , ) 2 n X N   and ˆ ~ ( , ) n pq p N p For hypothesis testing of μ, σ known           n x Z   For hypothesis testing of p n pq p p Z   ˆ ANSWERS: Q.1 (a) 14.286 (b) 14 (c) none (d) 10.24 (e) 22.40 Q.2 (a) 15.125 (b) 15.5 (c) No (d) 10.98 (e) 21.9 (f) English Q.3 (a) 18.6 (b)19 (c) 16, 21, and 25 (d) 15, 22 (f) slightly left (g) 7 (h) no outliers (i) increase (j) same Q.4 (a) 0.41 (b) 20 (c)14, 17, 20, 21,25 (d) 16.5, 25 (f) slightly right (g) 8.5 (h) no (i) increase (j) same Q.5 (a)56.57 (b) 22.26 (c) 8.34 Q.6 (a) 21 (b) 38.57 (c) 29.57 Q.7 (a) 410 (b) 1200 Q.8 (a)3 (b) 0.65 Q.9 (a) 0.082 (b) 0.29 (c)0.34 (d) 0.66 (e)0.10 (f) 0.64 Q.10 (a) 0.038 (b)0.23 (c) 0.71 (d) 0.29 (e)0.096 (f) 0.62 Q.11 (i)0.248 (ii)0.752 (iii)0.505 Q.12 (i)0.0875 (ii)0.913 (iii)0.425 (iii)0.488 Q.13 (a)0.22 (b)0.41 (c)0.33 (d)0.27 (e) 0.67 Q.14 (a) 0.13 (b) 0.18 (c)0.12 Q.15 E(X)=3.1 , V(X)=1.69, $0.2 per game, $ 4 win. Q.16 E(X)=5.125, V(X)=1.86, $0.25 loss per game, $5 loss. Q.17 (a)0.201 (b) 0.819, 0.027 Q.18 (a)0.9938 (b)0.0968 (c)0.452 (d)0.984 (e) 0.0433 (f)0.2353 Q.19 (a) -0.25 (b)0.71 (c) -1.13 (d)0.41 Q.20 (b) 0.7422 (c) 0.3821 (d) 0.1109 Q.21 (a)0.0014 (b) 0.0668 (c) 0.9318 Q.22 (a) 140 (b)2.37 Q.24 Z=-1.26, Accept null. Q.25 Z=-2.41, accept null Q.26 Z=4.76, reject H0 Q.27 Z=-1.75, reject H0 Q.28 F, F, F, T , F, F, F, T, F, T, F, F, T, T, F, F, T, F, T, F, F, T, T Q.29 (c)0.113 , 0.022 , 0.977 (or 98%)

No expert has answered this question yet. You can browse … Read More...
When researchers say, “preferences need no inferences” with respect to emotion, what are they really arguing? Appraisal does not need to come first in the emotion process. Appraisal must come first in the emotion process. Personality traits are more important than situations for determining emotions. Attitudes are more important than personality traits for determining emotions.

When researchers say, “preferences need no inferences” with respect to emotion, what are they really arguing? Appraisal does not need to come first in the emotion process. Appraisal must come first in the emotion process. Personality traits are more important than situations for determining emotions. Attitudes are more important than personality traits for determining emotions.

When researchers say, “preferences need no inferences” with respect to … Read More...
Assignment 9 Due: 11:59pm on Friday, April 11, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 11.2 Part A Evaluate the dot product if and . Express your answer using two significant figures. ANSWER: Correct Part B Evaluate the dot product if and . Express your answer using two significant figures. ANSWER: Correct Problem 11.4  A B = 5 − 6 A i ^ j ^ = −9 − 5 B i ^ j ^ A  B  = -15  A B = −5 + 9 A i ^ j ^ = 5 + 6 B i ^ j ^ A  B  = 29 Part A What is the angle between vectors and if and ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part B What is the angle between vectors and if and ? Express your answer as an integer and include the appropriate units. ANSWER: Correct ± All Work and No Play Learning Goal: To be able to calculate work done by a constant force directed at different angles relative to displacement If an object undergoes displacement while being acted upon by a force (or several forces), it is said that work is being done on the object. If the object is moving in a straight line and the displacement and the force are known, the work done by the force can be calculated as , where is the work done by force on the object that undergoes displacement directed at angle relative to .  A B A = 2 + 5 ı ^  ^ B = −2 − 4 ı ^  ^  = 175  A B A = −6 + 2 ı ^  ^ B = − − 3 ı ^  ^  = 90 W =  = cos  F  s  F   s  W F  s  F  Note that depending on the value of , the work done can be positive, negative, or zero. In this problem, you will practice calculating work done on an object moving in a straight line. The first series of questions is related to the accompanying figure. Part A What can be said about the sign of the work done by the force ? ANSWER: Correct When , the cosine of is zero, and therefore the work done is zero. Part B cos  F  1 It is positive. It is negative. It is zero. There is not enough information to answer the question.  = 90  What can be said about the work done by force ? ANSWER: Correct When , is positive, and so the work done is positive. Part C The work done by force is ANSWER: Correct When , is negative, and so the work done is negative. Part D The work done by force is ANSWER: F  2 It is positive. It is negative. It is zero. 0 <  < 90 cos  F  3 positive negative zero 90 <  < 180 cos  F  4 Correct Part E The work done by force is ANSWER: Correct positive negative zero F  5 positive negative zero Part F The work done by force is ANSWER: Correct Part G The work done by force is ANSWER: Correct In the next series of questions, you will use the formula to calculate the work done by various forces on an object that moves 160 meters to the right. F  6 positive negative zero F  7 positive negative zero W =  = cos  F  s  F   s  Part H Find the work done by the 18-newton force. Use two significant figures in your answer. Express your answer in joules. ANSWER: Correct Part I Find the work done by the 30-newton force. Use two significant figures in your answer. Express your answer in joules. ANSWER: Correct Part J Find the work done by the 12-newton force. Use two significant figures in your answer. Express your answer in joules. W W = 2900 J W W = 4200 J W ANSWER: Correct Part K Find the work done by the 15-newton force. Use two significant figures in your answer. Express your answer in joules. ANSWER: Correct Introduction to Potential Energy Learning Goal: Understand that conservative forces can be removed from the work integral by incorporating them into a new form of energy called potential energy that must be added to the kinetic energy to get the total mechanical energy. The first part of this problem contains short-answer questions that review the work-energy theorem. In the second part we introduce the concept of potential energy. But for now, please answer in terms of the work-energy theorem. Work-Energy Theorem The work-energy theorem states , where is the work done by all forces that act on the object, and and are the initial and final kinetic energies, respectively. Part A The work-energy theorem states that a force acting on a particle as it moves over a ______ changes the ______ energy of the particle if the force has a component parallel to the motion. W = -1900 J W W = -1800 J Kf = Ki + Wall Wall Ki Kf Choose the best answer to fill in the blanks above: ANSWER: Correct It is important that the force have a component acting in the direction of motion. For example, if a ball is attached to a string and whirled in uniform circular motion, the string does apply a force to the ball, but since the string's force is always perpendicular to the motion it does no work and cannot change the kinetic energy of the ball. Part B To calculate the change in energy, you must know the force as a function of _______. The work done by the force causes the energy change. Choose the best answer to fill in the blank above: ANSWER: Correct Part C To illustrate the work-energy concept, consider the case of a stone falling from to under the influence of gravity. Using the work-energy concept, we say that work is done by the gravitational _____, resulting in an increase of the ______ energy of the stone. Choose the best answer to fill in the blanks above: distance / potential distance / kinetic vertical displacement / potential none of the above acceleration work distance potential energy xi xf ANSWER: Correct Potential Energy You should read about potential energy in your text before answering the following questions. Potential energy is a concept that builds on the work-energy theorem, enlarging the concept of energy in the most physically useful way. The key aspect that allows for potential energy is the existence of conservative forces, forces for which the work done on an object does not depend on the path of the object, only the initial and final positions of the object. The gravitational force is conservative; the frictional force is not. The change in potential energy is the negative of the work done by conservative forces. Hence considering the initial and final potential energies is equivalent to calculating the work done by the conservative forces. When potential energy is used, it replaces the work done by the associated conservative force. Then only the work due to nonconservative forces needs to be calculated. In summary, when using the concept of potential energy, only nonconservative forces contribute to the work, which now changes the total energy: , where and are the final and initial potential energies, and is the work due only to nonconservative forces. Now, we will revisit the falling stone example using the concept of potential energy. Part D Rather than ascribing the increased kinetic energy of the stone to the work of gravity, we now (when using potential energy rather than work-energy) say that the increased kinetic energy comes from the ______ of the _______ energy. Choose the best answer to fill in the blanks above: ANSWER: force / kinetic potential energy / potential force / potential potential energy / kinetic Kf + Uf = Ef = Wnc + Ei = Wnc + Ki + Ui Uf Ui Wnc Correct Part E This process happens in such a way that total mechanical energy, equal to the ______ of the kinetic and potential energies, is _______. Choose the best answer to fill in the blanks above: ANSWER: Correct Problem 11.7 Part A How much work is done by the force 2.2 6.6 on a particle that moves through displacement 3.9 Express your answer to two significant figures and include the appropriate units. ANSWER: work / potential force / kinetic change / potential sum / conserved sum / zero sum / not conserved difference / conserved F  = (− + i ^ ) N j ^ ! = r m i ^ Correct Part B How much work is done by the force 2.2 6.6 on a particle that moves through displacement 3.9 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.10 A 1.8 book is lying on a 0.80- -high table. You pick it up and place it on a bookshelf 2.27 above the floor. Part A How much work does gravity do on the book? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B W = -8.6 J F  = (− + i ^ ) N j ^ ! = r m? j ^ W = 26 J kg m m Wg = -26 J How much work does your hand do on the book? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.12 The three ropes shown in the bird's-eye view of the figure are used to drag a crate 3.3 across the floor. Part A How much work is done by each of the three forces? Express your answers using two significant figures. Enter your answers numerically separated by commas. ANSWER: WH = 26 J m W1 , W2 , W3 = 1.9,1.2,-2.1 kJ Correct Enhanced EOC: Problem 11.16 A 1.2 particle moving along the x-axis experiences the force shown in the figure. The particle's velocity is 4.6 at . You may want to review ( pages 286 - 287) . For help with math skills, you may want to review: The Definite Integral Part A What is its velocity at ? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the work–kinetic energy theorem? What is the kinetic energy at ? How is the work done in going from to related to force shown in the graph? Using the work–kinetic energy theorem, what is the kinetic energy at ? What is the velocity at ? ANSWER: kg m/s x = 0m x = 2m x = 0 m x = 0 m x = 2 m x = 2 m x = 2 m Correct Part B What is its velocity at ? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the work–kinetic energy theorem? What is the kinetic energy at ? How is the work done in going from to related to force shown in the graph? Can the work be negative? Using the work–kinetic energy theorem, what is the kinetic energy at ? What is the velocity at ? ANSWER: Correct Work on a Sliding Block A block of weight sits on a frictionless inclined plane, which makes an angle with respect to the horizontal, as shown. A force of magnitude , applied parallel to the incline, pulls the block up the plane at constant speed. v = 6.2 ms x = 4m x = 0 m x = 0 m x = 4 m x = 4 m x = 4 m v = 4.6 ms w  F Part A The block moves a distance up the incline. The block does not stop after moving this distance but continues to move with constant speed. What is the total work done on the block by all forces? (Include only the work done after the block has started moving, not the work needed to start the block moving from rest.) Express your answer in terms of given quantities. Hint 1. What physical principle to use To find the total work done on the block, use the work-energy theorem: . Hint 2. Find the change in kinetic energy What is the change in the kinetic energy of the block, from the moment it starts moving until it has been pulled a distance ? Remember that the block is pulled at constant speed. Hint 1. Consider kinetic energy If the block's speed does not change, its kinetic energy cannot change. ANSWER: ANSWER: L Wtot Wtot = Kf − Ki L Kf − Ki = 0 Wtot = 0 Correct Part B What is , the work done on the block by the force of gravity as the block moves a distance up the incline? Express the work done by gravity in terms of the weight and any other quantities given in the problem introduction. Hint 1. Force diagram Hint 2. Force of gravity component What is the component of the force of gravity in the direction of the block's displacement (along the inclined plane)? Express your answer in terms of and . Hint 1. Relative direction of the force and the motion Remember that the force of gravity acts down the plane, whereas the block's displacement is directed up the plane. ANSWER: Wg L w w  ANSWER: Correct Part C What is , the work done on the block by the applied force as the block moves a distance up the incline? Express your answer in terms of and other given quantities. Hint 1. How to find the work done by a constant force Remember that the work done on an object by a particular force is the integral of the dot product of the force and the instantaneous displacement of the object, over the path followed by the object. In this case, since the force is constant and the path is a straight segment of length up the inclined plane, the dot product becomes simple multiplication. ANSWER: Correct Part D What is , the work done on the block by the normal force as the block moves a distance up the inclined plane? Express your answer in terms of given quantities. Hint 1. First step in computing the work Fg|| = −wsin() Wg = −wLsin() WF F L F L WF = FL Wnormal L The work done by the normal force is equal to the dot product of the force vector and the block's displacement vector. The normal force and the block's displacement vector are perpendicular. Therefore, what is their dot product? ANSWER: ANSWER: Correct Problem 11.20 A particle moving along the -axis has the potential energy , where is in . Part A What is the -component of the force on the particle at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the -component of the force on the particle at ? Express your answer to two significant figures and include the appropriate units. N  L = 0 Wnormal = 0 y U = 3.2y3 J y m y y = 0 m Fy = 0 N y y = 1 m ANSWER: Correct Part C What is the -component of the force on the particle at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.28 A cable with 25.0 of tension pulls straight up on a 1.08 block that is initially at rest. Part A What is the block's speed after being lifted 2.40 ? Solve this problem using work and energy. Express your answer with the appropriate units. ANSWER: Correct Fy = -9.6 N y y = 2 m Fy = -38 N N kg m vf = 8.00 ms Problem 11.29 Part A How much work does an elevator motor do to lift a 1500 elevator a height of 110 ? Express your answer with the appropriate units. ANSWER: Correct Part B How much power must the motor supply to do this in 50 at constant speed? Express your answer with the appropriate units. ANSWER: Correct Problem 11.32 How many energy is consumed by a 1.20 hair dryer used for 10.0 and a 11.0 night light left on for 16.0 ? Part A Hair dryer: Express your answer with the appropriate units. kg m Wext = 1.62×106 J s = 3.23×104 P W kW min W hr ANSWER: Correct Part B Night light: Express your answer with the appropriate units. ANSWER: Correct Problem 11.42 A 2500 elevator accelerates upward at 1.20 for 10.0 , starting from rest. Part A How much work does gravity do on the elevator? Express your answer with the appropriate units. ANSWER: Correct W = 7.20×105 J = 6.34×105 W J kg m/s2 m −2.45×105 J Part B How much work does the tension in the elevator cable do on the elevator? Express your answer with the appropriate units. ANSWER: Correct Part C Use the work-kinetic energy theorem to find the kinetic energy of the elevator as it reaches 10.0 . Express your answer with the appropriate units. ANSWER: Correct Part D What is the speed of the elevator as it reaches 10.0 ? Express your answer with the appropriate units. ANSWER: Correct 2.75×105 J m 3.00×104 J m 4.90 ms Problem 11.47 A horizontal spring with spring constant 130 is compressed 17 and used to launch a 2.4 box across a frictionless, horizontal surface. After the box travels some distance, the surface becomes rough. The coefficient of kinetic friction of the box on the surface is 0.15. Part A Use work and energy to find how far the box slides across the rough surface before stopping. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.49 Truck brakes can fail if they get too hot. In some mountainous areas, ramps of loose gravel are constructed to stop runaway trucks that have lost their brakes. The combination of a slight upward slope and a large coefficient of rolling friction as the truck tires sink into the gravel brings the truck safely to a halt. Suppose a gravel ramp slopes upward at 6.0 and the coefficient of rolling friction is 0.45. Part A Use work and energy to find the length of a ramp that will stop a 15,000 truck that enters the ramp at 30 . Express your answer to two significant figures and include the appropriate units. ANSWER: Correct N/m cm kg l = 53 cm kg m/s l = 83 m Problem 11.51 Use work and energy to find an expression for the speed of the block in the following figure just before it hits the floor. Part A Find an expression for the speed of the block if the coefficient of kinetic friction for the block on the table is . Express your answer in terms of the variables , , , , and free fall acceleration . ANSWER: Part B Find an expression for the speed of the block if the table is frictionless. Express your answer in terms of the variables , , , and free fall acceleration . ANSWER: μk M m h μk g v = M m h g Problem 11.57 The spring shown in the figure is compressed 60 and used to launch a 100 physics student. The track is frictionless until it starts up the incline. The student's coefficient of kinetic friction on the incline is 0.12 . Part A What is the student's speed just after losing contact with the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How far up the incline does the student go? Express your answer to two significant figures and include the appropriate units. ANSWER: v = cm kg 30 v = 17 ms Correct Score Summary: Your score on this assignment is 93.6%. You received 112.37 out of a possible total of 120 points. !s = 41 m

Assignment 9 Due: 11:59pm on Friday, April 11, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 11.2 Part A Evaluate the dot product if and . Express your answer using two significant figures. ANSWER: Correct Part B Evaluate the dot product if and . Express your answer using two significant figures. ANSWER: Correct Problem 11.4  A B = 5 − 6 A i ^ j ^ = −9 − 5 B i ^ j ^ A  B  = -15  A B = −5 + 9 A i ^ j ^ = 5 + 6 B i ^ j ^ A  B  = 29 Part A What is the angle between vectors and if and ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part B What is the angle between vectors and if and ? Express your answer as an integer and include the appropriate units. ANSWER: Correct ± All Work and No Play Learning Goal: To be able to calculate work done by a constant force directed at different angles relative to displacement If an object undergoes displacement while being acted upon by a force (or several forces), it is said that work is being done on the object. If the object is moving in a straight line and the displacement and the force are known, the work done by the force can be calculated as , where is the work done by force on the object that undergoes displacement directed at angle relative to .  A B A = 2 + 5 ı ^  ^ B = −2 − 4 ı ^  ^  = 175  A B A = −6 + 2 ı ^  ^ B = − − 3 ı ^  ^  = 90 W =  = cos  F  s  F   s  W F  s  F  Note that depending on the value of , the work done can be positive, negative, or zero. In this problem, you will practice calculating work done on an object moving in a straight line. The first series of questions is related to the accompanying figure. Part A What can be said about the sign of the work done by the force ? ANSWER: Correct When , the cosine of is zero, and therefore the work done is zero. Part B cos  F  1 It is positive. It is negative. It is zero. There is not enough information to answer the question.  = 90  What can be said about the work done by force ? ANSWER: Correct When , is positive, and so the work done is positive. Part C The work done by force is ANSWER: Correct When , is negative, and so the work done is negative. Part D The work done by force is ANSWER: F  2 It is positive. It is negative. It is zero. 0 <  < 90 cos  F  3 positive negative zero 90 <  < 180 cos  F  4 Correct Part E The work done by force is ANSWER: Correct positive negative zero F  5 positive negative zero Part F The work done by force is ANSWER: Correct Part G The work done by force is ANSWER: Correct In the next series of questions, you will use the formula to calculate the work done by various forces on an object that moves 160 meters to the right. F  6 positive negative zero F  7 positive negative zero W =  = cos  F  s  F   s  Part H Find the work done by the 18-newton force. Use two significant figures in your answer. Express your answer in joules. ANSWER: Correct Part I Find the work done by the 30-newton force. Use two significant figures in your answer. Express your answer in joules. ANSWER: Correct Part J Find the work done by the 12-newton force. Use two significant figures in your answer. Express your answer in joules. W W = 2900 J W W = 4200 J W ANSWER: Correct Part K Find the work done by the 15-newton force. Use two significant figures in your answer. Express your answer in joules. ANSWER: Correct Introduction to Potential Energy Learning Goal: Understand that conservative forces can be removed from the work integral by incorporating them into a new form of energy called potential energy that must be added to the kinetic energy to get the total mechanical energy. The first part of this problem contains short-answer questions that review the work-energy theorem. In the second part we introduce the concept of potential energy. But for now, please answer in terms of the work-energy theorem. Work-Energy Theorem The work-energy theorem states , where is the work done by all forces that act on the object, and and are the initial and final kinetic energies, respectively. Part A The work-energy theorem states that a force acting on a particle as it moves over a ______ changes the ______ energy of the particle if the force has a component parallel to the motion. W = -1900 J W W = -1800 J Kf = Ki + Wall Wall Ki Kf Choose the best answer to fill in the blanks above: ANSWER: Correct It is important that the force have a component acting in the direction of motion. For example, if a ball is attached to a string and whirled in uniform circular motion, the string does apply a force to the ball, but since the string's force is always perpendicular to the motion it does no work and cannot change the kinetic energy of the ball. Part B To calculate the change in energy, you must know the force as a function of _______. The work done by the force causes the energy change. Choose the best answer to fill in the blank above: ANSWER: Correct Part C To illustrate the work-energy concept, consider the case of a stone falling from to under the influence of gravity. Using the work-energy concept, we say that work is done by the gravitational _____, resulting in an increase of the ______ energy of the stone. Choose the best answer to fill in the blanks above: distance / potential distance / kinetic vertical displacement / potential none of the above acceleration work distance potential energy xi xf ANSWER: Correct Potential Energy You should read about potential energy in your text before answering the following questions. Potential energy is a concept that builds on the work-energy theorem, enlarging the concept of energy in the most physically useful way. The key aspect that allows for potential energy is the existence of conservative forces, forces for which the work done on an object does not depend on the path of the object, only the initial and final positions of the object. The gravitational force is conservative; the frictional force is not. The change in potential energy is the negative of the work done by conservative forces. Hence considering the initial and final potential energies is equivalent to calculating the work done by the conservative forces. When potential energy is used, it replaces the work done by the associated conservative force. Then only the work due to nonconservative forces needs to be calculated. In summary, when using the concept of potential energy, only nonconservative forces contribute to the work, which now changes the total energy: , where and are the final and initial potential energies, and is the work due only to nonconservative forces. Now, we will revisit the falling stone example using the concept of potential energy. Part D Rather than ascribing the increased kinetic energy of the stone to the work of gravity, we now (when using potential energy rather than work-energy) say that the increased kinetic energy comes from the ______ of the _______ energy. Choose the best answer to fill in the blanks above: ANSWER: force / kinetic potential energy / potential force / potential potential energy / kinetic Kf + Uf = Ef = Wnc + Ei = Wnc + Ki + Ui Uf Ui Wnc Correct Part E This process happens in such a way that total mechanical energy, equal to the ______ of the kinetic and potential energies, is _______. Choose the best answer to fill in the blanks above: ANSWER: Correct Problem 11.7 Part A How much work is done by the force 2.2 6.6 on a particle that moves through displacement 3.9 Express your answer to two significant figures and include the appropriate units. ANSWER: work / potential force / kinetic change / potential sum / conserved sum / zero sum / not conserved difference / conserved F  = (− + i ^ ) N j ^ ! = r m i ^ Correct Part B How much work is done by the force 2.2 6.6 on a particle that moves through displacement 3.9 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.10 A 1.8 book is lying on a 0.80- -high table. You pick it up and place it on a bookshelf 2.27 above the floor. Part A How much work does gravity do on the book? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B W = -8.6 J F  = (− + i ^ ) N j ^ ! = r m? j ^ W = 26 J kg m m Wg = -26 J How much work does your hand do on the book? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.12 The three ropes shown in the bird's-eye view of the figure are used to drag a crate 3.3 across the floor. Part A How much work is done by each of the three forces? Express your answers using two significant figures. Enter your answers numerically separated by commas. ANSWER: WH = 26 J m W1 , W2 , W3 = 1.9,1.2,-2.1 kJ Correct Enhanced EOC: Problem 11.16 A 1.2 particle moving along the x-axis experiences the force shown in the figure. The particle's velocity is 4.6 at . You may want to review ( pages 286 - 287) . For help with math skills, you may want to review: The Definite Integral Part A What is its velocity at ? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the work–kinetic energy theorem? What is the kinetic energy at ? How is the work done in going from to related to force shown in the graph? Using the work–kinetic energy theorem, what is the kinetic energy at ? What is the velocity at ? ANSWER: kg m/s x = 0m x = 2m x = 0 m x = 0 m x = 2 m x = 2 m x = 2 m Correct Part B What is its velocity at ? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the work–kinetic energy theorem? What is the kinetic energy at ? How is the work done in going from to related to force shown in the graph? Can the work be negative? Using the work–kinetic energy theorem, what is the kinetic energy at ? What is the velocity at ? ANSWER: Correct Work on a Sliding Block A block of weight sits on a frictionless inclined plane, which makes an angle with respect to the horizontal, as shown. A force of magnitude , applied parallel to the incline, pulls the block up the plane at constant speed. v = 6.2 ms x = 4m x = 0 m x = 0 m x = 4 m x = 4 m x = 4 m v = 4.6 ms w  F Part A The block moves a distance up the incline. The block does not stop after moving this distance but continues to move with constant speed. What is the total work done on the block by all forces? (Include only the work done after the block has started moving, not the work needed to start the block moving from rest.) Express your answer in terms of given quantities. Hint 1. What physical principle to use To find the total work done on the block, use the work-energy theorem: . Hint 2. Find the change in kinetic energy What is the change in the kinetic energy of the block, from the moment it starts moving until it has been pulled a distance ? Remember that the block is pulled at constant speed. Hint 1. Consider kinetic energy If the block's speed does not change, its kinetic energy cannot change. ANSWER: ANSWER: L Wtot Wtot = Kf − Ki L Kf − Ki = 0 Wtot = 0 Correct Part B What is , the work done on the block by the force of gravity as the block moves a distance up the incline? Express the work done by gravity in terms of the weight and any other quantities given in the problem introduction. Hint 1. Force diagram Hint 2. Force of gravity component What is the component of the force of gravity in the direction of the block's displacement (along the inclined plane)? Express your answer in terms of and . Hint 1. Relative direction of the force and the motion Remember that the force of gravity acts down the plane, whereas the block's displacement is directed up the plane. ANSWER: Wg L w w  ANSWER: Correct Part C What is , the work done on the block by the applied force as the block moves a distance up the incline? Express your answer in terms of and other given quantities. Hint 1. How to find the work done by a constant force Remember that the work done on an object by a particular force is the integral of the dot product of the force and the instantaneous displacement of the object, over the path followed by the object. In this case, since the force is constant and the path is a straight segment of length up the inclined plane, the dot product becomes simple multiplication. ANSWER: Correct Part D What is , the work done on the block by the normal force as the block moves a distance up the inclined plane? Express your answer in terms of given quantities. Hint 1. First step in computing the work Fg|| = −wsin() Wg = −wLsin() WF F L F L WF = FL Wnormal L The work done by the normal force is equal to the dot product of the force vector and the block's displacement vector. The normal force and the block's displacement vector are perpendicular. Therefore, what is their dot product? ANSWER: ANSWER: Correct Problem 11.20 A particle moving along the -axis has the potential energy , where is in . Part A What is the -component of the force on the particle at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the -component of the force on the particle at ? Express your answer to two significant figures and include the appropriate units. N  L = 0 Wnormal = 0 y U = 3.2y3 J y m y y = 0 m Fy = 0 N y y = 1 m ANSWER: Correct Part C What is the -component of the force on the particle at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.28 A cable with 25.0 of tension pulls straight up on a 1.08 block that is initially at rest. Part A What is the block's speed after being lifted 2.40 ? Solve this problem using work and energy. Express your answer with the appropriate units. ANSWER: Correct Fy = -9.6 N y y = 2 m Fy = -38 N N kg m vf = 8.00 ms Problem 11.29 Part A How much work does an elevator motor do to lift a 1500 elevator a height of 110 ? Express your answer with the appropriate units. ANSWER: Correct Part B How much power must the motor supply to do this in 50 at constant speed? Express your answer with the appropriate units. ANSWER: Correct Problem 11.32 How many energy is consumed by a 1.20 hair dryer used for 10.0 and a 11.0 night light left on for 16.0 ? Part A Hair dryer: Express your answer with the appropriate units. kg m Wext = 1.62×106 J s = 3.23×104 P W kW min W hr ANSWER: Correct Part B Night light: Express your answer with the appropriate units. ANSWER: Correct Problem 11.42 A 2500 elevator accelerates upward at 1.20 for 10.0 , starting from rest. Part A How much work does gravity do on the elevator? Express your answer with the appropriate units. ANSWER: Correct W = 7.20×105 J = 6.34×105 W J kg m/s2 m −2.45×105 J Part B How much work does the tension in the elevator cable do on the elevator? Express your answer with the appropriate units. ANSWER: Correct Part C Use the work-kinetic energy theorem to find the kinetic energy of the elevator as it reaches 10.0 . Express your answer with the appropriate units. ANSWER: Correct Part D What is the speed of the elevator as it reaches 10.0 ? Express your answer with the appropriate units. ANSWER: Correct 2.75×105 J m 3.00×104 J m 4.90 ms Problem 11.47 A horizontal spring with spring constant 130 is compressed 17 and used to launch a 2.4 box across a frictionless, horizontal surface. After the box travels some distance, the surface becomes rough. The coefficient of kinetic friction of the box on the surface is 0.15. Part A Use work and energy to find how far the box slides across the rough surface before stopping. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.49 Truck brakes can fail if they get too hot. In some mountainous areas, ramps of loose gravel are constructed to stop runaway trucks that have lost their brakes. The combination of a slight upward slope and a large coefficient of rolling friction as the truck tires sink into the gravel brings the truck safely to a halt. Suppose a gravel ramp slopes upward at 6.0 and the coefficient of rolling friction is 0.45. Part A Use work and energy to find the length of a ramp that will stop a 15,000 truck that enters the ramp at 30 . Express your answer to two significant figures and include the appropriate units. ANSWER: Correct N/m cm kg l = 53 cm kg m/s l = 83 m Problem 11.51 Use work and energy to find an expression for the speed of the block in the following figure just before it hits the floor. Part A Find an expression for the speed of the block if the coefficient of kinetic friction for the block on the table is . Express your answer in terms of the variables , , , , and free fall acceleration . ANSWER: Part B Find an expression for the speed of the block if the table is frictionless. Express your answer in terms of the variables , , , and free fall acceleration . ANSWER: μk M m h μk g v = M m h g Problem 11.57 The spring shown in the figure is compressed 60 and used to launch a 100 physics student. The track is frictionless until it starts up the incline. The student's coefficient of kinetic friction on the incline is 0.12 . Part A What is the student's speed just after losing contact with the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How far up the incline does the student go? Express your answer to two significant figures and include the appropriate units. ANSWER: v = cm kg 30 v = 17 ms Correct Score Summary: Your score on this assignment is 93.6%. You received 112.37 out of a possible total of 120 points. !s = 41 m

please email info@checkyourstudy.com
Vermont Technical College Electronic Applications ELT-2060 Lab 07: Common Mode Rejection Ratio and Instrumentation Amplifiers Reference: Laboratory Manual to Accompany Operational Amplifiers and Linear Integrated Circuits, Robert Coughlin, Sixth Edition. For the following exercise, make sure to record all calculations, estimations and measured results. Components: LM741 Op Amp, INA126 instrumentation Amp, 10 Ω, 1 kΩ, 470 Ω, 10 kΩ ½ W, 15 kΩ, 82 kΩ, 2-100 kΩ, , 50 kΩ potentiometer Objectives: a. LM741 Differential Voltage Gain, Common Mode Voltage Gain, Common Mode Rejection Ratio b. INA126 instrumentation amplifiers a. Differential Voltage Gain, Common Mode Voltage Gain, Common Mode Rejection Ratio Build the circuit of figure 1. Measure both E1 and E2 with respect to ground and record the values. Next calculate the differential voltage across the 10Ω resistor. Ediff= E1-E2. Calculate the differential voltage gain Adiff Vo = Adiff(E1-E2) or for this schematic Adiff = m = mR/R Measure Vo ` Modify the circuit as shown in figure 2, this now includes a common mode adjustment. In this circuit both inputs (+ input, – input) are shorted together and to E2, which is now the common mode voltage ECM. Measure and record E2 =ECM = __________ Measure Vo of the amplifier and adjust the 50k potentiometer for the smallest output voltage possible. Record this voltage as Vo-cm (Note this value should be approximately 1mV). Vo-cm=_________ Calculate common-mode voltage gain Acm = Vo-cm/Ecm Acm=_______ CMRR= Adiff/Acm CMRR =________ CMRR in dB = _________dB b. INA126 Instrumentation amplifiers 1. Wire the Instrumentation amplifier shown in figure 3. Set the differential gain Adiff to 10 by adjusting the 10-k Ω potentiometer. Again measure E1 and E2 with respect to ground E1=_____ E2=_______ 2. Predict the output voltage Vo from the equation Vo = Adiff(E1-E2) Calculated Vo= ____ Measured Vo=_____ 3. Readjust the 10-k Ω potentiometer for a differential gain of 100. Predict the output voltage Vo from the equation Vo = 100(E1-E2) Calculated Vo= ____ Measured Vo=_____ 4. To measure the common-mode voltage gain of the AD820 instrumentation amplifier, connect both inputs (pin 2 and pin 3) together and to E2 (see figure 4). Remeasure E2, in this configuration E2 = Ecm. Ecm=_______ 5. Measure Vocm Vocm=____ 6. Common-mode voltage gain = Acm= Vocm/Eocm 7. CMRR = Adiff/Acm CMRR = __________ CMRR in dB = _________ dB Compare your results to the INA126 data sheet Lab Report: This lab requires a semi-formal lab report. Record all calculations, estimations, and measured results. Support your lab results using MultiSim; include your MultiSim schematics in your lab report to support your laboratory findings. Please include a written English language paragraph for all lab steps that required an explanation.

Vermont Technical College Electronic Applications ELT-2060 Lab 07: Common Mode Rejection Ratio and Instrumentation Amplifiers Reference: Laboratory Manual to Accompany Operational Amplifiers and Linear Integrated Circuits, Robert Coughlin, Sixth Edition. For the following exercise, make sure to record all calculations, estimations and measured results. Components: LM741 Op Amp, INA126 instrumentation Amp, 10 Ω, 1 kΩ, 470 Ω, 10 kΩ ½ W, 15 kΩ, 82 kΩ, 2-100 kΩ, , 50 kΩ potentiometer Objectives: a. LM741 Differential Voltage Gain, Common Mode Voltage Gain, Common Mode Rejection Ratio b. INA126 instrumentation amplifiers a. Differential Voltage Gain, Common Mode Voltage Gain, Common Mode Rejection Ratio Build the circuit of figure 1. Measure both E1 and E2 with respect to ground and record the values. Next calculate the differential voltage across the 10Ω resistor. Ediff= E1-E2. Calculate the differential voltage gain Adiff Vo = Adiff(E1-E2) or for this schematic Adiff = m = mR/R Measure Vo ` Modify the circuit as shown in figure 2, this now includes a common mode adjustment. In this circuit both inputs (+ input, – input) are shorted together and to E2, which is now the common mode voltage ECM. Measure and record E2 =ECM = __________ Measure Vo of the amplifier and adjust the 50k potentiometer for the smallest output voltage possible. Record this voltage as Vo-cm (Note this value should be approximately 1mV). Vo-cm=_________ Calculate common-mode voltage gain Acm = Vo-cm/Ecm Acm=_______ CMRR= Adiff/Acm CMRR =________ CMRR in dB = _________dB b. INA126 Instrumentation amplifiers 1. Wire the Instrumentation amplifier shown in figure 3. Set the differential gain Adiff to 10 by adjusting the 10-k Ω potentiometer. Again measure E1 and E2 with respect to ground E1=_____ E2=_______ 2. Predict the output voltage Vo from the equation Vo = Adiff(E1-E2) Calculated Vo= ____ Measured Vo=_____ 3. Readjust the 10-k Ω potentiometer for a differential gain of 100. Predict the output voltage Vo from the equation Vo = 100(E1-E2) Calculated Vo= ____ Measured Vo=_____ 4. To measure the common-mode voltage gain of the AD820 instrumentation amplifier, connect both inputs (pin 2 and pin 3) together and to E2 (see figure 4). Remeasure E2, in this configuration E2 = Ecm. Ecm=_______ 5. Measure Vocm Vocm=____ 6. Common-mode voltage gain = Acm= Vocm/Eocm 7. CMRR = Adiff/Acm CMRR = __________ CMRR in dB = _________ dB Compare your results to the INA126 data sheet Lab Report: This lab requires a semi-formal lab report. Record all calculations, estimations, and measured results. Support your lab results using MultiSim; include your MultiSim schematics in your lab report to support your laboratory findings. Please include a written English language paragraph for all lab steps that required an explanation.

info@checkyourstudy.com
The Classic Five-Part Structure 1. Introduce the topic to be argued. Establish its importance. 2. Provide background information so readers will be able to follow your discussion. 3. State your claim (your argumentative thesis) and develop your argument by making a logical appeal. Support your claims with facts, opinions, and examples. If appropriate, mix an emotional appeal or an appeal to authority with your logical appeals. 4. Acknowledge counterarguments and treat them with respect. Rebut these arguments. Reject their evidence or their logic or concede some validity and modify your claim accordingly. Be flexible; you might split the counterarguments and rebut them one at a time at different locations in the paper, or you might begin the paper with a counterargument, rebut it, and then move on to your own claim. 5. Conclude by summarizing the main points of your argument. Then remind readers of what you want them to believe or do. Give them something to remember. The Problem-Solution Structure I. There is a serious problem. A. The problem exists and is growing. (Provide support for argument.) B. The problem is serious. (Provide support.) C. Current methods cannot cope with the problem. (Provide support.) II. There is a solution to the problem. (Your claim goes here.) A. The solution is practical. (Provide support.) B. The solution is desirable. (Provide support.) C. We can implement the solution. (Provide support.) D. Alternate solutions are not as strong as the proposed solution. (Review – and reject – competing solutions.) In both cases, you know before you begin writing whether you will use an inductive (analytic) or deductive (synthetic) arrangement for your argument. The decision to move inductively or deductively is about strategy. Induction moves from support to a claim. Deduction moves from a claim to support – to particular facts, opinions, and examples. This is the preferred form for most writing in the humanities. You can position your claim at the beginning, middle, or end of your presentation. In the problem/solution structure, the claim is made only after the writer introduces a problem. With the five-part structure, you have more flexibility in positioning your claim. One factor that can help determine placement is the likelihood of your audience agreeing with you. When your audience is likely to be neutral or supportive, making your claim early on will not alienate readers (synthetic presentation). When your audience is likely to disagree, placing your thesis at the end of your presentation allows you time to build a consensus, step by step, until you reach your conclusion (analytical presentation).

The Classic Five-Part Structure 1. Introduce the topic to be argued. Establish its importance. 2. Provide background information so readers will be able to follow your discussion. 3. State your claim (your argumentative thesis) and develop your argument by making a logical appeal. Support your claims with facts, opinions, and examples. If appropriate, mix an emotional appeal or an appeal to authority with your logical appeals. 4. Acknowledge counterarguments and treat them with respect. Rebut these arguments. Reject their evidence or their logic or concede some validity and modify your claim accordingly. Be flexible; you might split the counterarguments and rebut them one at a time at different locations in the paper, or you might begin the paper with a counterargument, rebut it, and then move on to your own claim. 5. Conclude by summarizing the main points of your argument. Then remind readers of what you want them to believe or do. Give them something to remember. The Problem-Solution Structure I. There is a serious problem. A. The problem exists and is growing. (Provide support for argument.) B. The problem is serious. (Provide support.) C. Current methods cannot cope with the problem. (Provide support.) II. There is a solution to the problem. (Your claim goes here.) A. The solution is practical. (Provide support.) B. The solution is desirable. (Provide support.) C. We can implement the solution. (Provide support.) D. Alternate solutions are not as strong as the proposed solution. (Review – and reject – competing solutions.) In both cases, you know before you begin writing whether you will use an inductive (analytic) or deductive (synthetic) arrangement for your argument. The decision to move inductively or deductively is about strategy. Induction moves from support to a claim. Deduction moves from a claim to support – to particular facts, opinions, and examples. This is the preferred form for most writing in the humanities. You can position your claim at the beginning, middle, or end of your presentation. In the problem/solution structure, the claim is made only after the writer introduces a problem. With the five-part structure, you have more flexibility in positioning your claim. One factor that can help determine placement is the likelihood of your audience agreeing with you. When your audience is likely to be neutral or supportive, making your claim early on will not alienate readers (synthetic presentation). When your audience is likely to disagree, placing your thesis at the end of your presentation allows you time to build a consensus, step by step, until you reach your conclusion (analytical presentation).

info@checkyourstudy.com
Chapter 3 Practice Problems (Practice – no credit) Due: 11:59pm on Wednesday, February 12, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Tactics Box 3.1 Determining the Components of a Vector Learning Goal: To practice Tactics Box 3.1 Determining the Components of a Vector. When a vector is decomposed into component vectors and parallel to the coordinate axes, we can describe each component vector with a single number (a scalar) called the component. This tactics box describes how to determine the x component and y component of vector , denoted and . TACTICS BOX 3.1 Determining the components of a vector The absolute value of the x component is the magnitude of the 1. component vector . 2. The sign of is positive if points in the positive x direction; it is negative if points in the negative x direction. 3. The y component is determined similarly. Part A What is the magnitude of the component vector shown in the figure? Express your answer in meters to one significant figure. A A x A y A Ax Ay |Ax| Ax A x Ax A x A x Ay A x ANSWER: Answer Requested Part B What is the sign of the y component of vector shown in the figure? ANSWER: Correct Part C Now, combine the information given in the tactics box above to find the x and y components, and , of vector shown in the figure. |Ax| = 5 m Ay A positive negative Bx By B Express your answers, separated by a comma, in meters to one significant figure. ANSWER: Correct Vector Components–Review Learning Goal: To introduce you to vectors and the use of sine and cosine for a triangle when resolving components. Vectors are an important part of the language of science, mathematics, and engineering. They are used to discuss multivariable calculus, electrical circuits with oscillating currents, stress and strain in structures and materials, and flows of atmospheres and fluids, and they have many other applications. Resolving a vector into components is a precursor to computing things with or about a vector quantity. Because position, velocity, acceleration, force, momentum, and angular momentum are all vector quantities, resolving vectors into components is the most important skill required in a mechanics course. The figure shows the components of , and , along the x and y axes of the coordinate system, respectively. The components of a vector depend on the coordinate system’s orientation, the key being the angle between the vector and the coordinate axes, often designated . Bx, By = -2,-5 m, m F  Fx Fy  Part A The figure shows the standard way of measuring the angle. is measured to the vector from the x axis, and counterclockwise is positive. Express and in terms of the length of the vector and the angle , with the components separated by a comma. ANSWER:  Fx Fy F  Fx, Fy = Fcos, Fsin Correct In principle, you can determine the components of any vector with these expressions. If lies in one of the other quadrants of the plane, will be an angle larger than 90 degrees (or in radians) and and will have the appropriate signs and values. Unfortunately this way of representing , though mathematically correct, leads to equations that must be simplified using trig identities such as and . These must be used to reduce all trig functions present in your equations to either or . Unless you perform this followup step flawlessly, you will fail to recoginze that , and your equations will not simplify so that you can progress further toward a solution. Therefore, it is best to express all components in terms of either or , with between 0 and 90 degrees (or 0 and in radians), and determine the signs of the trig functions by knowing in which quadrant the vector lies. Part B When you resolve a vector into components, the components must have the form or . The signs depend on which quadrant the vector lies in, and there will be one component with and the other with . In real problems the optimal coordinate system is often rotated so that the x axis is not horizontal. Furthermore, most vectors will not lie in the first quadrant. To assign the sine and cosine correctly for vectors at arbitrary angles, you must figure out which angle is and then properly reorient the definitional triangle. As an example, consider the vector shown in the diagram labeled “tilted axes,” where you know the angle between and the y axis. Which of the various ways of orienting the definitional triangle must be used to resolve into components in the tilted coordinate system shown? (In the figures, the hypotenuse is orange, the side adjacent to is red, and the side opposite is yellow.) F  /2 cos() sin() F  sin(180 + ) = −sin() cos(90 + ) = −sin() sin() cos() sin(180 + ) + cos(270 − ) = 0 sin() cos()  /2 F  |F| cos() |F| sin() sin() cos()  N  N N  Indicate the number of the figure with the correct orientation. Hint 1. Recommended procedure for resolving a vector into components First figure out the sines and cosines of , then figure out the signs from the quadrant the vector is in and write in the signs. Hint 2. Finding the trigonometric functions Sine and cosine are defined according to the following convention, with the key lengths shown in green: The hypotenuse has unit length, the side adjacent to has length , and the   cos() side opposite has length . The colors are chosen to remind you that the vector sum of the two orthogonal sides is the vector whose magnitude is the hypotenuse; red + yellow = orange. ANSWER: Correct Part C Choose the correct procedure for determining the components of a vector in a given coordinate system from this list: ANSWER: sin() 1 2 3 4 Correct Part D The space around a coordinate system is conventionally divided into four numbered quadrants depending on the signs of the x and y coordinates . Consider the following conditions: A. , B. , C. , D. , Which of these lettered conditions are true in which the numbered quadrants shown in ? Write the answer in the following way: If A were true in the third quadrant, B in the second, C in the first, and D in the fourth, enter “3, 2, 1, 4” as your response. ANSWER: Align the adjacent side of a right triangle with the vector and the hypotenuse along a coordinate direction with as the included angle. Align the hypotenuse of a right triangle with the vector and an adjacent side along a coordinate direction with as the included angle. Align the opposite side of a right triangle with the vector and the hypotenuse along a coordinate direction with as the included angle. Align the hypotenuse of a right triangle with the vector and the opposite side along a coordinate direction with as the included angle.     x > 0 y > 0 x > 0 y < 0 x < 0 y > 0 x < 0 y < 0 Correct Part E Now find the components and of in the tilted coordinate system of Part B. Express your answer in terms of the length of the vector and the angle , with the components separated by a comma. ANSWER: Answer Requested ± Resolving Vector Components with Trigonometry Often a vector is specified by a magnitude and a direction; for example, a rope with tension exerts a force of magnitude in a direction 35 north of east. This is a good way to think of vectors; however, to calculate results with vectors, it is best to select a coordinate system and manipulate the components of the vectors in that coordinate system. Nx Ny N N  Nx, Ny = −Nsin(),Ncos() T  T  Part A Find the components of the vector with length = 1.00 and angle =10.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. Hint 1. What is the x component? Look at the figure shown. points in the positive x direction, so is positive. Also, the magnitude is just the length . ANSWER: Correct Part B Find the components of the vector with length = 1.00 and angle =15.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. A a  A x Ax |Ax| OL = OMcos( ) A  = 0.985,0.174 B b   Hint 1. What is the x component? The x component is still of the same form, that is, . ANSWER: Correct The components of still have the same form, that is, , despite 's placement with respect to the y axis on the drawing. Part C Find the components of the vector with length = 1.00 and angle 35.0 as shown. Enter the x component followed by the y component, separated by a comma. Hint 1. Method 1: Find the angle that makes with the positive x axis Angle = 0.611 differs from the other two angles because it is the angle between the vector and the y axis, unlike the others, which are with respect to the x axis. What is the angle that makes with the positive x axis? Express your answer numerically in degrees. ANSWER: Hint 2. Method 2: Use vector addition Look at the figure shown. Lcos() B = 0.966,0.259 B (Lcos(), Lsin()) B C c  =  C  C 125 1. . 2. . 3. , the x component of is negative, since points in the negative x direction. Use this information to find . Similarly, find . ANSWER: Answer Requested ± Vector Addition and Subtraction In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors , , and . Calculate the following, and express your answers as ordered triplets of values separated by commas. Part A ANSWER: Correct C = C + x C y |C | = length(QR) = c sin() x Cx C C x Cx Cy C  = -0.574,0.819 A = (1, 0,−3) B = (−2, 5, 1) C = (3, 1, 1) A − B  = 3,-5,-4 Part B ANSWER: Correct Part C ANSWER: Correct Part D ANSWER: Correct B − C  = -5,4,0 −A + B − C  = -6,4,3 3A − 2C  = -3,-2,-11 Part E ANSWER: Correct Part F ANSWER: Correct Video Tutor: Balls Take High and Low Tracks First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the questions at right. You can watch the video again at any point. Part A −2A + 3B − C  = -11,14,8 2A − 3(B − C) = 17,-12,-6 Consider the video demonstration that you just watched. Which of the following changes could potentially allow the ball on the straight inclined (yellow) track to win? Ignore air resistance. Select all that apply. Hint 1. How to approach the problem Answers A and B involve changing the steepness of part or all of the track. Answers C and D involve changing the mass of the balls. So, first you should decide which of those factors, if either, can change how fast the ball gets to the end of the track. ANSWER: Correct If the yellow track were tilted steeply enough, its ball could win. How might you go about calculating the necessary change in tilt? Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. A. Increase the tilt of the yellow track. B. Make the downhill and uphill inclines on the red track less steep, while keeping the total distance traveled by the ball the same. C. Increase the mass of the ball on the yellow track. D. Decrease the mass of the ball on the red track.

Chapter 3 Practice Problems (Practice – no credit) Due: 11:59pm on Wednesday, February 12, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Tactics Box 3.1 Determining the Components of a Vector Learning Goal: To practice Tactics Box 3.1 Determining the Components of a Vector. When a vector is decomposed into component vectors and parallel to the coordinate axes, we can describe each component vector with a single number (a scalar) called the component. This tactics box describes how to determine the x component and y component of vector , denoted and . TACTICS BOX 3.1 Determining the components of a vector The absolute value of the x component is the magnitude of the 1. component vector . 2. The sign of is positive if points in the positive x direction; it is negative if points in the negative x direction. 3. The y component is determined similarly. Part A What is the magnitude of the component vector shown in the figure? Express your answer in meters to one significant figure. A A x A y A Ax Ay |Ax| Ax A x Ax A x A x Ay A x ANSWER: Answer Requested Part B What is the sign of the y component of vector shown in the figure? ANSWER: Correct Part C Now, combine the information given in the tactics box above to find the x and y components, and , of vector shown in the figure. |Ax| = 5 m Ay A positive negative Bx By B Express your answers, separated by a comma, in meters to one significant figure. ANSWER: Correct Vector Components–Review Learning Goal: To introduce you to vectors and the use of sine and cosine for a triangle when resolving components. Vectors are an important part of the language of science, mathematics, and engineering. They are used to discuss multivariable calculus, electrical circuits with oscillating currents, stress and strain in structures and materials, and flows of atmospheres and fluids, and they have many other applications. Resolving a vector into components is a precursor to computing things with or about a vector quantity. Because position, velocity, acceleration, force, momentum, and angular momentum are all vector quantities, resolving vectors into components is the most important skill required in a mechanics course. The figure shows the components of , and , along the x and y axes of the coordinate system, respectively. The components of a vector depend on the coordinate system’s orientation, the key being the angle between the vector and the coordinate axes, often designated . Bx, By = -2,-5 m, m F  Fx Fy  Part A The figure shows the standard way of measuring the angle. is measured to the vector from the x axis, and counterclockwise is positive. Express and in terms of the length of the vector and the angle , with the components separated by a comma. ANSWER:  Fx Fy F  Fx, Fy = Fcos, Fsin Correct In principle, you can determine the components of any vector with these expressions. If lies in one of the other quadrants of the plane, will be an angle larger than 90 degrees (or in radians) and and will have the appropriate signs and values. Unfortunately this way of representing , though mathematically correct, leads to equations that must be simplified using trig identities such as and . These must be used to reduce all trig functions present in your equations to either or . Unless you perform this followup step flawlessly, you will fail to recoginze that , and your equations will not simplify so that you can progress further toward a solution. Therefore, it is best to express all components in terms of either or , with between 0 and 90 degrees (or 0 and in radians), and determine the signs of the trig functions by knowing in which quadrant the vector lies. Part B When you resolve a vector into components, the components must have the form or . The signs depend on which quadrant the vector lies in, and there will be one component with and the other with . In real problems the optimal coordinate system is often rotated so that the x axis is not horizontal. Furthermore, most vectors will not lie in the first quadrant. To assign the sine and cosine correctly for vectors at arbitrary angles, you must figure out which angle is and then properly reorient the definitional triangle. As an example, consider the vector shown in the diagram labeled “tilted axes,” where you know the angle between and the y axis. Which of the various ways of orienting the definitional triangle must be used to resolve into components in the tilted coordinate system shown? (In the figures, the hypotenuse is orange, the side adjacent to is red, and the side opposite is yellow.) F  /2 cos() sin() F  sin(180 + ) = −sin() cos(90 + ) = −sin() sin() cos() sin(180 + ) + cos(270 − ) = 0 sin() cos()  /2 F  |F| cos() |F| sin() sin() cos()  N  N N  Indicate the number of the figure with the correct orientation. Hint 1. Recommended procedure for resolving a vector into components First figure out the sines and cosines of , then figure out the signs from the quadrant the vector is in and write in the signs. Hint 2. Finding the trigonometric functions Sine and cosine are defined according to the following convention, with the key lengths shown in green: The hypotenuse has unit length, the side adjacent to has length , and the   cos() side opposite has length . The colors are chosen to remind you that the vector sum of the two orthogonal sides is the vector whose magnitude is the hypotenuse; red + yellow = orange. ANSWER: Correct Part C Choose the correct procedure for determining the components of a vector in a given coordinate system from this list: ANSWER: sin() 1 2 3 4 Correct Part D The space around a coordinate system is conventionally divided into four numbered quadrants depending on the signs of the x and y coordinates . Consider the following conditions: A. , B. , C. , D. , Which of these lettered conditions are true in which the numbered quadrants shown in ? Write the answer in the following way: If A were true in the third quadrant, B in the second, C in the first, and D in the fourth, enter “3, 2, 1, 4” as your response. ANSWER: Align the adjacent side of a right triangle with the vector and the hypotenuse along a coordinate direction with as the included angle. Align the hypotenuse of a right triangle with the vector and an adjacent side along a coordinate direction with as the included angle. Align the opposite side of a right triangle with the vector and the hypotenuse along a coordinate direction with as the included angle. Align the hypotenuse of a right triangle with the vector and the opposite side along a coordinate direction with as the included angle.     x > 0 y > 0 x > 0 y < 0 x < 0 y > 0 x < 0 y < 0 Correct Part E Now find the components and of in the tilted coordinate system of Part B. Express your answer in terms of the length of the vector and the angle , with the components separated by a comma. ANSWER: Answer Requested ± Resolving Vector Components with Trigonometry Often a vector is specified by a magnitude and a direction; for example, a rope with tension exerts a force of magnitude in a direction 35 north of east. This is a good way to think of vectors; however, to calculate results with vectors, it is best to select a coordinate system and manipulate the components of the vectors in that coordinate system. Nx Ny N N  Nx, Ny = −Nsin(),Ncos() T  T  Part A Find the components of the vector with length = 1.00 and angle =10.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. Hint 1. What is the x component? Look at the figure shown. points in the positive x direction, so is positive. Also, the magnitude is just the length . ANSWER: Correct Part B Find the components of the vector with length = 1.00 and angle =15.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. A a  A x Ax |Ax| OL = OMcos( ) A  = 0.985,0.174 B b   Hint 1. What is the x component? The x component is still of the same form, that is, . ANSWER: Correct The components of still have the same form, that is, , despite 's placement with respect to the y axis on the drawing. Part C Find the components of the vector with length = 1.00 and angle 35.0 as shown. Enter the x component followed by the y component, separated by a comma. Hint 1. Method 1: Find the angle that makes with the positive x axis Angle = 0.611 differs from the other two angles because it is the angle between the vector and the y axis, unlike the others, which are with respect to the x axis. What is the angle that makes with the positive x axis? Express your answer numerically in degrees. ANSWER: Hint 2. Method 2: Use vector addition Look at the figure shown. Lcos() B = 0.966,0.259 B (Lcos(), Lsin()) B C c  =  C  C 125 1. . 2. . 3. , the x component of is negative, since points in the negative x direction. Use this information to find . Similarly, find . ANSWER: Answer Requested ± Vector Addition and Subtraction In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors , , and . Calculate the following, and express your answers as ordered triplets of values separated by commas. Part A ANSWER: Correct C = C + x C y |C | = length(QR) = c sin() x Cx C C x Cx Cy C  = -0.574,0.819 A = (1, 0,−3) B = (−2, 5, 1) C = (3, 1, 1) A − B  = 3,-5,-4 Part B ANSWER: Correct Part C ANSWER: Correct Part D ANSWER: Correct B − C  = -5,4,0 −A + B − C  = -6,4,3 3A − 2C  = -3,-2,-11 Part E ANSWER: Correct Part F ANSWER: Correct Video Tutor: Balls Take High and Low Tracks First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the questions at right. You can watch the video again at any point. Part A −2A + 3B − C  = -11,14,8 2A − 3(B − C) = 17,-12,-6 Consider the video demonstration that you just watched. Which of the following changes could potentially allow the ball on the straight inclined (yellow) track to win? Ignore air resistance. Select all that apply. Hint 1. How to approach the problem Answers A and B involve changing the steepness of part or all of the track. Answers C and D involve changing the mass of the balls. So, first you should decide which of those factors, if either, can change how fast the ball gets to the end of the track. ANSWER: Correct If the yellow track were tilted steeply enough, its ball could win. How might you go about calculating the necessary change in tilt? Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. A. Increase the tilt of the yellow track. B. Make the downhill and uphill inclines on the red track less steep, while keeping the total distance traveled by the ball the same. C. Increase the mass of the ball on the yellow track. D. Decrease the mass of the ball on the red track.

please email info@checkyourstudy.com
Initial Data Collection After implementing your intervention/innovation, you may have noted that data collection isn’t exactly a linear process. Sometimes you need to go back and get more information, and sometimes you find yourself asking additional questions (that’s ok). In Chapter 6, Fichtman Dana and Yendol-Hoppey provide four steps to data analysis: 1. providing a description of the data; 2. making sense of what you have (and don’t have); 3. interpreting your data by creating statements about how the data informs an answer to the original question; 4. implications of the data. For this assignment, please develop responses to the first two steps using the following points as your guide: ● Please describe the data you’ve collected. ○ What did you see as you inquired? What was happening? ○ What are your initial insights into the data? ● Next, please explain how you have organized your data (“chronologically, by key events, or some combination of organizing units?”). ○ Have you provided the reader with evidence that you’ve looked at your inquiry from a number of angles and have collected trustworthy data? ○ Have you provided evidence of data triangulation? ○ What further questions do you have after your initial data collection? ○ How will you collect more information to satisfy your next questions? Assignment: Initial Data Collection (Due Week 2 Sunday, 11:59 p.m.) After implementing your intervention/innovation, you may have noted that data collection isn’t exactly a linear process. Sometimes you need to go back and get more information, and sometimes you find yourself asking additional questions (that’s ok). In Chapter 6, Fichtman Dana and Yendol-Hoppey provide four steps to data analysis: 1. providing a description of the data; 2. making sense of what you have (and don’t have); 3. interpreting your data by creating statements about how the data informs an answer to the original question; 4. implications of the data. For this assignment, please develop responses to the first two steps using the following points as your guide: ● Please describe the data you’ve collected. ○ What did you see as you inquired? What was happening? ○ What are your initial insights into the data? ● Next, please explain how you have organized your data (“chronologically, by key events, or some combination of organizing units?”). ○ Have you provided the reader with evidence that you’ve looked at your inquiry from a number of angles and have collected trustworthy data? ○ Have you provided evidence of data triangulation? ○ What further questions do you have after your initial data collection? ○ How will you collect more information to satisfy your next questions? Module 2 – Data Collection, Part 2 Module 2 continues to examine the data you are collecting with respect to issues of validity, reliability, trustworthiness, and sufficiency. Please continue to collect data relevant to your inquiry and begin to think about how you will code this data into meaningful organizing principles. Be sure to continuously write memos about your process as a sort of idea journal that you can continually draw from when writing your assignments. Required Readings: Dana, N. F. & Yendol-Hoppey, D. – Revisit Chapter 6 Assignments: For assignment details refer to the “Assignments for the Course” section in this syllabus or the submission link within Blackboard. Assignment: Initial Data Collection (Due Week 2 Sunday, 11:59 p.m.)

Initial Data Collection After implementing your intervention/innovation, you may have noted that data collection isn’t exactly a linear process. Sometimes you need to go back and get more information, and sometimes you find yourself asking additional questions (that’s ok). In Chapter 6, Fichtman Dana and Yendol-Hoppey provide four steps to data analysis: 1. providing a description of the data; 2. making sense of what you have (and don’t have); 3. interpreting your data by creating statements about how the data informs an answer to the original question; 4. implications of the data. For this assignment, please develop responses to the first two steps using the following points as your guide: ● Please describe the data you’ve collected. ○ What did you see as you inquired? What was happening? ○ What are your initial insights into the data? ● Next, please explain how you have organized your data (“chronologically, by key events, or some combination of organizing units?”). ○ Have you provided the reader with evidence that you’ve looked at your inquiry from a number of angles and have collected trustworthy data? ○ Have you provided evidence of data triangulation? ○ What further questions do you have after your initial data collection? ○ How will you collect more information to satisfy your next questions? Assignment: Initial Data Collection (Due Week 2 Sunday, 11:59 p.m.) After implementing your intervention/innovation, you may have noted that data collection isn’t exactly a linear process. Sometimes you need to go back and get more information, and sometimes you find yourself asking additional questions (that’s ok). In Chapter 6, Fichtman Dana and Yendol-Hoppey provide four steps to data analysis: 1. providing a description of the data; 2. making sense of what you have (and don’t have); 3. interpreting your data by creating statements about how the data informs an answer to the original question; 4. implications of the data. For this assignment, please develop responses to the first two steps using the following points as your guide: ● Please describe the data you’ve collected. ○ What did you see as you inquired? What was happening? ○ What are your initial insights into the data? ● Next, please explain how you have organized your data (“chronologically, by key events, or some combination of organizing units?”). ○ Have you provided the reader with evidence that you’ve looked at your inquiry from a number of angles and have collected trustworthy data? ○ Have you provided evidence of data triangulation? ○ What further questions do you have after your initial data collection? ○ How will you collect more information to satisfy your next questions? Module 2 – Data Collection, Part 2 Module 2 continues to examine the data you are collecting with respect to issues of validity, reliability, trustworthiness, and sufficiency. Please continue to collect data relevant to your inquiry and begin to think about how you will code this data into meaningful organizing principles. Be sure to continuously write memos about your process as a sort of idea journal that you can continually draw from when writing your assignments. Required Readings: Dana, N. F. & Yendol-Hoppey, D. – Revisit Chapter 6 Assignments: For assignment details refer to the “Assignments for the Course” section in this syllabus or the submission link within Blackboard. Assignment: Initial Data Collection (Due Week 2 Sunday, 11:59 p.m.)

info@checkyourstudy.com Whatsapp +919911743277
Need help in Engineering Ethicks , due in 2 hours , and it is essay with one and half to two hand written paper. Essay one : Alan Dengson, John Dewey, Lewis Mumford, and Jessica Wooliams view technology as ” instrumental ‘ . what does it mean, generally speaking, to regard technology as instrumental rather than intrinsically valuable? with respect to two of the aforementioned authors, answer the following questions: 2- what are the moral dangers associated with losing sight of the instrumental value of technology? 1- why is it important, morally speaking, to affirm the instrumental value of technology? Outline: I. thesis statement: what is your overall argument? Three sentences or less II. instrumental VS. intrinsic Goods. – what an instrumental good is. – what an intrinsic good is. – An example of each -what it means to regard technology as either kind of good – An example of what happend when technology is regarded as intrinsically good III. Importance of affirming the instrumental value of technology. – How doe viewing technology in this light make us better off? _Examples – How does viewing technology as intrinsically good make us worse off? – Example IV. conclusion: summary of your previous point, 5 sentence or less Essay two: Aldo Leopold claims that we have a moral duty to protect the biotic community of which we are a part. What are the arguments in favor of this claim? in your view, is this te extension of moral respect to the natural environment a natural progression of mankind’s tendency to expand the scope of the ” moral community” Why or why not? Are there practical and/ or theoretical problems with this philosophical position regarding our duties to the environment? Outline : I. Thesis Statement : What is your overall argument? Three sentences or less. II. anthropological and Darwinian Bases of Leopold’s Argument. – What Leopold through early human societies were like morally – Leopold’s view of moral progress – Examples – How care for the environment forms of a part of moral progress for Leopold III. The limits of moral community, -How might adhering to Leopold’s argument negatively impact human beings? – how might it positively impact human beings as well as the environment ? – Examples IV: Conclusion: Summary of your previous point.

Need help in Engineering Ethicks , due in 2 hours , and it is essay with one and half to two hand written paper. Essay one : Alan Dengson, John Dewey, Lewis Mumford, and Jessica Wooliams view technology as ” instrumental ‘ . what does it mean, generally speaking, to regard technology as instrumental rather than intrinsically valuable? with respect to two of the aforementioned authors, answer the following questions: 2- what are the moral dangers associated with losing sight of the instrumental value of technology? 1- why is it important, morally speaking, to affirm the instrumental value of technology? Outline: I. thesis statement: what is your overall argument? Three sentences or less II. instrumental VS. intrinsic Goods. – what an instrumental good is. – what an intrinsic good is. – An example of each -what it means to regard technology as either kind of good – An example of what happend when technology is regarded as intrinsically good III. Importance of affirming the instrumental value of technology. – How doe viewing technology in this light make us better off? _Examples – How does viewing technology as intrinsically good make us worse off? – Example IV. conclusion: summary of your previous point, 5 sentence or less Essay two: Aldo Leopold claims that we have a moral duty to protect the biotic community of which we are a part. What are the arguments in favor of this claim? in your view, is this te extension of moral respect to the natural environment a natural progression of mankind’s tendency to expand the scope of the ” moral community” Why or why not? Are there practical and/ or theoretical problems with this philosophical position regarding our duties to the environment? Outline : I. Thesis Statement : What is your overall argument? Three sentences or less. II. anthropological and Darwinian Bases of Leopold’s Argument. – What Leopold through early human societies were like morally – Leopold’s view of moral progress – Examples – How care for the environment forms of a part of moral progress for Leopold III. The limits of moral community, -How might adhering to Leopold’s argument negatively impact human beings? – how might it positively impact human beings as well as the environment ? – Examples IV: Conclusion: Summary of your previous point.

info@checkyourstudy.com