For Day 5 Homework Cover Sheet Name:_________________________________________________ 1. Read Pages from 74-98 , or watch the videos listed below  Exponents http://www.youtube.com/watch?v=QlnQTDKNH_Q (9 min) Product Rule of Exponents http://www.youtube.com/watch?v=qS2yuBEXcxk (9 min) Quotient Rule of Exponents http://www.youtube.com/watch?v=SgEyb7s1Vcw (5 min) Zero and Negative Exponents http://www.youtube.com/watch?v=3_pnpRr93hA (14 min) 2. Attempt Workbook pages 17-27 Summary of the lectures you watched. List any parts of the video lecture (if there are any) that were unclear or you had trouble understanding. Please be specific and do not just say “All of it”. Questions you had difficulty with or felt stuck on- List the number for the ALEKS topics you were stuck on from the list at the end of the video logs-   ALEKS topics to be mastered (19 topics) Exponents and integers: Problem type 1 Exponents and integers: Problem type 2 Introduction to exponents Introduction to the product rule of exponents Introduction to the product rule with negative exponents Introduction to the quotient rule of exponents Power of 10: Positive exponent Product rule with negative exponents Product rule with positive exponents: Multivariate Quotient of expressions involving exponents Quotient rule with negative exponents: Problem type 1 Quotient rule with negative exponents: Problem type 2 Understanding the product rule of exponents Writing expressions using exponents Evaluating an expression with a negative exponent: Negative integer base Evaluating an expression with a negative exponent: Positive fraction base Evaluating expressions with exponents of zero Power of 10: Negative exponent Rewriting an algebraic expression without a negative exponent

For Day 5 Homework Cover Sheet Name:_________________________________________________ 1. Read Pages from 74-98 , or watch the videos listed below  Exponents http://www.youtube.com/watch?v=QlnQTDKNH_Q (9 min) Product Rule of Exponents http://www.youtube.com/watch?v=qS2yuBEXcxk (9 min) Quotient Rule of Exponents http://www.youtube.com/watch?v=SgEyb7s1Vcw (5 min) Zero and Negative Exponents http://www.youtube.com/watch?v=3_pnpRr93hA (14 min) 2. Attempt Workbook pages 17-27 Summary of the lectures you watched. List any parts of the video lecture (if there are any) that were unclear or you had trouble understanding. Please be specific and do not just say “All of it”. Questions you had difficulty with or felt stuck on- List the number for the ALEKS topics you were stuck on from the list at the end of the video logs-   ALEKS topics to be mastered (19 topics) Exponents and integers: Problem type 1 Exponents and integers: Problem type 2 Introduction to exponents Introduction to the product rule of exponents Introduction to the product rule with negative exponents Introduction to the quotient rule of exponents Power of 10: Positive exponent Product rule with negative exponents Product rule with positive exponents: Multivariate Quotient of expressions involving exponents Quotient rule with negative exponents: Problem type 1 Quotient rule with negative exponents: Problem type 2 Understanding the product rule of exponents Writing expressions using exponents Evaluating an expression with a negative exponent: Negative integer base Evaluating an expression with a negative exponent: Positive fraction base Evaluating expressions with exponents of zero Power of 10: Negative exponent Rewriting an algebraic expression without a negative exponent

No expert has answered this question yet. You can browse … Read More...
If a state worked with a national government agency to solve a problem with large implications, such as a failing energy grid, it could be said that the problem is being solved through _______, 1. public-private partnership, 2. dual federalism, 3. the Dillon rule, 4. cooperative federalism, 5. joint government.

If a state worked with a national government agency to solve a problem with large implications, such as a failing energy grid, it could be said that the problem is being solved through _______, 1. public-private partnership, 2. dual federalism, 3. the Dillon rule, 4. cooperative federalism, 5. joint government.

4.  cooperative federalism
Hammurabi’s Code” and the “Negative Confessions” are both examples of moral codes. In what ways are they similar or different to your own moral codes? Which ones sound ancient and which sound like a law or rule we might have today?

Hammurabi’s Code” and the “Negative Confessions” are both examples of moral codes. In what ways are they similar or different to your own moral codes? Which ones sound ancient and which sound like a law or rule we might have today?

Similarities: Hammurabi’s Code” and the “Negative Confessions both are moral … Read More...
What is the prime purpose of selecting a composite material over material from the other family groups? MODULE 3 – STRUCTURE OF SOLID MATERIALS The ability of a material to exist in different space lattices is called a. Allotropic b. Crystalline c. Solvent d. Amorphous Amorphous metals develop their microstructure as a result of ___________. a. Dendrites b. Directional solidification c. Slip d. Extremely rapid cooling In an alloy, the material that dissolves the alloying element is the ___________. a. Solute b. Solvent c. Matrix d. Allotrope What is the coordination number (CN) for the fcc structure formed by ions of sodium and chlorine that is in the chemical compound NaCl (salt) ? a. 6 b. 8 c. 14 d. 16 What pressure is normally used in constructing a phase diagram? a. 100 psi b. Depends on material c. Ambient d. Normal atmospheric pressure What line on a binary diagram indicates the upper limit of the solid solution phase? a. Liquidus b. Eutectic c. Eutectoid d. Solidus What holds the atoms (ions) together in a compound such as NaCl are electrostatic forces between ___________. a. Atom and ion b. Covalent bonds c. Electrons and nuclei d. Neutrons Diffusion of atoms through a solid takes place by two main mechanisms. One is diffusion through vacancies in the atomic structure. Another method of diffusion is ___________. a. Cold b. APF c. Substitutional d. Interstitial Give a brief explanation of the Lever rule (P117) Grain boundaries ___________ movement of dislocations through a solid. a. Improve b. Inhibit c. Do not affect Iron can be alloyed with carbon because it is ___________. a. Crystalline b. Amorphous c. A mixture d. Allotropic Metals can be cooled only to crystalline solids. a. T (true) b. F (false) Sketch an fcc unit cell. Metals are classified as crystalline materials. Name one metal that is an amorphous solid and name at least one recent application in which its use is saving energy or providing greater strength and/or corrosion resistance. MODULE 4 – MECHANICAL PROPERTIES Give two examples of a mechanical property. a. Thermal resistance b. Wear resistance c. Hardness d. Strength Scissors used in the home cut material by concentrating forces that ultimately produce a certain type of stress within the material. Identify this stress. a. Bearing stress b. Shearing stress c. Compressive stress An aluminum rod 1 in. in diameter (E =10.4 x 106psi) experiences an elastic tensile strain of 0.0048 in./in. Calculate the stress in the rod. a. 49,920 ksi b. 49,920 psi c. 49,920 msi A 1-in.-diameter steel circular rod is subject to a tensile load that reduces its cross-sectional area to 0.64 in2. Express the rod’s ductility using a standard unit of measure. a. 18.5% b. 1.85% c. 18.5 d. (a) and (c) What term is used to describe the low-temperature creep of polymerics? a. Springback b. Creep rupture c. Cold flow d. Creep forming MODULE 7 – TESTING, FAILURE ANALYSIS, STANDARDS, & INSPECTION Factors of safety are defined either in terms of the ultimate strength of a material or its yield strength. In other words, by the use of a suitable factor, the ultimate or yield strength is reduced in size to what is known as the design stress or safe working stress. Which factor of safety would be more appropriate for a material that will be subjected to repetitious, suddenly applied loads? Product liability court cases have risen sharply in recent years because of poor procedures in selecting materials for particular applications. Assuming that a knowledge of a material’s properties is a valid step in the selection process, cite two examples where such lack of knowledge could or did lead to failure or unsatisfactory performance. Make a sketch and fully dimension an Izod impact test specimen. Which agency publishes the Annual Book of standard test methods used worldwide for evaluation of materials? a. NASA b. NIST c. ASTM d. SPE

What is the prime purpose of selecting a composite material over material from the other family groups? MODULE 3 – STRUCTURE OF SOLID MATERIALS The ability of a material to exist in different space lattices is called a. Allotropic b. Crystalline c. Solvent d. Amorphous Amorphous metals develop their microstructure as a result of ___________. a. Dendrites b. Directional solidification c. Slip d. Extremely rapid cooling In an alloy, the material that dissolves the alloying element is the ___________. a. Solute b. Solvent c. Matrix d. Allotrope What is the coordination number (CN) for the fcc structure formed by ions of sodium and chlorine that is in the chemical compound NaCl (salt) ? a. 6 b. 8 c. 14 d. 16 What pressure is normally used in constructing a phase diagram? a. 100 psi b. Depends on material c. Ambient d. Normal atmospheric pressure What line on a binary diagram indicates the upper limit of the solid solution phase? a. Liquidus b. Eutectic c. Eutectoid d. Solidus What holds the atoms (ions) together in a compound such as NaCl are electrostatic forces between ___________. a. Atom and ion b. Covalent bonds c. Electrons and nuclei d. Neutrons Diffusion of atoms through a solid takes place by two main mechanisms. One is diffusion through vacancies in the atomic structure. Another method of diffusion is ___________. a. Cold b. APF c. Substitutional d. Interstitial Give a brief explanation of the Lever rule (P117) Grain boundaries ___________ movement of dislocations through a solid. a. Improve b. Inhibit c. Do not affect Iron can be alloyed with carbon because it is ___________. a. Crystalline b. Amorphous c. A mixture d. Allotropic Metals can be cooled only to crystalline solids. a. T (true) b. F (false) Sketch an fcc unit cell. Metals are classified as crystalline materials. Name one metal that is an amorphous solid and name at least one recent application in which its use is saving energy or providing greater strength and/or corrosion resistance. MODULE 4 – MECHANICAL PROPERTIES Give two examples of a mechanical property. a. Thermal resistance b. Wear resistance c. Hardness d. Strength Scissors used in the home cut material by concentrating forces that ultimately produce a certain type of stress within the material. Identify this stress. a. Bearing stress b. Shearing stress c. Compressive stress An aluminum rod 1 in. in diameter (E =10.4 x 106psi) experiences an elastic tensile strain of 0.0048 in./in. Calculate the stress in the rod. a. 49,920 ksi b. 49,920 psi c. 49,920 msi A 1-in.-diameter steel circular rod is subject to a tensile load that reduces its cross-sectional area to 0.64 in2. Express the rod’s ductility using a standard unit of measure. a. 18.5% b. 1.85% c. 18.5 d. (a) and (c) What term is used to describe the low-temperature creep of polymerics? a. Springback b. Creep rupture c. Cold flow d. Creep forming MODULE 7 – TESTING, FAILURE ANALYSIS, STANDARDS, & INSPECTION Factors of safety are defined either in terms of the ultimate strength of a material or its yield strength. In other words, by the use of a suitable factor, the ultimate or yield strength is reduced in size to what is known as the design stress or safe working stress. Which factor of safety would be more appropriate for a material that will be subjected to repetitious, suddenly applied loads? Product liability court cases have risen sharply in recent years because of poor procedures in selecting materials for particular applications. Assuming that a knowledge of a material’s properties is a valid step in the selection process, cite two examples where such lack of knowledge could or did lead to failure or unsatisfactory performance. Make a sketch and fully dimension an Izod impact test specimen. Which agency publishes the Annual Book of standard test methods used worldwide for evaluation of materials? a. NASA b. NIST c. ASTM d. SPE

info@checkyourstudy.com
Ch 2 Questions that might be on the test. If you cannot answer them, check your class notes or the textbook. 1. A mineral is a naturally occurring substance formed through geological processes that has: a) a characteristic chemical composition, b) a highly ordered atomic structure c) specific physical properties d) all of the above 2. There are currently more than ______ known minerals, according to the International Mineralogical Association, a) 40 b) 400 c) 4000 d) 40 000 3. Some minerals, like quartz, mica or feldspar are: a) rare b) common c) valuable d) priceless 4. Rocks from which minerals are mined for economic purposes are referred to as: a) gangue b) tailings c) ores d) granite 5. Electrons, which have a _____ charge, a size which is so small as to be currently unmeasurable, and which are the least massive of the three types of basic particles. a) positive b) negative c) neutral 6. Both protons and neutrons are themselves now thought to be composed of even more elementary particles called: a) quarks b) quakes c) parsons d) megans 7. In processes which change the number of protons in a nucleus, the atom becomes an atom of a different chemical: a) isotope b) compound c) element d) planet 8. Atoms which have either a deficit or a surplus of electrons are called: a) elements b) isotopes c) ions d) molecules 9. In the Bohr model of the atom, electrons can only orbit the nucleus in particular circular orbits with fixed angular momentum and energy, their distances from the nucleus being proportional to their respective energies. They can only make _____ leaps between the fixed energy levels. a) tiny b) quantum c) gradual 10. It is impossible to simultaneously derive precise values for both the position and momentum of a particle for any given point in time; this became known as the ______ principle. a) Bohr b) Einstein c) uncertainty d) quantum 11. The modern model of the atom describes the positions of electrons in an atom in terms of: a) quantum levels b) orbital paths c) probabilities d) GPS 12. Isotopes of an element have nuclei with the same number of protons (the same atomic number) but different numbers of: a) electrons b) neutrons c) ions d) photons 13. In helium-3 (or 3He), how many protons are present? a) 1 b) 2 c) 3 d) 4 14. In helium-3 (or 3He), how many neutrons are present? a) 1 b) 2 c) 3 d) 4 15. The relative abundance of an isotope is strongly correlated with its tendency toward nuclear _____, short-lived nuclides quickly go away, while their long-lived counterparts endure. a) fission b) fusion c) decay d) bombardment 16. The isotopic composition of elements is different on different planets. a) True b) False 17. As a general rule, the fewer electrons in an atom’s valence shell, the ____ reactive it is. Lithium, sodium, and potassium have one electron in their outer shells. a) more b) less 18. Every atom is much more stable, or less reactive, with a ____ valence shell. a) partly full b) completely full 19. A positively-charged ion, which has fewer electrons than protons, is known as a: a) anion b) cation c) fermion d) bation 20. Bonds vary widely in their strength. Generally covalent and ionic bonds are often described as “strong”, whereas ______ bonds are generally considered to be “weak”. a) van der Waals b) Faradays c) van Neumans 21. This bonding involves sharing of electrons in which the positively charged nuclei of two or more atoms simultaneously attract the negatively charged electrons that are being shared a) ionic b) covalent c) van der Waals d) metallic 22. This bond results from electrostatic attraction between atoms: a) ionic b) covalent c) van der Waals d) metallic 23. A sea of delocalized electrons causes this bonding: a) ionic b) covalent c) van der Waals d) metallic 24. The chemical composition of minerals may vary between end members of a mineral system. For example the ______ feldspars comprise a continuous series from sodiumrich albite to calcium-rich anorthite. a) plagioclase b) orthoclase c) alkaline d) acidic 25. Crystal structure is based on ____ internal atomic arrangement. a) irregular b) regular c) random d) curvilinear 26. Pyrite and marcasite are both _______, but their arrangement of atoms differs. a) iron sulfide b) lead sulfide c) copper silfide d) silver sulfide 27. The carbon atoms in ______ are arranged into sheets which can slide easily past each other, while the carbon atoms in diamond form a strong, interlocking three-dimensional network. a) sapphire b) graphite c) aluminum d) carbonate 28. TGCFAOQTCD a) Crystal habit b) Hardness scale c) Luster scale 29. Dull to metallic, submetallic, adamantine, vitreous, pearly, resinous, or silky. a) Crystal habit b) Hardness scale c) Luster scale d) Heft scale 30. The color of the powder a mineral leaves after rubbing it on unglazed porcelain. a) color b) streak c) lustre d) iridescense 31. Describes the way a mineral may split apart along various planes. a) fracture b) streak c) lustre d) cleavage 32. In modern physics, the position of electrons about a nucleus are defined in terms of: a) probabilities b) circles c) ellipses d) chromodomes 33. The symbol H+ suggests a: a) hydrogen atom b) hydrogen isotope c) hydrogen cation d) hydrogen anion 34. The tabulated atomic mass of natural carbon is not exactly 12 because carbon in nature always has multiple ________ present. a) electrons b) isotopes c) quarks d) protons 35. This type of bonding due to delocalized electrons leads to malleability, ductility, and high melting points: a) covalent b) ionic c) van der Waals d) metallic 36. The mineral ___________ is 3 on Mohs Scale whereas the mineral ___________ is 9. a) calcite, corundum b) corundum, calcite c) caliche, calcite d) chalcedony, quartz 37. In hand specimens, geologists identify most minerals based on: a) physical properties b) chemical analyses c) xray diffraction 38. This type of chemical bonding is the weakest but occurs in all substances. a) covalent b) ionic c) metallic d) none of the above 39. Quartz, feldspar, mica, chlorite, kaolin, calcite, epidote, olivine, augite, hornblende, magnetite, hematite, limonite: these minerals are: a) common in rocks b) occasionally found c) rare d) extremely rare 40. Characteristics of a mineral do NOT include: a) naturally occurring b) characteristic chemical formula c) crystalline d) organic e) all of the above 41. The chemical composition of a particular mineral may vary between end members. For example, the common mineral plagioclase feldspar varies from being _______-rich to being _________-rich. a) sodium, calcium b) potassium, sodium c) iron, magnesium d) carbon, oxygen 42. Sharing of electrons typifies the __________ bond whereas electrostatic attraction typifies the _______ bond. a) ionic, covalent b) ionic, triclinic c) covalent, ionic d) triclinic, covalent 43. If number of protons does not equal the number of electrons, the atom is a(n) : a) isotope b) ion c) quark d) simplex e) google 44. Atoms generally consist of: a) electrons b) protons c) neutrons d) all of the above 45. Not counting rare minerals, about how many mineral species are at least occasionally encountered in rocks? a) 20 b) 200 c) 2000 46. Carbon is atomic number 6. Carbon-13 has _______ protons and _______ neutrons. a) thirteen, six b) six, seven c) twelve, twenty-five d) twelve, twelve 47. Which of these particles are not nucleons? a) electrons b) neutrons c) protons 48. A mineral with visibly recognizable crystals is said to have good crystal habit; otherwise the mineral is said to be: a) massive b) granular c) compact d) any of the above 49. In chemical bonding, two atoms become linked by moving or sharing __________. a) neutrons b) protons c) electrons 50. The name of an element is determined by the number of ______ present in the ______ of an atom. a) electrons, nucleus b) neutrons, nucleus c) protons, nucleus d) protons, electron cloud e) neutrons, electron cloud 51. Generally ________ and ____________ bonds are strong whereas the ______________ bond is weak. a) covalent, ionic, van der Waals b) van der Waals, covalent, ionic c) ionic, van der Waals, covalent 52. Which of the following are held together by chemical bonds? a) molecules b) crystals c) diatomic gases 53. An ion with fewer electrons than protons is called an ______ and it carries a _________ electric charge. a) cation, positive b) anion, negative c) cation, negative d) anion, positive 54. Two or more minerals may have the same _________ composition but different _______ structure. These are called polymorphs. a) crystal, chemical b) chemical, crystal 55. Industrial minerals are: a) gem quality b) commercially valuable c) tailings d) worthless 56. All minerals are crystalline. If the crystals are too small to see, they can be detected by: a) x-ray diffraction b) cosmic rays c) sound waves d) odor 57. If two atomes have the same number of protons but different numbers of neutrons, the atoms are _______ of the same _________. a) elements, mineral b) atoms, isotope c) elements, isotope d) isotopes, element 58. Modern physics recognizes that electrons show both particle and ______ behavior. a) wave b) emotional c) thermal d) revolting 59. Sodium and potassium have one ______ electron in their outer shells and are extremely ________. a) valence, stable b) inverted, reactive c) valence, reactive d) contaminated, inactive 60. The luster of _______ would be described as ________. a) glass, vitreous b) diamond, dull c) pyrite, silky d) graphite, resinous 61. The minerals ________ and __________ are polymorphs of carbon. a) diamond, graphite b) calcite, silicate c) bonite, bronzite 62. In the ______ atom based on _______ physics, electrons were restricted to circular orbits of fixed energy levels. a) Bohr , quantum b) Rutherford, classical c) Bohr, classical d) Rutherford, quantum 63. Virtually all elements other than ______ and _______ were formed in stars and supernovae long after the Big Bang. a) hydrogen, helium b) carbon, phosphorus c) carbon, oxygen d) silica, carbon 64. Physicist Werner _________ developed the ___________ principle which means that it is impossible to know exactly the position and momentum of a particle. a) Heisenberg, certainty b) Heisenberg, uncertainty c) Bohr, uncertainty d) Bohr, certainty

Ch 2 Questions that might be on the test. If you cannot answer them, check your class notes or the textbook. 1. A mineral is a naturally occurring substance formed through geological processes that has: a) a characteristic chemical composition, b) a highly ordered atomic structure c) specific physical properties d) all of the above 2. There are currently more than ______ known minerals, according to the International Mineralogical Association, a) 40 b) 400 c) 4000 d) 40 000 3. Some minerals, like quartz, mica or feldspar are: a) rare b) common c) valuable d) priceless 4. Rocks from which minerals are mined for economic purposes are referred to as: a) gangue b) tailings c) ores d) granite 5. Electrons, which have a _____ charge, a size which is so small as to be currently unmeasurable, and which are the least massive of the three types of basic particles. a) positive b) negative c) neutral 6. Both protons and neutrons are themselves now thought to be composed of even more elementary particles called: a) quarks b) quakes c) parsons d) megans 7. In processes which change the number of protons in a nucleus, the atom becomes an atom of a different chemical: a) isotope b) compound c) element d) planet 8. Atoms which have either a deficit or a surplus of electrons are called: a) elements b) isotopes c) ions d) molecules 9. In the Bohr model of the atom, electrons can only orbit the nucleus in particular circular orbits with fixed angular momentum and energy, their distances from the nucleus being proportional to their respective energies. They can only make _____ leaps between the fixed energy levels. a) tiny b) quantum c) gradual 10. It is impossible to simultaneously derive precise values for both the position and momentum of a particle for any given point in time; this became known as the ______ principle. a) Bohr b) Einstein c) uncertainty d) quantum 11. The modern model of the atom describes the positions of electrons in an atom in terms of: a) quantum levels b) orbital paths c) probabilities d) GPS 12. Isotopes of an element have nuclei with the same number of protons (the same atomic number) but different numbers of: a) electrons b) neutrons c) ions d) photons 13. In helium-3 (or 3He), how many protons are present? a) 1 b) 2 c) 3 d) 4 14. In helium-3 (or 3He), how many neutrons are present? a) 1 b) 2 c) 3 d) 4 15. The relative abundance of an isotope is strongly correlated with its tendency toward nuclear _____, short-lived nuclides quickly go away, while their long-lived counterparts endure. a) fission b) fusion c) decay d) bombardment 16. The isotopic composition of elements is different on different planets. a) True b) False 17. As a general rule, the fewer electrons in an atom’s valence shell, the ____ reactive it is. Lithium, sodium, and potassium have one electron in their outer shells. a) more b) less 18. Every atom is much more stable, or less reactive, with a ____ valence shell. a) partly full b) completely full 19. A positively-charged ion, which has fewer electrons than protons, is known as a: a) anion b) cation c) fermion d) bation 20. Bonds vary widely in their strength. Generally covalent and ionic bonds are often described as “strong”, whereas ______ bonds are generally considered to be “weak”. a) van der Waals b) Faradays c) van Neumans 21. This bonding involves sharing of electrons in which the positively charged nuclei of two or more atoms simultaneously attract the negatively charged electrons that are being shared a) ionic b) covalent c) van der Waals d) metallic 22. This bond results from electrostatic attraction between atoms: a) ionic b) covalent c) van der Waals d) metallic 23. A sea of delocalized electrons causes this bonding: a) ionic b) covalent c) van der Waals d) metallic 24. The chemical composition of minerals may vary between end members of a mineral system. For example the ______ feldspars comprise a continuous series from sodiumrich albite to calcium-rich anorthite. a) plagioclase b) orthoclase c) alkaline d) acidic 25. Crystal structure is based on ____ internal atomic arrangement. a) irregular b) regular c) random d) curvilinear 26. Pyrite and marcasite are both _______, but their arrangement of atoms differs. a) iron sulfide b) lead sulfide c) copper silfide d) silver sulfide 27. The carbon atoms in ______ are arranged into sheets which can slide easily past each other, while the carbon atoms in diamond form a strong, interlocking three-dimensional network. a) sapphire b) graphite c) aluminum d) carbonate 28. TGCFAOQTCD a) Crystal habit b) Hardness scale c) Luster scale 29. Dull to metallic, submetallic, adamantine, vitreous, pearly, resinous, or silky. a) Crystal habit b) Hardness scale c) Luster scale d) Heft scale 30. The color of the powder a mineral leaves after rubbing it on unglazed porcelain. a) color b) streak c) lustre d) iridescense 31. Describes the way a mineral may split apart along various planes. a) fracture b) streak c) lustre d) cleavage 32. In modern physics, the position of electrons about a nucleus are defined in terms of: a) probabilities b) circles c) ellipses d) chromodomes 33. The symbol H+ suggests a: a) hydrogen atom b) hydrogen isotope c) hydrogen cation d) hydrogen anion 34. The tabulated atomic mass of natural carbon is not exactly 12 because carbon in nature always has multiple ________ present. a) electrons b) isotopes c) quarks d) protons 35. This type of bonding due to delocalized electrons leads to malleability, ductility, and high melting points: a) covalent b) ionic c) van der Waals d) metallic 36. The mineral ___________ is 3 on Mohs Scale whereas the mineral ___________ is 9. a) calcite, corundum b) corundum, calcite c) caliche, calcite d) chalcedony, quartz 37. In hand specimens, geologists identify most minerals based on: a) physical properties b) chemical analyses c) xray diffraction 38. This type of chemical bonding is the weakest but occurs in all substances. a) covalent b) ionic c) metallic d) none of the above 39. Quartz, feldspar, mica, chlorite, kaolin, calcite, epidote, olivine, augite, hornblende, magnetite, hematite, limonite: these minerals are: a) common in rocks b) occasionally found c) rare d) extremely rare 40. Characteristics of a mineral do NOT include: a) naturally occurring b) characteristic chemical formula c) crystalline d) organic e) all of the above 41. The chemical composition of a particular mineral may vary between end members. For example, the common mineral plagioclase feldspar varies from being _______-rich to being _________-rich. a) sodium, calcium b) potassium, sodium c) iron, magnesium d) carbon, oxygen 42. Sharing of electrons typifies the __________ bond whereas electrostatic attraction typifies the _______ bond. a) ionic, covalent b) ionic, triclinic c) covalent, ionic d) triclinic, covalent 43. If number of protons does not equal the number of electrons, the atom is a(n) : a) isotope b) ion c) quark d) simplex e) google 44. Atoms generally consist of: a) electrons b) protons c) neutrons d) all of the above 45. Not counting rare minerals, about how many mineral species are at least occasionally encountered in rocks? a) 20 b) 200 c) 2000 46. Carbon is atomic number 6. Carbon-13 has _______ protons and _______ neutrons. a) thirteen, six b) six, seven c) twelve, twenty-five d) twelve, twelve 47. Which of these particles are not nucleons? a) electrons b) neutrons c) protons 48. A mineral with visibly recognizable crystals is said to have good crystal habit; otherwise the mineral is said to be: a) massive b) granular c) compact d) any of the above 49. In chemical bonding, two atoms become linked by moving or sharing __________. a) neutrons b) protons c) electrons 50. The name of an element is determined by the number of ______ present in the ______ of an atom. a) electrons, nucleus b) neutrons, nucleus c) protons, nucleus d) protons, electron cloud e) neutrons, electron cloud 51. Generally ________ and ____________ bonds are strong whereas the ______________ bond is weak. a) covalent, ionic, van der Waals b) van der Waals, covalent, ionic c) ionic, van der Waals, covalent 52. Which of the following are held together by chemical bonds? a) molecules b) crystals c) diatomic gases 53. An ion with fewer electrons than protons is called an ______ and it carries a _________ electric charge. a) cation, positive b) anion, negative c) cation, negative d) anion, positive 54. Two or more minerals may have the same _________ composition but different _______ structure. These are called polymorphs. a) crystal, chemical b) chemical, crystal 55. Industrial minerals are: a) gem quality b) commercially valuable c) tailings d) worthless 56. All minerals are crystalline. If the crystals are too small to see, they can be detected by: a) x-ray diffraction b) cosmic rays c) sound waves d) odor 57. If two atomes have the same number of protons but different numbers of neutrons, the atoms are _______ of the same _________. a) elements, mineral b) atoms, isotope c) elements, isotope d) isotopes, element 58. Modern physics recognizes that electrons show both particle and ______ behavior. a) wave b) emotional c) thermal d) revolting 59. Sodium and potassium have one ______ electron in their outer shells and are extremely ________. a) valence, stable b) inverted, reactive c) valence, reactive d) contaminated, inactive 60. The luster of _______ would be described as ________. a) glass, vitreous b) diamond, dull c) pyrite, silky d) graphite, resinous 61. The minerals ________ and __________ are polymorphs of carbon. a) diamond, graphite b) calcite, silicate c) bonite, bronzite 62. In the ______ atom based on _______ physics, electrons were restricted to circular orbits of fixed energy levels. a) Bohr , quantum b) Rutherford, classical c) Bohr, classical d) Rutherford, quantum 63. Virtually all elements other than ______ and _______ were formed in stars and supernovae long after the Big Bang. a) hydrogen, helium b) carbon, phosphorus c) carbon, oxygen d) silica, carbon 64. Physicist Werner _________ developed the ___________ principle which means that it is impossible to know exactly the position and momentum of a particle. a) Heisenberg, certainty b) Heisenberg, uncertainty c) Bohr, uncertainty d) Bohr, certainty

info@checkyourstudy.com
Ronald Wright, Stolen Continents, Ch. 3, pp. 72-83. It’s posted here on Moodle as a PDF( attached) 1.)What’s your gut reaction to this reading? 2.) Give a summary of the meeting and dialogue between the Inca Emperor Atawallpa and the Spanish. 3.) Give the date, place and basic elements of the successful confrontation the Spanish had with Inca Atawallpa and his soldiers. 4.) According to Wright’s account, what do you think is the main reason or reasons that Inca Atawallpa lost this confrontation? What is the evidence for your conclusion?”

Ronald Wright, Stolen Continents, Ch. 3, pp. 72-83. It’s posted here on Moodle as a PDF( attached) 1.)What’s your gut reaction to this reading? 2.) Give a summary of the meeting and dialogue between the Inca Emperor Atawallpa and the Spanish. 3.) Give the date, place and basic elements of the successful confrontation the Spanish had with Inca Atawallpa and his soldiers. 4.) According to Wright’s account, what do you think is the main reason or reasons that Inca Atawallpa lost this confrontation? What is the evidence for your conclusion?”

1) The book named “Stolen Continents” is written by Ronald … Read More...
Give a factual example of an unconscionable contract and explain why a court would rule that the particular example is unconscionable. You may use facts from the textbook, a case that you are familiar with or you may make up the example.

Give a factual example of an unconscionable contract and explain why a court would rule that the particular example is unconscionable. You may use facts from the textbook, a case that you are familiar with or you may make up the example.

An unconscionable contract : is a one sided contract with … Read More...