You are to choose 2 websites, with different purposes, and review the websites based on the criteria listed below. 1. Starting Point a. Composition Matches Site Purpose b. Target Audience Apparent c. Composition Appropriate for Target Audience 2. Site design a. Consistency within site b. Consistency among pages 3. Visually Pleasing Composition 4. Visual Style in Web Design a. Consistency b. Distinctiveness 5. Focus and Emphasis a. What is emphasized? b. How is emphasis achieved? 6. Consistency a. Real World b. Internal 7. Navigation and Flow a. Home page identifiable throughout b. Location within site apparent c. Navigation consistent; rule-based; appropriate 8. Grouping a. Grouping with White Space b. Grouping with Borders c. Grouping with Backgrounds 9. Response time 10. Links a. Titled b. Incoming c. Outgoing d. Color 11. Detailed content a. Meaningful headings b. Plain language c. Page chunking d. Long blocks of text e. Scrolling f. Use of “within” page links 12. Articles a. Clear headings b. Plain language 13. Presenting Information Simply and Meaningfully a. Legibility b. Readability c. Information in Usable Form d. Visual Lines Clear 14. Legibility of content a. Font color b. Font size c. Font style d. Background color e. Background graphic 15. Documentation

You are to choose 2 websites, with different purposes, and review the websites based on the criteria listed below. 1. Starting Point a. Composition Matches Site Purpose b. Target Audience Apparent c. Composition Appropriate for Target Audience 2. Site design a. Consistency within site b. Consistency among pages 3. Visually Pleasing Composition 4. Visual Style in Web Design a. Consistency b. Distinctiveness 5. Focus and Emphasis a. What is emphasized? b. How is emphasis achieved? 6. Consistency a. Real World b. Internal 7. Navigation and Flow a. Home page identifiable throughout b. Location within site apparent c. Navigation consistent; rule-based; appropriate 8. Grouping a. Grouping with White Space b. Grouping with Borders c. Grouping with Backgrounds 9. Response time 10. Links a. Titled b. Incoming c. Outgoing d. Color 11. Detailed content a. Meaningful headings b. Plain language c. Page chunking d. Long blocks of text e. Scrolling f. Use of “within” page links 12. Articles a. Clear headings b. Plain language 13. Presenting Information Simply and Meaningfully a. Legibility b. Readability c. Information in Usable Form d. Visual Lines Clear 14. Legibility of content a. Font color b. Font size c. Font style d. Background color e. Background graphic 15. Documentation

http://www.physicsclassroom.com/ http://www.usa.gov/ 1.                  Starting Point a.       Composition Matches Site Purpose … Read More...
CHM114: Exam #2 CHM 114, S2015 Exam #2, Version C 16 March 2015 Instructor: O. Graudejus Points: 100 Print Name Sign Name Student I.D. # 1. You are responsible for the information on this page. Please read it carefully. 2. Code your name and 10 digit affiliate identification number on the separate scantron answer sheet. Use only a #2 pencil 3. If you enter your ASU ID incorrectly on the scantron, a 3 point penalty will be assessed. 4. Do all calculations on the exam pages. Do not make any unnecessary marks on the answer sheet. 5. This exam consists of 25 multiple choice questions worth 4 points each and a periodic table. Make sure you have them all. 6. Choose the best answer to each of the questions and answer it on the computer-graded answer sheet. Read all responses before making a selection. 7. Read the directions carefully for each problem. 8. Avoid even casual glances at other students’ exams. 9. Stop writing and hand in your scantron answer sheet and your test promptly when instructed. LATE EXAMS MAY HAVE POINTS DEDUCTED. 10. You will have 50 minutes to complete the exam. 11. If you leave early, please do so quietly. 12. Work the easiest problems first. 13. A periodic table is attached as the last page to this exam. 14. Answers will be posted online this afternoon. Potentially useful information: K = ºC + 273.15 RH=2.18·10-18 J R=8.314 J·K-1·mol-1 1Å=10-10 m c=3·108 m/s Ephoton=h·n=h·c/l h=6.626·10-34 Js Avogadro’s Number = 6.022 × 1023 particles/mole DH°rxn =  n DHf° (products) –  n DHf° (reactants) ) 1 1 ( 2 2 f i H n n DE = R − \ -2- CHM114: Exam #2 1) Which one of the following is an incorrect orbital notation? A) 2s B) 2p C) 3f D) 3d E) 4s 2) The energy of a photon that has a frequency of 8.21 1015s 1 − × is __________ J. A) 8.08 10 50 − × B) 1.99 10 25 − × C) 5.44 10 18 − × D) 1.24×1049 E) 1.26 10 19 − × 3) The ground state electron configuration of Ga is __________. A) 1s22s23s23p64s23d104p1 B) 1s22s22p63s23p64s24d104p1 C) 1s22s22p63s23p64s23d104p1 D) 1s22s22p63s23p64s23d104d1 E) [Ar]4s23d11 4) Of the bonds N–N, N=N, and NN, the N-N bond is __________. A) strongest/shortest B) weakest/longest C) strongest/longest D) weakest/shortest E) intermediate in both strength and length 5) Of the atoms below, __________ is the most electronegative. A) Br B) O C) Cl D) N E) F 6) Of the following, __________ cannot accommodate more than an octet of electrons. A) P B) O C) S D) Cl E) I -3- CHM 114: Exam #2 7) Which electron configuration represents a violation of Hund’s Rule? A) B) C) D) E) 8) A tin atom has 50 electrons. Electrons in the _____ subshell experience the highest effective nuclear charge. A) 1s B) 3p C) 3d D) 5s E) 5p 9) In ionic compounds, the lattice energy_____ as the magnitude of the ion charges _____ and the radii _____. A) increases, decrease, increase B) increases, increase, increase C) decreases, increase, increase D) increases, increase, decrease E) increases, decrease, decrease 10) Which of the following ionic compounds has the highest lattice energy? A) LiF B) MgO C) CsF D) CsI E) LiI -4- CHM 114: Exam #2 11) For which one of the following reactions is the value of H°rxn equal to Hf° for the product? A) 2 C (s, graphite) + 2 H2 (g)  C2H4 (g) B) N2 (g) + O2 (g)  2 NO (g) C) 2 H2 (g) + O2 (g)  2 H2O (l) D) 2 H2 (g) + O2 (g)  2 H2O (g) E) all of the above 12) Given the data in the table below, H rxn D ° for the reaction 3 2 3 PCl (g) + 3HCl(g)®3Cl (g) + PH (g) is __________ kJ. A) -570.37 B) -385.77 C) 570.37 D) 385.77 E) The f DH° of 2 Cl (g) is needed for the calculation. 13) Given the following reactions (1) 2 2 2NO® N +O H = -180 kJ (2) 2 2 2NO+O ®2NO H = -112 kJ the enthalpy of the reaction of nitrogen with oxygen to produce nitrogen dioxide 2 2 2 N + 2O ®2NO is __________ kJ. A) 68 B) -68 C) -292 D) 292 E) -146 14) Of the following transitions in the Bohr hydrogen atom, the __________ transition results in the absorption of the lowest-energy photon. A) n = 1  n = 6 B) n = 6  n = 1 C) n = 6  n = 5 D) n = 3  n = 6 E) n = 1  n = 4 -5- CHM 114: Exam #2 15) Which equation correctly represents the electron affinity of calcium? A) Ca (g)  Ca+ (g) + e- B) Ca (g)  Ca- (g) + e- C) Ca (g) + e-  Ca- (g) D) Ca- (g)  Ca (g) + e- E) Ca+ (g) + e-  Ca (g) 16) Which of the following does not have eight valence electrons? A) Ca+ B) Rb+ C) Xe D) Br− E) All of the above have eight valence electrons. 17) The specific heat of liquid bromine is 0.226 J/g · K. The molar heat capacity (in J/mol-K) of liquid bromine is __________. A) 707 B) 36.1 C) 18.1 D) 9.05 E) 0.226 18) Given the electronegativities below, which covalent single bond is least polar? Element: H C N O F Electronegativity: 2.1 2.5 3.0 3.5 4.0 A) C-H B) C-F C) O-H D) O-C E) F-H 19) The bond length in an HCl molecule is 1.27 Å and the measured dipole moment is 1.08 D. What is the magnitude (in units of e) of the negative charge on Cl in HCl? (1 debye = 3.34 10 30 coulomb-meters − × ; e=1.6 10 19 coulombs − × ) A) 1.6 10 19 − × B) 0.057 C) 0.18 D) 1 E) 0.22 -6- CHM 114: Exam #2 20) The F-B-F bond angle in the BF3 molecule is approximately __________. A) 90° B) 109.5° C) 120° D) 180° E) 60° 21) Which isoelectronic series is correctly arranged in order of increasing radius? A) K+ < Ca2+ < Ar < Cl- B) Cl- < Ar < K+ < Ca2+ C) Ca2+ < Ar < K+ < Cl- D) Ca2+ < K+ < Ar < Cl- E) Ca2+ < K+ < Cl- < Ar 22) What is the electron configuration for the Fe2+ ion? A) [Ar]4s03d6 B) [Ar]4s23d4 C) [Ar]4s03d8 D) [Ar]4s23d8 E) [Ar]4s63d2 23) The formal charge on carbon in the Lewis structure of the NCS - ion is __________: A) -1 B) +1 C) +2 D) 0 E) +3 -7- CHM 114: Exam #2 24) Using the table of bond dissociation energies, the H for the following gas-phase reaction is __________ kJ. A) 291 B) 2017 C) -57 D) -356 E) -291 25) According to VSEPR theory, if there are six electron domains in the valence shell of an atom, they will be arranged in a(n) __________ geometry. A) octahedral B) linear C) tetrahedral D) trigonal planar E) trigonal bipyramidal -8- CHM 114: Exam #2

CHM114: Exam #2 CHM 114, S2015 Exam #2, Version C 16 March 2015 Instructor: O. Graudejus Points: 100 Print Name Sign Name Student I.D. # 1. You are responsible for the information on this page. Please read it carefully. 2. Code your name and 10 digit affiliate identification number on the separate scantron answer sheet. Use only a #2 pencil 3. If you enter your ASU ID incorrectly on the scantron, a 3 point penalty will be assessed. 4. Do all calculations on the exam pages. Do not make any unnecessary marks on the answer sheet. 5. This exam consists of 25 multiple choice questions worth 4 points each and a periodic table. Make sure you have them all. 6. Choose the best answer to each of the questions and answer it on the computer-graded answer sheet. Read all responses before making a selection. 7. Read the directions carefully for each problem. 8. Avoid even casual glances at other students’ exams. 9. Stop writing and hand in your scantron answer sheet and your test promptly when instructed. LATE EXAMS MAY HAVE POINTS DEDUCTED. 10. You will have 50 minutes to complete the exam. 11. If you leave early, please do so quietly. 12. Work the easiest problems first. 13. A periodic table is attached as the last page to this exam. 14. Answers will be posted online this afternoon. Potentially useful information: K = ºC + 273.15 RH=2.18·10-18 J R=8.314 J·K-1·mol-1 1Å=10-10 m c=3·108 m/s Ephoton=h·n=h·c/l h=6.626·10-34 Js Avogadro’s Number = 6.022 × 1023 particles/mole DH°rxn =  n DHf° (products) –  n DHf° (reactants) ) 1 1 ( 2 2 f i H n n DE = R − \ -2- CHM114: Exam #2 1) Which one of the following is an incorrect orbital notation? A) 2s B) 2p C) 3f D) 3d E) 4s 2) The energy of a photon that has a frequency of 8.21 1015s 1 − × is __________ J. A) 8.08 10 50 − × B) 1.99 10 25 − × C) 5.44 10 18 − × D) 1.24×1049 E) 1.26 10 19 − × 3) The ground state electron configuration of Ga is __________. A) 1s22s23s23p64s23d104p1 B) 1s22s22p63s23p64s24d104p1 C) 1s22s22p63s23p64s23d104p1 D) 1s22s22p63s23p64s23d104d1 E) [Ar]4s23d11 4) Of the bonds N–N, N=N, and NN, the N-N bond is __________. A) strongest/shortest B) weakest/longest C) strongest/longest D) weakest/shortest E) intermediate in both strength and length 5) Of the atoms below, __________ is the most electronegative. A) Br B) O C) Cl D) N E) F 6) Of the following, __________ cannot accommodate more than an octet of electrons. A) P B) O C) S D) Cl E) I -3- CHM 114: Exam #2 7) Which electron configuration represents a violation of Hund’s Rule? A) B) C) D) E) 8) A tin atom has 50 electrons. Electrons in the _____ subshell experience the highest effective nuclear charge. A) 1s B) 3p C) 3d D) 5s E) 5p 9) In ionic compounds, the lattice energy_____ as the magnitude of the ion charges _____ and the radii _____. A) increases, decrease, increase B) increases, increase, increase C) decreases, increase, increase D) increases, increase, decrease E) increases, decrease, decrease 10) Which of the following ionic compounds has the highest lattice energy? A) LiF B) MgO C) CsF D) CsI E) LiI -4- CHM 114: Exam #2 11) For which one of the following reactions is the value of H°rxn equal to Hf° for the product? A) 2 C (s, graphite) + 2 H2 (g)  C2H4 (g) B) N2 (g) + O2 (g)  2 NO (g) C) 2 H2 (g) + O2 (g)  2 H2O (l) D) 2 H2 (g) + O2 (g)  2 H2O (g) E) all of the above 12) Given the data in the table below, H rxn D ° for the reaction 3 2 3 PCl (g) + 3HCl(g)®3Cl (g) + PH (g) is __________ kJ. A) -570.37 B) -385.77 C) 570.37 D) 385.77 E) The f DH° of 2 Cl (g) is needed for the calculation. 13) Given the following reactions (1) 2 2 2NO® N +O H = -180 kJ (2) 2 2 2NO+O ®2NO H = -112 kJ the enthalpy of the reaction of nitrogen with oxygen to produce nitrogen dioxide 2 2 2 N + 2O ®2NO is __________ kJ. A) 68 B) -68 C) -292 D) 292 E) -146 14) Of the following transitions in the Bohr hydrogen atom, the __________ transition results in the absorption of the lowest-energy photon. A) n = 1  n = 6 B) n = 6  n = 1 C) n = 6  n = 5 D) n = 3  n = 6 E) n = 1  n = 4 -5- CHM 114: Exam #2 15) Which equation correctly represents the electron affinity of calcium? A) Ca (g)  Ca+ (g) + e- B) Ca (g)  Ca- (g) + e- C) Ca (g) + e-  Ca- (g) D) Ca- (g)  Ca (g) + e- E) Ca+ (g) + e-  Ca (g) 16) Which of the following does not have eight valence electrons? A) Ca+ B) Rb+ C) Xe D) Br− E) All of the above have eight valence electrons. 17) The specific heat of liquid bromine is 0.226 J/g · K. The molar heat capacity (in J/mol-K) of liquid bromine is __________. A) 707 B) 36.1 C) 18.1 D) 9.05 E) 0.226 18) Given the electronegativities below, which covalent single bond is least polar? Element: H C N O F Electronegativity: 2.1 2.5 3.0 3.5 4.0 A) C-H B) C-F C) O-H D) O-C E) F-H 19) The bond length in an HCl molecule is 1.27 Å and the measured dipole moment is 1.08 D. What is the magnitude (in units of e) of the negative charge on Cl in HCl? (1 debye = 3.34 10 30 coulomb-meters − × ; e=1.6 10 19 coulombs − × ) A) 1.6 10 19 − × B) 0.057 C) 0.18 D) 1 E) 0.22 -6- CHM 114: Exam #2 20) The F-B-F bond angle in the BF3 molecule is approximately __________. A) 90° B) 109.5° C) 120° D) 180° E) 60° 21) Which isoelectronic series is correctly arranged in order of increasing radius? A) K+ < Ca2+ < Ar < Cl- B) Cl- < Ar < K+ < Ca2+ C) Ca2+ < Ar < K+ < Cl- D) Ca2+ < K+ < Ar < Cl- E) Ca2+ < K+ < Cl- < Ar 22) What is the electron configuration for the Fe2+ ion? A) [Ar]4s03d6 B) [Ar]4s23d4 C) [Ar]4s03d8 D) [Ar]4s23d8 E) [Ar]4s63d2 23) The formal charge on carbon in the Lewis structure of the NCS - ion is __________: A) -1 B) +1 C) +2 D) 0 E) +3 -7- CHM 114: Exam #2 24) Using the table of bond dissociation energies, the H for the following gas-phase reaction is __________ kJ. A) 291 B) 2017 C) -57 D) -356 E) -291 25) According to VSEPR theory, if there are six electron domains in the valence shell of an atom, they will be arranged in a(n) __________ geometry. A) octahedral B) linear C) tetrahedral D) trigonal planar E) trigonal bipyramidal -8- CHM 114: Exam #2

WEEKLY ASSIGNMENT #5 (WOW THAT TOOK A WHILE) NAME: 1. Find the linear approximation of the function f(x; y; z) = p x2 + y2 + z2 at some point to approximate a value of the number p (3:02)2 + (1:97)2 + (5:99)2. 1 2. Consider your favorite function, the Cobb-Douglas production function. P(L;K) = 1:5L:65K:35 modeling the production of the state of Idaho. Over time we discover that capitol is gradually increasing at an approximate rate of 0:02 units per year. If we decide as a group that we are perfectly happy with our production level and would rather have additional vacation time then how much can we decrease labor by each year and keep the same level of production. In how long(rounded up to the nearest year) will we have an additional week of vacation? 2 3. Use the chain rule to find dz dt or dw=dt (a) z = x?y x+2y x = et; y = e?t. (b) w = sin x cos x x = p t; y = 1=t. 4. Use the chain rule to find @z=@t or @z=@s (a) z = (x ? y)5 x = s2t; y = st2 (b) z = er cos  r = st;  = p x2 + y2. 3 5. The temperature at a point (x; y; z) is given by the function T(x; y; z) = 200e?x2?3y2?9z2 where T is measure in C and x; y; z in meters. (a) Find the rate of change of temperature at the point (2;?1; 2) in the direction toward the point (3;?3; 3). (b) In which direction does the temperature increase fastest, and what is that fastest rate? 4 6. Suppose (1; 1) is a critical point of a function f with continuous second derivatives. In each case, what can you say about f. (a) fxx(1; 1) = 4; fxy(1; 1) = 1; fyy(1; 1) = 2 (b) fxx(1; 1) = 4; fxy(1; 1) = 3; fyy(1; 1) = 2 (c) fxx(1; 1) = ?1; fxy(1; 1) = 6; fyy(1; 1) = 1 (d) fxx(1; 1) = ?1; fxy(1; 1) = 2; fyy(1; 1) = ?8 (e) fxx(1; 1) = 4; fxy(1; 1) = 6; fyy(1; 1) = 9 5 Bonus Show that f(x; y) = x2 + 4y2 ? 4xy + 2 has an infinite number of critical points, and for all of them D = 0 at each one. Then show that f has a local (and absolute) minimum at each critical point. 6

WEEKLY ASSIGNMENT #5 (WOW THAT TOOK A WHILE) NAME: 1. Find the linear approximation of the function f(x; y; z) = p x2 + y2 + z2 at some point to approximate a value of the number p (3:02)2 + (1:97)2 + (5:99)2. 1 2. Consider your favorite function, the Cobb-Douglas production function. P(L;K) = 1:5L:65K:35 modeling the production of the state of Idaho. Over time we discover that capitol is gradually increasing at an approximate rate of 0:02 units per year. If we decide as a group that we are perfectly happy with our production level and would rather have additional vacation time then how much can we decrease labor by each year and keep the same level of production. In how long(rounded up to the nearest year) will we have an additional week of vacation? 2 3. Use the chain rule to find dz dt or dw=dt (a) z = x?y x+2y x = et; y = e?t. (b) w = sin x cos x x = p t; y = 1=t. 4. Use the chain rule to find @z=@t or @z=@s (a) z = (x ? y)5 x = s2t; y = st2 (b) z = er cos  r = st;  = p x2 + y2. 3 5. The temperature at a point (x; y; z) is given by the function T(x; y; z) = 200e?x2?3y2?9z2 where T is measure in C and x; y; z in meters. (a) Find the rate of change of temperature at the point (2;?1; 2) in the direction toward the point (3;?3; 3). (b) In which direction does the temperature increase fastest, and what is that fastest rate? 4 6. Suppose (1; 1) is a critical point of a function f with continuous second derivatives. In each case, what can you say about f. (a) fxx(1; 1) = 4; fxy(1; 1) = 1; fyy(1; 1) = 2 (b) fxx(1; 1) = 4; fxy(1; 1) = 3; fyy(1; 1) = 2 (c) fxx(1; 1) = ?1; fxy(1; 1) = 6; fyy(1; 1) = 1 (d) fxx(1; 1) = ?1; fxy(1; 1) = 2; fyy(1; 1) = ?8 (e) fxx(1; 1) = 4; fxy(1; 1) = 6; fyy(1; 1) = 9 5 Bonus Show that f(x; y) = x2 + 4y2 ? 4xy + 2 has an infinite number of critical points, and for all of them D = 0 at each one. Then show that f has a local (and absolute) minimum at each critical point. 6

Human Computer Interaction You are to choose 2 websites, with different purposes, and review the websites based on the criteria listed below. 1. Starting Point a. Composition Matches Site Purpose b. Target Audience Apparent c. Composition Appropriate for Target Audience 2. Site design a. Consistency within site b. Consistency among pages 3. Visually Pleasing Composition 4. Visual Style in Web Design a. Consistency b. Distinctiveness 5. Focus and Emphasis a. What is emphasized? b. How is emphasis achieved? 6. Consistency a. Real World b. Internal 7. Navigation and Flow a. Home page identifiable throughout b. Location within site apparent c. Navigation consistent; rule-based; appropriate 8. Grouping a. Grouping with White Space b. Grouping with Borders c. Grouping with Backgrounds 9. Response time 10. Links a. Titled b. Incoming c. Outgoing d. Color 11. Detailed content a. Meaningful headings b. Plain language c. Page chunking d. Long blocks of text e. Scrolling f. Use of “within” page links 12. Articles a. Clear headings b. Plain language 13. Presenting Information Simply and Meaningfully a. Legibility b. Readability c. Information in Usable Form d. Visual Lines Clear 14. Legibility of content a. Font color b. Font size c. Font style d. Background color e. Background graphic 15. Documentation a. Included b. Searchable c. Links to difficult concepts/words 16. Multimedia a. Animation/Audio/Video/Still images b. Load time given c. Add-in required d. Quality e. Appropriateness of use 17. Scrolling and Paging a. Usage b. Appropriate? 18. Amount of Information Presented Appropriate 19. Other factors to note?

Human Computer Interaction You are to choose 2 websites, with different purposes, and review the websites based on the criteria listed below. 1. Starting Point a. Composition Matches Site Purpose b. Target Audience Apparent c. Composition Appropriate for Target Audience 2. Site design a. Consistency within site b. Consistency among pages 3. Visually Pleasing Composition 4. Visual Style in Web Design a. Consistency b. Distinctiveness 5. Focus and Emphasis a. What is emphasized? b. How is emphasis achieved? 6. Consistency a. Real World b. Internal 7. Navigation and Flow a. Home page identifiable throughout b. Location within site apparent c. Navigation consistent; rule-based; appropriate 8. Grouping a. Grouping with White Space b. Grouping with Borders c. Grouping with Backgrounds 9. Response time 10. Links a. Titled b. Incoming c. Outgoing d. Color 11. Detailed content a. Meaningful headings b. Plain language c. Page chunking d. Long blocks of text e. Scrolling f. Use of “within” page links 12. Articles a. Clear headings b. Plain language 13. Presenting Information Simply and Meaningfully a. Legibility b. Readability c. Information in Usable Form d. Visual Lines Clear 14. Legibility of content a. Font color b. Font size c. Font style d. Background color e. Background graphic 15. Documentation a. Included b. Searchable c. Links to difficult concepts/words 16. Multimedia a. Animation/Audio/Video/Still images b. Load time given c. Add-in required d. Quality e. Appropriateness of use 17. Scrolling and Paging a. Usage b. Appropriate? 18. Amount of Information Presented Appropriate 19. Other factors to note?

Human Computer Interaction You are to choose 2 websites, with … Read More...
Homework #8  Consider the veracity or falsehood of each of the following statements. For bonus, argue for those that you believe are true while providing a counterexample for those that you believe are false.  If the first and third rows of A are equal, then det A 0.  If P is a projection, then uCP if and only if Pu  u.  If P is a projection, and detP  0, then P  I .  If A has determinant 10, then 1 A has determinant 1 10 .  If B is invertible, 1 1 det(A B ) det A (detB) .  If P is a projection, and R  2P I , then 2 R  I .  If P is a projection, and P  I , then detP  0 .  Short Computations. All of the following do not involve long computations:  Suppose 1 2 1 5 1 8 A                  and 1 9 2 4 3 1 A                   . Compute 7 13 19 A         .  Compute               0 8 7 1 0 2 3 4 5 3 0 9 2 0 0 0 3 0 0 0 1 9 3 2 0 det .  Use Cramer’s Rule to find 5 x (hint: you do not need your calculator). 1 2 3 4 5 5x 2x 8x x 3x 13 1 3 3x 5x 0 1 3 5 3x 3x 3x 9 1 2 3 5 3x 2x x 2x 7 1 3 x 4x 0 Let A 1 2 3 4 1 3 4 6 2 5 13 15 4 10 15 31 . Given is that det A  61. Do the following:  1 1 2 4 2 3 5 10 3 4 13 15 4 6 15 31 det  det2A  1 3 4 6 2 4 6 8 2 5 13 15 4 10 15 31 det  1 3 4 6 2 5 13 15 4 10 15 31 1 2 3 4 det  Consider the matrix A  0 1 0 0 0 0 1 0 0 0 0 1 1 2 2 1           . Use row (or column) expansion to compute det(xI A) .  The matrix 4 1 1 2 1 1 1 4 1 1 2 1 1 1 4 1 1 2 2 1 1 4 1 1 1 2 1 1 4 1 1 1 2 1 1 4 1 6 P is the projection matrix for the column space of matrix A. This matrix A is also known to be of full rank. Answer the following, giving reasons for your answers.  Find a transparent basis and the dimension for the column space of P.  Find a basis and the dimension for the column space of A .  What size is the matrix A ?  Find a transparent basis and the dimension for the null space of P.  Find a transparent basis and the dimension for the row space of P.  Find a basis and the dimension for the null space of A.  For which of the following b can you find a solution to the system Ax b ? This does not mean you should find a solution, only whether one could or not. 10 17 19 14 10 17 19 14 13 10 17 19 14 13 23 1 1 1 1 1 1 .  It is known that certain vector u is a solution to the system Ax c . Give all solutions to Ax c .  It is also known that 1 2 3 4 5 6 Ax does not have a solution. How would you change the constant vector so that there would be a solution? Extra Problems.  Fill in the blank with the best possible expression to complete the sentence truthfully. Only that one will be counted correct. 1. matrix with two equal columns will have zero determinant. 1 2 3 Some Every No 2. If A is invertible, then A commute with its inverse. 1 2 3 must always can will not 3. If A is 6  9 , then the columns of A be linearly independent. While in AT , the columns be linearly independent. 1 2 3 can have to cannot 4. Let A be square, and suppose Ax  0 has a nontrivial solution. Then detA equal 0. 1 2 3 may cannot must 5. Let A and B be 3 3. Then det (AB) equal det(A)det(B) . 1 2 3 could must couldn’t 6. Let A be square and suppose detA  0. Then have an inverse 1 2 3 will not may must always 7. Let A and B be 2  2 . Then det (A B) equal det(A)  det(B) . 1 2 3 could must could not 8. exist a 6  6 matrix all of whose entries are whole numbers and its determinant is 2 5 . 1 2 3 There does There does not There might Bonus: Consider the matrix 0 0 1 0 2 0 n 0 . Give its determinant as a function of n.

Homework #8  Consider the veracity or falsehood of each of the following statements. For bonus, argue for those that you believe are true while providing a counterexample for those that you believe are false.  If the first and third rows of A are equal, then det A 0.  If P is a projection, then uCP if and only if Pu  u.  If P is a projection, and detP  0, then P  I .  If A has determinant 10, then 1 A has determinant 1 10 .  If B is invertible, 1 1 det(A B ) det A (detB) .  If P is a projection, and R  2P I , then 2 R  I .  If P is a projection, and P  I , then detP  0 .  Short Computations. All of the following do not involve long computations:  Suppose 1 2 1 5 1 8 A                  and 1 9 2 4 3 1 A                   . Compute 7 13 19 A         .  Compute               0 8 7 1 0 2 3 4 5 3 0 9 2 0 0 0 3 0 0 0 1 9 3 2 0 det .  Use Cramer’s Rule to find 5 x (hint: you do not need your calculator). 1 2 3 4 5 5x 2x 8x x 3x 13 1 3 3x 5x 0 1 3 5 3x 3x 3x 9 1 2 3 5 3x 2x x 2x 7 1 3 x 4x 0 Let A 1 2 3 4 1 3 4 6 2 5 13 15 4 10 15 31 . Given is that det A  61. Do the following:  1 1 2 4 2 3 5 10 3 4 13 15 4 6 15 31 det  det2A  1 3 4 6 2 4 6 8 2 5 13 15 4 10 15 31 det  1 3 4 6 2 5 13 15 4 10 15 31 1 2 3 4 det  Consider the matrix A  0 1 0 0 0 0 1 0 0 0 0 1 1 2 2 1           . Use row (or column) expansion to compute det(xI A) .  The matrix 4 1 1 2 1 1 1 4 1 1 2 1 1 1 4 1 1 2 2 1 1 4 1 1 1 2 1 1 4 1 1 1 2 1 1 4 1 6 P is the projection matrix for the column space of matrix A. This matrix A is also known to be of full rank. Answer the following, giving reasons for your answers.  Find a transparent basis and the dimension for the column space of P.  Find a basis and the dimension for the column space of A .  What size is the matrix A ?  Find a transparent basis and the dimension for the null space of P.  Find a transparent basis and the dimension for the row space of P.  Find a basis and the dimension for the null space of A.  For which of the following b can you find a solution to the system Ax b ? This does not mean you should find a solution, only whether one could or not. 10 17 19 14 10 17 19 14 13 10 17 19 14 13 23 1 1 1 1 1 1 .  It is known that certain vector u is a solution to the system Ax c . Give all solutions to Ax c .  It is also known that 1 2 3 4 5 6 Ax does not have a solution. How would you change the constant vector so that there would be a solution? Extra Problems.  Fill in the blank with the best possible expression to complete the sentence truthfully. Only that one will be counted correct. 1. matrix with two equal columns will have zero determinant. 1 2 3 Some Every No 2. If A is invertible, then A commute with its inverse. 1 2 3 must always can will not 3. If A is 6  9 , then the columns of A be linearly independent. While in AT , the columns be linearly independent. 1 2 3 can have to cannot 4. Let A be square, and suppose Ax  0 has a nontrivial solution. Then detA equal 0. 1 2 3 may cannot must 5. Let A and B be 3 3. Then det (AB) equal det(A)det(B) . 1 2 3 could must couldn’t 6. Let A be square and suppose detA  0. Then have an inverse 1 2 3 will not may must always 7. Let A and B be 2  2 . Then det (A B) equal det(A)  det(B) . 1 2 3 could must could not 8. exist a 6  6 matrix all of whose entries are whole numbers and its determinant is 2 5 . 1 2 3 There does There does not There might Bonus: Consider the matrix 0 0 1 0 2 0 n 0 . Give its determinant as a function of n.

info@checkyourstudy.com Whatsapp +919911743277
From the moment the Prime Minister mobilized the troops what was her stated objective? A. To broker a peace deal between the Argentines and the inhabitants of the Falklands. B. To restore the Islands to their previously free state under the British Administration. C. To negotiate a peace talk in which two separate states will be created. D. To cede the Falkland Islands to the Argentines after evacuating all the British citizens. E. To wipe out the Argentine resistance to British rule.

From the moment the Prime Minister mobilized the troops what was her stated objective? A. To broker a peace deal between the Argentines and the inhabitants of the Falklands. B. To restore the Islands to their previously free state under the British Administration. C. To negotiate a peace talk in which two separate states will be created. D. To cede the Falkland Islands to the Argentines after evacuating all the British citizens. E. To wipe out the Argentine resistance to British rule.

From the moment the Prime Minister mobilized the troops what … Read More...
Lab Report Name Simple Harmonic motion Date: Objective or purpose: The main objective of this lab is to find the value of the spring constant (k) according to Hooke’s law. This lab also teaches us curve fitting and its application here in this lab.

Lab Report Name Simple Harmonic motion Date: Objective or purpose: The main objective of this lab is to find the value of the spring constant (k) according to Hooke’s law. This lab also teaches us curve fitting and its application here in this lab.

Name Simple Harmonic motion Date:           … Read More...
Evaluation Methodology , Fall 2015 EVALUATION PROPOSAL GUIDELINES The evaluation proposal is a major application of knowledge assignment for this course. The proposal should represent your cumulative knowledge of evaluation research methodology. You may be required to submit part of this assignment in sequential stages. If so, you will be provided, in writing, the due dates for the various aspects of the proposal. The date for the submission of the entire proposal is indicated in your course outline. The below components must be included in the proposal. I. Introduction (maximum 10 pages) A. Description of the Program and Organization (the Evaluand) (In this section, be sure to describe who, what, when, and how long the program has been in place; describe the program, types of people involved in the program, and the types of services offered; briefly discussed need for program as determined by program managers) I. Organizational Overview 1. Program Mission, Goals, SMART Objectives, Activities, Resources 2. Organizational Context of the Program II. Program Logic Model of Evaluand (insert program logic model from your previous assignment, attending to feedback from instructor and classmates) III. Significance of the Program and the Evaluation Discuss the Rationale of the Evaluation B. Evaluation Goals, Objectives, and Stakeholders Objectives of the Evaluation Study Description of Key Direct and Indirect Evaluation Stakeholders (e.g., clients, agents, beneficiaries, etc.) Potential Constraints and Barriers of the Evaluation Evaluation Proposal Guidelines (continued) C. Evaluation Approach, Questions and/or Hypotheses Evaluation Approach/Guiding Framework Evaluation Questions (at least three process and three outcome questions) Describe How Evaluation Questions Will Be Generated II. Methodology (maximum 10 pages) A. Participants Target Population/Sample Plan (describe the target population/sample from whom you intend to obtain collect data; justify sampling procedures by relating them to stakeholder characteristics, evaluation questions and criteria, and constraints of the evaluation) Handling Respondents’ Confidentiality and Ethical Concerns (include Informed Consent Form) B. Instrumentation Data Collection Instruments/Measures Describe Measures, Justify Choices, Address Issues of Validity, Reliability, and Cultural/Contextual Relevance; Rationale for Selection of Instruments C. Evaluation Design Data Collection Procedures (Research Design – Qualitative, Quantitative, Mixed Methods) Explain Choice for Data Collection Methods Selected D. Data Map (set up a data map or summary table to show how each step of the evaluation is related to each other); see example below) Evaluation Methodology Evaluation Proposal Guidelines (continued) Table 1. Data Map of Evaluation of the Kids House Afterschool Program (An Illustrative Example) Evaluation Questions Methodology Data Collection Strategy Timeline Does the program provide individual tutoring to the children in the community three days per week, as intended? (process question) Document analysis Evaluator will review copies of program’s weekly service delivery records Ongoing Has the program reached it intended target population? (process question) Document analysis Evaluator will review documents describing the children being served Six weeks after program start How satisfied are the children and their parents (guardian) with the Kids house Program? Qualitative Focus group interviews with the children in the program and separately with their parents (guardian) Ongoing after two weeks program start Did the children in the Kids House Program demonstrate significant improvements in reading? Quantitative Pretest/Posttest Questionnaire Pretest at first session Posttest at last session E. Projected Statistical Analysis of Data F. Data Collection Schedule (Timetable) (must be described in chart form) G. Standards for Evaluation (describe how your proposed evaluation will meet the Program Evaluation Standards – utility, feasibility, propriety, accuracy, accountability and the AEA Guiding Principles for Evaluation) III. Evaluation Products and Communication Plan (maximum two pages) A. Listing of Deliverable or Products Evaluation Methodology Evaluation Proposal Guidelines (continued) B. Communicating Results: The Evaluation Report (describe plan for communicating evaluation findings during the evaluation and at the end of the evaluation – orally? written report? combination? who will you involve in a discussion of the findings and why) . C. Potential Use of Findings for Aiding Direct and Indirect Stakeholders IV. Staffing, Management Plan, and Budget (maximum two pages) A. Describe tasks, deadlines, and who completes them? B. Describe the time, money, and other resources required for addressing your evaluation questions C. Include a narrative a budget and time schedule in table format V. References (minimum of three sources) VI. Appendices (include copies of instruments, consent forms, etc.) VII. Reflective Journaling (Separate Document) Using a diary format, describe// explain what you have learned about yourself and the evaluation profession by taking this course and writing this proposal Other Important Proposal Guidelines A. Typed, double space, 12 point font; one-inch margins on all sides B. Include title page, table of contents, and (if applicable) listing of figures and/or tables C. Maximum of 25 pages (excluding cover page, references, appendices) D. Proper and complete citation for all materials and sources using the American Psychological Association Style Manual (latest edition). Evaluation Methodology Evaluation Proposal Guidelines (cont’d.) E. As a general rule, sources (unless a classic) must be within the past decade and statistical/demographic data no earlier than 2009

Evaluation Methodology , Fall 2015 EVALUATION PROPOSAL GUIDELINES The evaluation proposal is a major application of knowledge assignment for this course. The proposal should represent your cumulative knowledge of evaluation research methodology. You may be required to submit part of this assignment in sequential stages. If so, you will be provided, in writing, the due dates for the various aspects of the proposal. The date for the submission of the entire proposal is indicated in your course outline. The below components must be included in the proposal. I. Introduction (maximum 10 pages) A. Description of the Program and Organization (the Evaluand) (In this section, be sure to describe who, what, when, and how long the program has been in place; describe the program, types of people involved in the program, and the types of services offered; briefly discussed need for program as determined by program managers) I. Organizational Overview 1. Program Mission, Goals, SMART Objectives, Activities, Resources 2. Organizational Context of the Program II. Program Logic Model of Evaluand (insert program logic model from your previous assignment, attending to feedback from instructor and classmates) III. Significance of the Program and the Evaluation Discuss the Rationale of the Evaluation B. Evaluation Goals, Objectives, and Stakeholders Objectives of the Evaluation Study Description of Key Direct and Indirect Evaluation Stakeholders (e.g., clients, agents, beneficiaries, etc.) Potential Constraints and Barriers of the Evaluation Evaluation Proposal Guidelines (continued) C. Evaluation Approach, Questions and/or Hypotheses Evaluation Approach/Guiding Framework Evaluation Questions (at least three process and three outcome questions) Describe How Evaluation Questions Will Be Generated II. Methodology (maximum 10 pages) A. Participants Target Population/Sample Plan (describe the target population/sample from whom you intend to obtain collect data; justify sampling procedures by relating them to stakeholder characteristics, evaluation questions and criteria, and constraints of the evaluation) Handling Respondents’ Confidentiality and Ethical Concerns (include Informed Consent Form) B. Instrumentation Data Collection Instruments/Measures Describe Measures, Justify Choices, Address Issues of Validity, Reliability, and Cultural/Contextual Relevance; Rationale for Selection of Instruments C. Evaluation Design Data Collection Procedures (Research Design – Qualitative, Quantitative, Mixed Methods) Explain Choice for Data Collection Methods Selected D. Data Map (set up a data map or summary table to show how each step of the evaluation is related to each other); see example below) Evaluation Methodology Evaluation Proposal Guidelines (continued) Table 1. Data Map of Evaluation of the Kids House Afterschool Program (An Illustrative Example) Evaluation Questions Methodology Data Collection Strategy Timeline Does the program provide individual tutoring to the children in the community three days per week, as intended? (process question) Document analysis Evaluator will review copies of program’s weekly service delivery records Ongoing Has the program reached it intended target population? (process question) Document analysis Evaluator will review documents describing the children being served Six weeks after program start How satisfied are the children and their parents (guardian) with the Kids house Program? Qualitative Focus group interviews with the children in the program and separately with their parents (guardian) Ongoing after two weeks program start Did the children in the Kids House Program demonstrate significant improvements in reading? Quantitative Pretest/Posttest Questionnaire Pretest at first session Posttest at last session E. Projected Statistical Analysis of Data F. Data Collection Schedule (Timetable) (must be described in chart form) G. Standards for Evaluation (describe how your proposed evaluation will meet the Program Evaluation Standards – utility, feasibility, propriety, accuracy, accountability and the AEA Guiding Principles for Evaluation) III. Evaluation Products and Communication Plan (maximum two pages) A. Listing of Deliverable or Products Evaluation Methodology Evaluation Proposal Guidelines (continued) B. Communicating Results: The Evaluation Report (describe plan for communicating evaluation findings during the evaluation and at the end of the evaluation – orally? written report? combination? who will you involve in a discussion of the findings and why) . C. Potential Use of Findings for Aiding Direct and Indirect Stakeholders IV. Staffing, Management Plan, and Budget (maximum two pages) A. Describe tasks, deadlines, and who completes them? B. Describe the time, money, and other resources required for addressing your evaluation questions C. Include a narrative a budget and time schedule in table format V. References (minimum of three sources) VI. Appendices (include copies of instruments, consent forms, etc.) VII. Reflective Journaling (Separate Document) Using a diary format, describe// explain what you have learned about yourself and the evaluation profession by taking this course and writing this proposal Other Important Proposal Guidelines A. Typed, double space, 12 point font; one-inch margins on all sides B. Include title page, table of contents, and (if applicable) listing of figures and/or tables C. Maximum of 25 pages (excluding cover page, references, appendices) D. Proper and complete citation for all materials and sources using the American Psychological Association Style Manual (latest edition). Evaluation Methodology Evaluation Proposal Guidelines (cont’d.) E. As a general rule, sources (unless a classic) must be within the past decade and statistical/demographic data no earlier than 2009

Statistical Methods (STAT 4303) Review for Final Comprehensive Exam Measures of Central Tendency, Dispersion Q.1. The data below represents the test scores obtained by students in college algebra class. 10,12,15,20,13,16,14 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) Q.2. The data below represents the test scores obtained by students in English class. 12,15,16,18,13,10,17,20 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) (f) Compare the results of Q.1 and Q.2, Which scores College Algebra or English do you think is more precise (less spread)? Q.3 Following data represents the score obtained by students in one of the exams 9, 13, 14, 15, 16, 16, 17, 19, 20, 21, 21, 22, 25, 25, 26 Create a frequency table to calculate the following descriptive statistics (a) mean (b) median (c) mode (d) first and third quartiles (e) Construct Box and Whisker plot. (f) Comment on the shape of the distribution. (g) Find inter quartile range (IQR). (h) Are there any outliers (based on IQR technique)? In the above problem, if the score 26 is replaced by 37 (i) What will happen to the mean? Will it increase, decrease or remains the same? (j) What will be the new median? (k) What can you say about the effect of outliers on mean and median? Q.4 Following data represents the score obtained by students in one of the exams 19, 14, 14, 15, 17, 16, 17, 20, 20, 21, 21, 22, 25, 25, 26, 27, 28 Create a frequency table to calculate the following descriptive statistics a) mean b) median c) mode d) first and third quartiles e) Construct Box and Whisker plot. f) Comment on the shape of the distribution. g) Find inter quartile range (IQR). h) Are there any outliers (based on IQR technique)? In the above problem, if the score 28 is replaced by 48 i) What will happen to the mean? Will it increase, decrease or remains the same? j) What will be the new median? k) What can you say about the effect of outliers on mean and median? Q.5 Consider the following data of height (in inch) and weight(in lbs). Height(x) Frequency 50 2 52 3 55 2 60 4 62 3  Find the mean height.  What is the variance of height? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.6. The following table shows the number of miles run during one week for a sample of 20 runners: Miles Mid-value (x) Frequency (f) 5.5-10.5 1 10.5-15.5 2 15.5-20.5 3 20.5-25.5 5 25.5-30.5 4 (a) Find the average (mean) miles run. (Hint: Find mid-value of mile range first) (b) What is the variance of miles run? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.7. (a) If the mean of 20 observations is 20.5, find the sum of all observations? (b) If the mean of 30 observations is 40, find the sum of all observations? Probability Q.8 Out of forty students, 14 are taking English Composition and 29 are taking Chemistry. a) How many students are in both classes? b) What is the probability that a randomly-chosen student from this group is taking only the Chemistry class? Q.9 A drawer contains 4 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and then replaced. Another ball is taken from the drawer. What is the probability that (Draw tree diagram to facilitate your calculation). (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q.10 A drawer contains 3 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and not replaced. Another ball is then taken from the drawer. Draw tree diagram to facilitate your calculation. What is the probability that (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q. 11 Missile A has 45% chance of hitting target. Missile B has 55% chance of hitting a target. What is the probability that (i) both miss the target. (ii) at least one will hit the target. (iii) exactly one will hit the target. Q. 12 A politician from D party speaks truth 65% of times; another politician from rival party speaks truth 75% of times. Both politicians were asked about their personal love affair with their own office secretary, what is the probability that (i) both lie the actual fact . (ii) at least one will speak truth. (iii) exactly one speaks the truth. (iv) both speak the truth. Q.13 The question, “Do you drink alcohol?” was asked to 220 people. Results are shown in the table. . Yes No Total Male 48 82 Female 24 66 Total (a) What is the probability of a randomly selected individual being a male also drinks? (b) What is the probability of a randomly selected individual being a female? (c) What is the probability that a randomly selected individual drinks? (d) A person is selected at random and if the person is female, what is the probability that she drinks? (e) What is the probability that a randomly selected alcoholic person is a male? Q.14 A professor, Dr. Drakula, taught courses that included statements from across the five colleges abbreviated as AH, AS, BA, ED and EN. He taught at Texas A&M University – Kingsville (TAMUK) during the span of five academic years AY09 to AY13. The following table shows the total number of graduates during AY09 to AY13. One day, he was running late to his class. He was so focused on the class that he did not stop for a red light. As soon as he crossed through the intersection, a police officer Asked him to stop. ( a ) It is turned out that the police officer was TAMUK graduate during the past five years. What is the probability that the Police Officer was from ED College? ( b ) What is the probability that the Police Officer graduated in the academic year of 2011? ( c ) If the traffic officer graduated from TAMUK in the academic year of 2011(AY11). What is the conditional probability that he graduated from the ED college? ( d ) Are the events the academic year “AY 11” and the college of Education “ED” independent? Yes or no , why? Discrete Distribution Q.15 Find k and probability for X=2 and X=4. X 1 2 3 4 5 P(X=x) 0.1 3k 0.2 2k 0.2 (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers.What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Q.16 Find k. X 3 4 5 6 7 P(X=x) k 2k 2k k 2k (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers. What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Binomial Distribution: Q.17 (a) Hospital records show that of patients suffering from a certain disease, 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover? (b) A (blindfolded) marksman finds that on the average he hits the target 4 times out of 5. If he fires 4 shots, what is the probability of (i) more than 2 hits? (ii) at least 3 misses? (c) which of the following are binomial experiments? Explain the reason. i. Telephone surveying a group of 200 people to ask if they voted for George Bush. ii. Counting the average number of dogs seen at a veterinarian’s office daily. iii. You take a survey of 50 traffic lights in a certain city, at 3 p.m., recording whether the light was red, green, or yellow at that time. iv. You are at a fair, playing “pop the balloon” with 6 darts. There are 20 balloons. 10 of the balloons have a ticket inside that say “win,” and 10 have a ticket that says “lose.” Normal Distribution Q.18 Use standard normal distribution table to find the following probabilities: (a) P(Z<2.5) (b) P(Z< -1.3) (c) P(Z>0.12) (d) P(Z> -2.15) (e) P(0.11<Z<0.22) (f) P(-0.11<Z<0.5) Q.19. Use normal distribution table to find the missing values (?). (a) P(Z< ?)=0.40 (b) P(Z< ?)=0.76 (c) P(Z> ?)=0.87 (d) P(Z> ?)=0.34 Q.20. The length of life of certain type of light bulb is normally distributed with mean=220hrs and standard deviation=20hrs. (a) Define a random variable, X A light bulb is randomly selected, what is the probability that (b) it will last will last more than 207 hrs. ? (c) it will last less than 214 hrs. (d) it will last in between 199 to 207 hrs. Q.21. The length of life of an instrument produced by a machine has a normal distribution with a mean of 22 months and standard deviation of 4 months. Find the probability that an instrument produced by this machine will last (a) less than 10 months. (b) more than 28 months (c) between 10 and 28 months. Distribution of sample mean and Central Limit Theorem (CLT) Q.22 It is assumed that weight of teenage student is normally distributed with mean=140 lbs. and standard deviation =15 lbs. A simple random sample of 40 teenage students is taken and sample mean is calculated. If several such samples of same size are taken (i) what could be the mean of all sample means. (ii) what could be the standard deviation of all sample means. (iii) will the distribution of sample means be normal ? (iv) What is CLT? Write down the distribution of sample mean in the form of ~ ( , ) 2 n X N   . Q.23 The time it takes students in a cooking school to learn to prepare seafood gumbo is a random variable with a normal distribution where the average is 3.2 hours and a standard deviation of 1.8 hours. A sample of 40 students was investigated. What is the distribution of sample mean (express in numbers)? Hypothesis Testing Q.24 The NCHS reported that the mean total cholesterol level in 2002 for all adults was 203 with standard deviation of 37. Total cholesterol levels in participants who attended the seventh examination of the Offspring in the Framingham Heart Study are summarized as follows: n=3,00, =200.3. Is there statistical evidence of a difference in mean cholesterol levels in the Framingham Offspring (means does the result form current examination differs from 2002 report)?? (Follow the steps below to reach the conclusion) (i) Define null and alternate hypothesis (Also write what is  , and x in words at the beginning) (ii) Identify the significance level ,  and check whether it is one sided or two sided test. (iii) Calculate test statistics, Z. (iv) Use standard normal table to find the p-value and state whether you reject or accept (fail to reject) the null hypothesis. (v) what is the critical value, do you reject or accept the H0. (vi) Write down the conclusion based on part (iv). Q.25 A sample of 145 boxes of Kellogg’s Raisin Bran contain in average 1.95 scoops of raisins. It is known from past experiments that the standard deviation for the number of scoops of raisins is 0.25. The manufacturer of Kellogg’s Raisin Bran claimed that in average their product contains more than 2 scoops of raisins, do you reject or accept the manufacturers claim (follow all five steps)? Q.26 It is assumed that the mean systolic blood pressure is μ = 120 mm Hg. In the Honolulu Heart Study, a sample of n = 100 people had an average systolic blood pressure of 130.1 mm Hg. The standard deviation from the population is 21.21 mm Hg. Is the group significantly different (with respect to systolic blood pressure!) from the regular population? Use 10% level of significance. Q.27 A CEO claims that at least 80 percent of the company’s 1,000,000 customers are very satisfied. Again, 100 customers are surveyed using simple random sampling. The result: 73 percent are very satisfied. Based on these results, should we accept or reject the CEO’s hypothesis? Assume a significance level of 0.05. Q.28 True/False questions (These questions are collected from previous HW, review and exam problems, see the previous solutions for answers) (a) Total sum of probability can exceed 1. (b) If you throw a die, getting 2 or any even number are independent events. (c) If you roll a die for 20 times, the probability of getting 5 in 15th roll is 20 15 . (d) A student is taking a 5 question True-False quiz but he has not been doing any work in the course and does not know the material so he randomly guesses at all the answers. Probability that he gets the first question right is 2 1 . (e) Typing in laptop and writing emails using the same laptop are independent events. (f) Normal distribution is right skewed. (g) Mean is more robust to outliers. So mean is used for data with extreme values. (h) It is possible to have no mode in the data. (i) Standard normal variable, Z has some unit. (j) Only two parameters are required to describe the entire normal distribution. (k) Mean of standard normal variable, Z is 1. (l) If p-value of more than level of significance (alpha), we reject the H0. (m) Very small p-value indicates rejection of H0. (n) H0 always contains equality sign. (o) CLT indicates that distribution of sample mean can be anything, not just normal. (p) Sample mean is always equal to population mean. (q) Variance of sample mean is less than population mean. (r) Variance of sample mean does not depend on sample size. (s) Mr. A has cancer but a medical doctor diagnosed him as “no cancer”. It is a type I error. (t) Level of significance is probability of making type II error. (u) Type II error can be controlled. (v) Type I error is more serious than type II error. (w) Type I and Type II errors are based on null hypothesis. Q.29 Type I and Type II Errors : Make statements about Type I (False Positive) and Type II errors (False Negative). (a) The Alpha-Fetoprotein (AFP) Test has both Type I and Type II error possibilities. This test screens the mother’s blood during pregnancy for AFP and determines risk. Abnormally high or low levels may indicate Down syndrome. (Hint: Take actual status as down syndrome or not) Ho: patient is healthy Ha: patient is unhealthy (b) The mechanic inspects the brake pads for the minimum allowable thickness. Ho: Vehicles breaks meet the standard for the minimum allowable thickness. Ha: Vehicles brakes do not meet the standard for the minimum allowable thickness. (c) Celiac disease is one of the diseases which can be misdiagnosed or have less diagnosis. Following table shows the actual celiac patients and their diagnosis status by medical doctors: Actual Status Yes No Diagnosed as celiac Yes 85 5 No 25 105 I. Calculate the probability of making type I and type II error rates. II. Calculate the power of the test. (Power of the test= 1- P(type II error) Answers: USEFUL FORMULAE: Descriptive Statistics Possible Outliers, any value beyond the range of Q 1.5( ) and Q 1.5( ) Range = Maximum value -Minimum value 100 where 1 ( ) (Preferred) 1 and , n fx x For data with repeats, 1 ( ) (Preferred ) OR 1 and n x x For data without repeats, 1 3 1 3 3 1 2 2 2 2 2 2 2 2 2 2 Q Q Q Q x s CV n f n f x x OR s n fx nx s n x x s n x nx s                             Discrete Distribution         ( ) ( ) ( ) ( ) { ( )} ( ) ( ) 2 2 2 2 E X x P X x V X E X E X E X xP X x Binomial Distribution Probability mass function, P(X=x)= x n x n x C p q  for x=0,1,2,…,n. E(X)=np, Var(X)=npq Hypothesis Testing based on Normal Distribution      X std X mean Z Standard Normal Variable, Probability Bayes Rule, ( ) ( and ) ( ) ( ) ( | ) P B P A B P B P A B P A B    Central Limit Theorem For large n (n>30), ~ ( , ) 2 n X N   and ˆ ~ ( , ) n pq p N p For hypothesis testing of μ, σ known           n x Z   For hypothesis testing of p n pq p p Z   ˆ ANSWERS: Q.1 (a) 14.286 (b) 14 (c) none (d) 10.24 (e) 22.40 Q.2 (a) 15.125 (b) 15.5 (c) No (d) 10.98 (e) 21.9 (f) English Q.3 (a) 18.6 (b)19 (c) 16, 21, and 25 (d) 15, 22 (f) slightly left (g) 7 (h) no outliers (i) increase (j) same Q.4 (a) 0.41 (b) 20 (c)14, 17, 20, 21,25 (d) 16.5, 25 (f) slightly right (g) 8.5 (h) no (i) increase (j) same Q.5 (a)56.57 (b) 22.26 (c) 8.34 Q.6 (a) 21 (b) 38.57 (c) 29.57 Q.7 (a) 410 (b) 1200 Q.8 (a)3 (b) 0.65 Q.9 (a) 0.082 (b) 0.29 (c)0.34 (d) 0.66 (e)0.10 (f) 0.64 Q.10 (a) 0.038 (b)0.23 (c) 0.71 (d) 0.29 (e)0.096 (f) 0.62 Q.11 (i)0.248 (ii)0.752 (iii)0.505 Q.12 (i)0.0875 (ii)0.913 (iii)0.425 (iii)0.488 Q.13 (a)0.22 (b)0.41 (c)0.33 (d)0.27 (e) 0.67 Q.14 (a) 0.13 (b) 0.18 (c)0.12 Q.15 E(X)=3.1 , V(X)=1.69, $0.2 per game, $ 4 win. Q.16 E(X)=5.125, V(X)=1.86, $0.25 loss per game, $5 loss. Q.17 (a)0.201 (b) 0.819, 0.027 Q.18 (a)0.9938 (b)0.0968 (c)0.452 (d)0.984 (e) 0.0433 (f)0.2353 Q.19 (a) -0.25 (b)0.71 (c) -1.13 (d)0.41 Q.20 (b) 0.7422 (c) 0.3821 (d) 0.1109 Q.21 (a)0.0014 (b) 0.0668 (c) 0.9318 Q.22 (a) 140 (b)2.37 Q.24 Z=-1.26, Accept null. Q.25 Z=-2.41, accept null Q.26 Z=4.76, reject H0 Q.27 Z=-1.75, reject H0 Q.28 F, F, F, T , F, F, F, T, F, T, F, F, T, T, F, F, T, F, T, F, F, T, T Q.29 (c)0.113 , 0.022 , 0.977 (or 98%)

Statistical Methods (STAT 4303) Review for Final Comprehensive Exam Measures of Central Tendency, Dispersion Q.1. The data below represents the test scores obtained by students in college algebra class. 10,12,15,20,13,16,14 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) Q.2. The data below represents the test scores obtained by students in English class. 12,15,16,18,13,10,17,20 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) (f) Compare the results of Q.1 and Q.2, Which scores College Algebra or English do you think is more precise (less spread)? Q.3 Following data represents the score obtained by students in one of the exams 9, 13, 14, 15, 16, 16, 17, 19, 20, 21, 21, 22, 25, 25, 26 Create a frequency table to calculate the following descriptive statistics (a) mean (b) median (c) mode (d) first and third quartiles (e) Construct Box and Whisker plot. (f) Comment on the shape of the distribution. (g) Find inter quartile range (IQR). (h) Are there any outliers (based on IQR technique)? In the above problem, if the score 26 is replaced by 37 (i) What will happen to the mean? Will it increase, decrease or remains the same? (j) What will be the new median? (k) What can you say about the effect of outliers on mean and median? Q.4 Following data represents the score obtained by students in one of the exams 19, 14, 14, 15, 17, 16, 17, 20, 20, 21, 21, 22, 25, 25, 26, 27, 28 Create a frequency table to calculate the following descriptive statistics a) mean b) median c) mode d) first and third quartiles e) Construct Box and Whisker plot. f) Comment on the shape of the distribution. g) Find inter quartile range (IQR). h) Are there any outliers (based on IQR technique)? In the above problem, if the score 28 is replaced by 48 i) What will happen to the mean? Will it increase, decrease or remains the same? j) What will be the new median? k) What can you say about the effect of outliers on mean and median? Q.5 Consider the following data of height (in inch) and weight(in lbs). Height(x) Frequency 50 2 52 3 55 2 60 4 62 3  Find the mean height.  What is the variance of height? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.6. The following table shows the number of miles run during one week for a sample of 20 runners: Miles Mid-value (x) Frequency (f) 5.5-10.5 1 10.5-15.5 2 15.5-20.5 3 20.5-25.5 5 25.5-30.5 4 (a) Find the average (mean) miles run. (Hint: Find mid-value of mile range first) (b) What is the variance of miles run? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.7. (a) If the mean of 20 observations is 20.5, find the sum of all observations? (b) If the mean of 30 observations is 40, find the sum of all observations? Probability Q.8 Out of forty students, 14 are taking English Composition and 29 are taking Chemistry. a) How many students are in both classes? b) What is the probability that a randomly-chosen student from this group is taking only the Chemistry class? Q.9 A drawer contains 4 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and then replaced. Another ball is taken from the drawer. What is the probability that (Draw tree diagram to facilitate your calculation). (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q.10 A drawer contains 3 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and not replaced. Another ball is then taken from the drawer. Draw tree diagram to facilitate your calculation. What is the probability that (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q. 11 Missile A has 45% chance of hitting target. Missile B has 55% chance of hitting a target. What is the probability that (i) both miss the target. (ii) at least one will hit the target. (iii) exactly one will hit the target. Q. 12 A politician from D party speaks truth 65% of times; another politician from rival party speaks truth 75% of times. Both politicians were asked about their personal love affair with their own office secretary, what is the probability that (i) both lie the actual fact . (ii) at least one will speak truth. (iii) exactly one speaks the truth. (iv) both speak the truth. Q.13 The question, “Do you drink alcohol?” was asked to 220 people. Results are shown in the table. . Yes No Total Male 48 82 Female 24 66 Total (a) What is the probability of a randomly selected individual being a male also drinks? (b) What is the probability of a randomly selected individual being a female? (c) What is the probability that a randomly selected individual drinks? (d) A person is selected at random and if the person is female, what is the probability that she drinks? (e) What is the probability that a randomly selected alcoholic person is a male? Q.14 A professor, Dr. Drakula, taught courses that included statements from across the five colleges abbreviated as AH, AS, BA, ED and EN. He taught at Texas A&M University – Kingsville (TAMUK) during the span of five academic years AY09 to AY13. The following table shows the total number of graduates during AY09 to AY13. One day, he was running late to his class. He was so focused on the class that he did not stop for a red light. As soon as he crossed through the intersection, a police officer Asked him to stop. ( a ) It is turned out that the police officer was TAMUK graduate during the past five years. What is the probability that the Police Officer was from ED College? ( b ) What is the probability that the Police Officer graduated in the academic year of 2011? ( c ) If the traffic officer graduated from TAMUK in the academic year of 2011(AY11). What is the conditional probability that he graduated from the ED college? ( d ) Are the events the academic year “AY 11” and the college of Education “ED” independent? Yes or no , why? Discrete Distribution Q.15 Find k and probability for X=2 and X=4. X 1 2 3 4 5 P(X=x) 0.1 3k 0.2 2k 0.2 (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers.What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Q.16 Find k. X 3 4 5 6 7 P(X=x) k 2k 2k k 2k (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers. What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Binomial Distribution: Q.17 (a) Hospital records show that of patients suffering from a certain disease, 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover? (b) A (blindfolded) marksman finds that on the average he hits the target 4 times out of 5. If he fires 4 shots, what is the probability of (i) more than 2 hits? (ii) at least 3 misses? (c) which of the following are binomial experiments? Explain the reason. i. Telephone surveying a group of 200 people to ask if they voted for George Bush. ii. Counting the average number of dogs seen at a veterinarian’s office daily. iii. You take a survey of 50 traffic lights in a certain city, at 3 p.m., recording whether the light was red, green, or yellow at that time. iv. You are at a fair, playing “pop the balloon” with 6 darts. There are 20 balloons. 10 of the balloons have a ticket inside that say “win,” and 10 have a ticket that says “lose.” Normal Distribution Q.18 Use standard normal distribution table to find the following probabilities: (a) P(Z<2.5) (b) P(Z< -1.3) (c) P(Z>0.12) (d) P(Z> -2.15) (e) P(0.11 ?)=0.87 (d) P(Z> ?)=0.34 Q.20. The length of life of certain type of light bulb is normally distributed with mean=220hrs and standard deviation=20hrs. (a) Define a random variable, X A light bulb is randomly selected, what is the probability that (b) it will last will last more than 207 hrs. ? (c) it will last less than 214 hrs. (d) it will last in between 199 to 207 hrs. Q.21. The length of life of an instrument produced by a machine has a normal distribution with a mean of 22 months and standard deviation of 4 months. Find the probability that an instrument produced by this machine will last (a) less than 10 months. (b) more than 28 months (c) between 10 and 28 months. Distribution of sample mean and Central Limit Theorem (CLT) Q.22 It is assumed that weight of teenage student is normally distributed with mean=140 lbs. and standard deviation =15 lbs. A simple random sample of 40 teenage students is taken and sample mean is calculated. If several such samples of same size are taken (i) what could be the mean of all sample means. (ii) what could be the standard deviation of all sample means. (iii) will the distribution of sample means be normal ? (iv) What is CLT? Write down the distribution of sample mean in the form of ~ ( , ) 2 n X N   . Q.23 The time it takes students in a cooking school to learn to prepare seafood gumbo is a random variable with a normal distribution where the average is 3.2 hours and a standard deviation of 1.8 hours. A sample of 40 students was investigated. What is the distribution of sample mean (express in numbers)? Hypothesis Testing Q.24 The NCHS reported that the mean total cholesterol level in 2002 for all adults was 203 with standard deviation of 37. Total cholesterol levels in participants who attended the seventh examination of the Offspring in the Framingham Heart Study are summarized as follows: n=3,00, =200.3. Is there statistical evidence of a difference in mean cholesterol levels in the Framingham Offspring (means does the result form current examination differs from 2002 report)?? (Follow the steps below to reach the conclusion) (i) Define null and alternate hypothesis (Also write what is  , and x in words at the beginning) (ii) Identify the significance level ,  and check whether it is one sided or two sided test. (iii) Calculate test statistics, Z. (iv) Use standard normal table to find the p-value and state whether you reject or accept (fail to reject) the null hypothesis. (v) what is the critical value, do you reject or accept the H0. (vi) Write down the conclusion based on part (iv). Q.25 A sample of 145 boxes of Kellogg’s Raisin Bran contain in average 1.95 scoops of raisins. It is known from past experiments that the standard deviation for the number of scoops of raisins is 0.25. The manufacturer of Kellogg’s Raisin Bran claimed that in average their product contains more than 2 scoops of raisins, do you reject or accept the manufacturers claim (follow all five steps)? Q.26 It is assumed that the mean systolic blood pressure is μ = 120 mm Hg. In the Honolulu Heart Study, a sample of n = 100 people had an average systolic blood pressure of 130.1 mm Hg. The standard deviation from the population is 21.21 mm Hg. Is the group significantly different (with respect to systolic blood pressure!) from the regular population? Use 10% level of significance. Q.27 A CEO claims that at least 80 percent of the company’s 1,000,000 customers are very satisfied. Again, 100 customers are surveyed using simple random sampling. The result: 73 percent are very satisfied. Based on these results, should we accept or reject the CEO’s hypothesis? Assume a significance level of 0.05. Q.28 True/False questions (These questions are collected from previous HW, review and exam problems, see the previous solutions for answers) (a) Total sum of probability can exceed 1. (b) If you throw a die, getting 2 or any even number are independent events. (c) If you roll a die for 20 times, the probability of getting 5 in 15th roll is 20 15 . (d) A student is taking a 5 question True-False quiz but he has not been doing any work in the course and does not know the material so he randomly guesses at all the answers. Probability that he gets the first question right is 2 1 . (e) Typing in laptop and writing emails using the same laptop are independent events. (f) Normal distribution is right skewed. (g) Mean is more robust to outliers. So mean is used for data with extreme values. (h) It is possible to have no mode in the data. (i) Standard normal variable, Z has some unit. (j) Only two parameters are required to describe the entire normal distribution. (k) Mean of standard normal variable, Z is 1. (l) If p-value of more than level of significance (alpha), we reject the H0. (m) Very small p-value indicates rejection of H0. (n) H0 always contains equality sign. (o) CLT indicates that distribution of sample mean can be anything, not just normal. (p) Sample mean is always equal to population mean. (q) Variance of sample mean is less than population mean. (r) Variance of sample mean does not depend on sample size. (s) Mr. A has cancer but a medical doctor diagnosed him as “no cancer”. It is a type I error. (t) Level of significance is probability of making type II error. (u) Type II error can be controlled. (v) Type I error is more serious than type II error. (w) Type I and Type II errors are based on null hypothesis. Q.29 Type I and Type II Errors : Make statements about Type I (False Positive) and Type II errors (False Negative). (a) The Alpha-Fetoprotein (AFP) Test has both Type I and Type II error possibilities. This test screens the mother’s blood during pregnancy for AFP and determines risk. Abnormally high or low levels may indicate Down syndrome. (Hint: Take actual status as down syndrome or not) Ho: patient is healthy Ha: patient is unhealthy (b) The mechanic inspects the brake pads for the minimum allowable thickness. Ho: Vehicles breaks meet the standard for the minimum allowable thickness. Ha: Vehicles brakes do not meet the standard for the minimum allowable thickness. (c) Celiac disease is one of the diseases which can be misdiagnosed or have less diagnosis. Following table shows the actual celiac patients and their diagnosis status by medical doctors: Actual Status Yes No Diagnosed as celiac Yes 85 5 No 25 105 I. Calculate the probability of making type I and type II error rates. II. Calculate the power of the test. (Power of the test= 1- P(type II error) Answers: USEFUL FORMULAE: Descriptive Statistics Possible Outliers, any value beyond the range of Q 1.5( ) and Q 1.5( ) Range = Maximum value -Minimum value 100 where 1 ( ) (Preferred) 1 and , n fx x For data with repeats, 1 ( ) (Preferred ) OR 1 and n x x For data without repeats, 1 3 1 3 3 1 2 2 2 2 2 2 2 2 2 2 Q Q Q Q x s CV n f n f x x OR s n fx nx s n x x s n x nx s                             Discrete Distribution         ( ) ( ) ( ) ( ) { ( )} ( ) ( ) 2 2 2 2 E X x P X x V X E X E X E X xP X x Binomial Distribution Probability mass function, P(X=x)= x n x n x C p q  for x=0,1,2,…,n. E(X)=np, Var(X)=npq Hypothesis Testing based on Normal Distribution      X std X mean Z Standard Normal Variable, Probability Bayes Rule, ( ) ( and ) ( ) ( ) ( | ) P B P A B P B P A B P A B    Central Limit Theorem For large n (n>30), ~ ( , ) 2 n X N   and ˆ ~ ( , ) n pq p N p For hypothesis testing of μ, σ known           n x Z   For hypothesis testing of p n pq p p Z   ˆ ANSWERS: Q.1 (a) 14.286 (b) 14 (c) none (d) 10.24 (e) 22.40 Q.2 (a) 15.125 (b) 15.5 (c) No (d) 10.98 (e) 21.9 (f) English Q.3 (a) 18.6 (b)19 (c) 16, 21, and 25 (d) 15, 22 (f) slightly left (g) 7 (h) no outliers (i) increase (j) same Q.4 (a) 0.41 (b) 20 (c)14, 17, 20, 21,25 (d) 16.5, 25 (f) slightly right (g) 8.5 (h) no (i) increase (j) same Q.5 (a)56.57 (b) 22.26 (c) 8.34 Q.6 (a) 21 (b) 38.57 (c) 29.57 Q.7 (a) 410 (b) 1200 Q.8 (a)3 (b) 0.65 Q.9 (a) 0.082 (b) 0.29 (c)0.34 (d) 0.66 (e)0.10 (f) 0.64 Q.10 (a) 0.038 (b)0.23 (c) 0.71 (d) 0.29 (e)0.096 (f) 0.62 Q.11 (i)0.248 (ii)0.752 (iii)0.505 Q.12 (i)0.0875 (ii)0.913 (iii)0.425 (iii)0.488 Q.13 (a)0.22 (b)0.41 (c)0.33 (d)0.27 (e) 0.67 Q.14 (a) 0.13 (b) 0.18 (c)0.12 Q.15 E(X)=3.1 , V(X)=1.69, $0.2 per game, $ 4 win. Q.16 E(X)=5.125, V(X)=1.86, $0.25 loss per game, $5 loss. Q.17 (a)0.201 (b) 0.819, 0.027 Q.18 (a)0.9938 (b)0.0968 (c)0.452 (d)0.984 (e) 0.0433 (f)0.2353 Q.19 (a) -0.25 (b)0.71 (c) -1.13 (d)0.41 Q.20 (b) 0.7422 (c) 0.3821 (d) 0.1109 Q.21 (a)0.0014 (b) 0.0668 (c) 0.9318 Q.22 (a) 140 (b)2.37 Q.24 Z=-1.26, Accept null. Q.25 Z=-2.41, accept null Q.26 Z=4.76, reject H0 Q.27 Z=-1.75, reject H0 Q.28 F, F, F, T , F, F, F, T, F, T, F, F, T, T, F, F, T, F, T, F, F, T, T Q.29 (c)0.113 , 0.022 , 0.977 (or 98%)

No expert has answered this question yet. You can browse … Read More...
AUCS 340: Ethics in the Professions Individual Written Assignment #1 Medical Ethics: Historical names, dates and ethical theories assignment As you read chapters 1 and 2 in the “Ethics and Basic Law for Medical Imaging Professionals” textbook you will be responsible for identifying and explaining each of the following items from the list below. You will respond in paragraph format with correct spelling and grammar expected for each paragraph. Feel free to have more than one paragraph for each item, although in most instances a single paragraph response is sufficient. If you reference material in addition to what is available in the textbook it must be appropriately cited in your work using either APA or MLA including a references cited page. The use of Wikipedia.com is not a recognized peer reviewed source so please do not use that as a reference. When responding about individuals it is necessary to indicate a year or time period that the person discussed/developed their particular ethical theory so that you can look at and appreciate the historical background to the development of ethical theories and decision making. Respond to the following sixteen items. (They are in random order from your reading) 1. Francis Bacon 2. Isaac Newton 3. Prima Facie Duties – Why do they exist? LIST AND DEFINE ALL TERMS 4. Hippocrates 5. W.D. Ross – what do the initials stand for in his name and what was his contribution to the study of ethics? 6. Microallocation – define the term and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as microallocation is NOT limited to the medical field.) 7. Deontology – Discuss at length the basic types/concepts of this theory 8. Thomas Aquinas – 1) Discuss the ethical theory developed by Aquinas, 2) his religious affiliation, 3) why that was so important to his ethical premise and 4) discuss the type of ethical issues resolved to this day using this theory. 9. Macroallocation – define and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as macroallocation is NOT limited to the medical field.) 10. David Hume 11. Rodericus Castro 12. Plato and “The Republic” 13. Pythagoras 14. Teleology – Discuss at length the basic types/concepts of this theory 15. Core Values – Why do they exist? LIST AND DEFINE ALL TERMS 16. Develop a timeline that reflects the ethical theories as developed by the INDIVIDUALS presented in this assignment. This assignment is due Saturday March 14th at NOON and is graded as a homework assignment. Grading: Paragraph Formation = 20% of grade (bulleted lists are acceptable for some answers) Answers inclusive of major material for answer = 40% of grade Creation of Timeline = 10% of grade Sentence structure, application of correct spelling and grammar = 20% of grade References (if utilized) = 10% of grade; references should be submitted on a separate references cited page. Otherwise this 10% of the assignment grade will be considered under the sentence structure component for 30% of the grade. It is expected that the finished assignment will be two – three pages of text, double spaced, using 12 font and standard page margins.

AUCS 340: Ethics in the Professions Individual Written Assignment #1 Medical Ethics: Historical names, dates and ethical theories assignment As you read chapters 1 and 2 in the “Ethics and Basic Law for Medical Imaging Professionals” textbook you will be responsible for identifying and explaining each of the following items from the list below. You will respond in paragraph format with correct spelling and grammar expected for each paragraph. Feel free to have more than one paragraph for each item, although in most instances a single paragraph response is sufficient. If you reference material in addition to what is available in the textbook it must be appropriately cited in your work using either APA or MLA including a references cited page. The use of Wikipedia.com is not a recognized peer reviewed source so please do not use that as a reference. When responding about individuals it is necessary to indicate a year or time period that the person discussed/developed their particular ethical theory so that you can look at and appreciate the historical background to the development of ethical theories and decision making. Respond to the following sixteen items. (They are in random order from your reading) 1. Francis Bacon 2. Isaac Newton 3. Prima Facie Duties – Why do they exist? LIST AND DEFINE ALL TERMS 4. Hippocrates 5. W.D. Ross – what do the initials stand for in his name and what was his contribution to the study of ethics? 6. Microallocation – define the term and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as microallocation is NOT limited to the medical field.) 7. Deontology – Discuss at length the basic types/concepts of this theory 8. Thomas Aquinas – 1) Discuss the ethical theory developed by Aquinas, 2) his religious affiliation, 3) why that was so important to his ethical premise and 4) discuss the type of ethical issues resolved to this day using this theory. 9. Macroallocation – define and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as macroallocation is NOT limited to the medical field.) 10. David Hume 11. Rodericus Castro 12. Plato and “The Republic” 13. Pythagoras 14. Teleology – Discuss at length the basic types/concepts of this theory 15. Core Values – Why do they exist? LIST AND DEFINE ALL TERMS 16. Develop a timeline that reflects the ethical theories as developed by the INDIVIDUALS presented in this assignment. This assignment is due Saturday March 14th at NOON and is graded as a homework assignment. Grading: Paragraph Formation = 20% of grade (bulleted lists are acceptable for some answers) Answers inclusive of major material for answer = 40% of grade Creation of Timeline = 10% of grade Sentence structure, application of correct spelling and grammar = 20% of grade References (if utilized) = 10% of grade; references should be submitted on a separate references cited page. Otherwise this 10% of the assignment grade will be considered under the sentence structure component for 30% of the grade. It is expected that the finished assignment will be two – three pages of text, double spaced, using 12 font and standard page margins.

Francis Bacon was a 16th century ethical theorist who was … Read More...