Assignment 8 Due: 11:59pm on Friday, April 4, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 10.3 Part A If a particle’s speed increases by a factor of 5, by what factor does its kinetic energy change? ANSWER: Correct Conceptual Question 10.11 A spring is compressed 1.5 . Part A How far must you compress a spring with twice the spring constant to store the same amount of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct = 25 K2 K1 cm x = 1.1 cm Problem 10.2 The lowest point in Death Valley is below sea level. The summit of nearby Mt. Whitney has an elevation of 4420 . Part A What is the change in potential energy of an energetic 80 hiker who makes it from the floor of Death Valley to the top of Mt.Whitney? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.3 Part A At what speed does a 1800 compact car have the same kinetic energy as a 1.80×104 truck going 21.0 ? Express your answer with the appropriate units. ANSWER: Correct Problem 10.5 A boy reaches out of a window and tosses a ball straight up with a speed of 13 . The ball is 21 above the ground as he releases it. 85m m kg U = 3.5×106 J kg kg km/hr vc = 66.4 km hr m/s m Part A Use energy to find the ball’s maximum height above the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B Use energy to find the ball’s speed as it passes the window on its way down. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C Use energy to find the speed of impact on the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Hmax = 30 m v = 13 ms v = 24 ms Problem 10.8 A 59.0 skateboarder wants to just make it to the upper edge of a “quarter pipe,” a track that is one-quarter of a circle with a radius of 2.30 . Part A What speed does he need at the bottom? Express your answer with the appropriate units. ANSWER: Correct Problem 10.12 A 1500 car traveling at 12 suddenly runs out of gas while approaching the valley shown in the figure. The alert driver immediately puts the car in neutral so that it will roll. Part A kg m 6.71 ms kg m/s What will be the car’s speed as it coasts into the gas station on the other side of the valley? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Ups and Downs Learning Goal: To apply the law of conservation of energy to an object launched upward in the gravitational field of the earth. In the absence of nonconservative forces such as friction and air resistance, the total mechanical energy in a closed system is conserved. This is one particular case of the law of conservation of energy. In this problem, you will apply the law of conservation of energy to different objects launched from the earth. The energy transformations that take place involve the object’s kinetic energy and its gravitational potential energy . The law of conservation of energy for such cases implies that the sum of the object’s kinetic energy and potential energy does not change with time. This idea can be expressed by the equation , where “i” denotes the “initial” moment and “f” denotes the “final” moment. Since any two moments will work, the choice of the moments to consider is, technically, up to you. That choice, though, is usually suggested by the question posed in the problem. First, let us consider an object launched vertically upward with an initial speed . Neglect air resistance. Part A As the projectile goes upward, what energy changes take place? ANSWER: v = 6.8 ms K = (1/2)mv2 U = mgh Ki + Ui = Kf + Uf v Correct Part B At the top point of the flight, what can be said about the projectile’s kinetic and potential energy? ANSWER: Correct Strictly speaking, it is not the ball that possesses potential energy; rather, it is the system “Earth-ball.” Although we will often talk about “the gravitational potential energy of an elevated object,” it is useful to keep in mind that the energy, in fact, is associated with the interactions between the earth and the elevated object. Part C The potential energy of the object at the moment of launch __________. ANSWER: Both kinetic and potential energy decrease. Both kinetic and potential energy increase. Kinetic energy decreases; potential energy increases. Kinetic energy increases; potential energy decreases. Both kinetic and potential energy are at their maximum values. Both kinetic and potential energy are at their minimum values. Kinetic energy is at a maximum; potential energy is at a minimum. Kinetic energy is at a minimum; potential energy is at a maximum. Correct Usually, the zero level is chosen so as to make the relevant calculations simpler. In this case, it makes good sense to assume that at the ground level–but this is not, by any means, the only choice! Part D Using conservation of energy, find the maximum height to which the object will rise. Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: Correct You may remember this result from kinematics. It is comforting to know that our new approach yields the same answer. Part E At what height above the ground does the projectile have a speed of ? Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: is negative is positive is zero depends on the choice of the “zero level” of potential energy U = 0 hmax v g hmax = v2 2g h 0.5v v g h = 3 v2 8g Correct Part F What is the speed of the object at the height of ? Express your answer in terms of and . Use three significant figures in the numeric coefficient. Hint 1. How to approach the problem You are being asked for the speed at half of the maximum height. You know that at the initial height ( ), the speed is . All of the energy is kinetic energy, and so, the total energy is . At the maximum height, all of the energy is potential energy. Since the gravitational potential energy is proportional to , half of the initial kinetic energy must have been converted to potential energy when the projectile is at . Thus, the kinetic energy must be half of its original value (i.e., when ). You need to determine the speed, as a multiple of , that corresponds to such a kinetic energy. ANSWER: Correct Let us now consider objects launched at an angle. For such situations, using conservation of energy leads to a quicker solution than can be produced by kinematics. Part G A ball is launched as a projectile with initial speed at an angle above the horizontal. Using conservation of energy, find the maximum height of the ball’s flight. Express your answer in terms of , , and . Hint 1. Find the final kinetic energy Find the final kinetic energy of the ball. Here, the best choice of “final” moment is the point at which the ball reaches its maximum height, since this is the point we are interested in. u (1/2)hmax v g h = 0 v (1/2)mv2 h (1/2)hmax (1/4)mv2 h = (1/2)hmax v u = 0.707v v hmax v g Kf Express your answer in terms of , , and . Hint 1. Find the speed at the maximum height The speed of the ball at the maximum height is __________. ANSWER: ANSWER: ANSWER: Correct Part H A ball is launched with initial speed from ground level up a frictionless slope. The slope makes an angle with the horizontal. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of , , and . You may or may not use all of these quantities. v m 0 v v cos v sin v tan Kf = 0.5m(vcos( ))2 hmax = (vsin( ))2 2g v hmax v g ANSWER: Correct Interestingly, the answer does not depend on . The difference between this situation and the projectile case is that the ball moving up a slope has no kinetic energy at the top of its trajectory whereas the projectile launched at an angle does. Part I A ball is launched with initial speed from the ground level up a frictionless hill. The hill becomes steeper as the ball slides up; however, the ball remains in contact with the hill at all times. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of and . ANSWER: Correct The profile of the hill does not matter; the equation would have the same terms regardless of the steepness of the hill. Problem 10.14 A 12- -long spring is attached to the ceiling. When a 2.2 mass is hung from it, the spring stretches to a length of 17 . Part A What is the spring constant ? Express your answer to two significant figures and include the appropriate units. hmax = v2 2g v hmax v g hmax = v2 2g Ki + Ui = Kf + Uf cm kg cm k ANSWER: Correct Part B How long is the spring when a 3.0 mass is suspended from it? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.17 A 6.2 mass hanging from a spring scale is slowly lowered onto a vertical spring, as shown in . You may want to review ( pages 255 – 257) . For help with math skills, you may want to review: Solving Algebraic Equations = 430 k Nm kg y = 19 cm kg Part A What does the spring scale read just before the mass touches the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass before it touches the scale. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? ANSWER: Correct Part B The scale reads 22 when the lower spring has been compressed by 2.7 . What is the value of the spring constant for the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? Use these to determine the force on the mass by the spring, taking note of the directions from your picture. How is the spring constant related to the force by the spring and the compression of the spring? Check your units. ANSWER: F = 61 N N cm k = 1400 k Nm Correct Part C At what compression length will the scale read zero? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces on the mass. When the scale reads zero, what is the force on the mass due to the scale? What is the gravitational force on the mass? What is the force on the mass by the spring? How is the compression length related to the force by the spring and the spring constant? Check your units. ANSWER: Correct Problem 10.18 Part A How far must you stretch a spring with = 800 to store 180 of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: y = 4.2 cm k N/m J Correct Problem 10.22 A 15 runaway grocery cart runs into a spring with spring constant 230 and compresses it by 57 . Part A What was the speed of the cart just before it hit the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Spring Gun A spring-loaded toy gun is used to shoot a ball straight up in the air. The ball reaches a maximum height , measured from the equilibrium position of the spring. s = 0.67 m kg N/m cm v = 2.2 ms H Part A The same ball is shot straight up a second time from the same gun, but this time the spring is compressed only half as far before firing. How far up does the ball go this time? Neglect friction. Assume that the spring is ideal and that the distance by which the spring is compressed is negligible compared to . Hint 1. Potential energy of the spring The potential energy of a spring is proportional to the square of the distance the spring is compressed. The spring was compressed half the distance, so the mass, when launched, has one quarter of the energy as in the first trial. Hint 2. Potential energy of the ball At the highest point in the ball’s trajectory, all of the spring’s potential energy has been converted into gravitational potential energy of the ball. ANSWER: Correct A Bullet Is Fired into a Wooden Block A bullet of mass is fired horizontally with speed at a wooden block of mass resting on a frictionless table. The bullet hits the block and becomes completely embedded within it. After the bullet has come to rest within the block, the block, with the bullet in it, is traveling at speed . H height = H 4 mb vi mw vf Part A Which of the following best describes this collision? Hint 1. Types of collisions An inelastic collision is a collision in which kinetic energy is not conserved. In a partially inelastic collision, kinetic energy is lost, but the objects colliding do not stick together. From this information, you can infer what completely inelastic and elastic collisions are. ANSWER: Correct Part B Which of the following quantities, if any, are conserved during this collision? Hint 1. When is kinetic energy conserved? Kinetic energy is conserved only in perfectly elastic collisions. ANSWER: perfectly elastic partially inelastic perfectly inelastic Correct Part C What is the speed of the block/bullet system after the collision? Express your answer in terms of , , and . Hint 1. Find the momentum after the collision What is the total momentum of the block/bullet system after the collision? Express your answer in terms of and other given quantities. ANSWER: Hint 2. Use conservation of momentum The momentum of the block/bullet system is conserved. Therefore, the momentum before the collision is the same as the momentum after the collision. Find a second expression for , this time expressed as the total momentum of the system before the collision. Express your answer in terms of and other given quantities. ANSWER: kinetic energy only momentum only kinetic energy and momentum neither momentum nor kinetic energy vi mw mb ptotal vf ptotal = (mw + mb)vf ptotal vi ptotal = mbvi ANSWER: Correct Problem 10.31 Ball 1, with a mass of 150 and traveling at 15.0 , collides head on with ball 2, which has a mass of 340 and is initially at rest. Part A What are the final velocities of each ball if the collision is perfectly elastic? Express your answer with the appropriate units. ANSWER: Correct Part B Express your answer with the appropriate units. ANSWER: Correct Part C vf = mb vi mb+mw g m/s g (vfx) = -5.82 1 ms (vfx) = 9.18 2 ms What are the final velocities of each ball if the collision is perfectly inelastic? Express your answer with the appropriate units. ANSWER: Correct Part D Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.43 A package of mass is released from rest at a warehouse loading dock and slides down the = 2.2 – high, frictionless chute to a waiting truck. Unfortunately, the truck driver went on a break without having removed the previous package, of mass , from the bottom of the chute. You may want to review ( pages 265 – 269) . For help with math skills, you may want to review: Solving Algebraic Equations (vfx) = 4.59 1 ms (vfx) = 4.59 2 ms m h m 2m Part A Suppose the packages stick together. What is their common speed after the collision? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are two parts to this problem: the block sliding down the frictionless incline and the collision. What conservation laws are valid in each part? In terms of , what are the kinetic and potential energies of the block at the top of the incline? What is the potential energy of the same block at the bottom just before the collision? What are the kinetic energy and velocity of block just before the collision? What is conserved during the collision? What is the total momentum of the two blocks before the collision? What is the momentum of the two blocks stuck together after the collision? What is the velocity of the two blocks after the collision? ANSWER: Correct Part B Suppose the collision between the packages is perfectly elastic. To what height does the package of mass rebound? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are three parts to this problem: the block sliding down the incline, the collision, and mass going back up the incline. What conservation laws are valid in each part? m m v = 2.2 ms m m What is an elastic collision? For an elastic collision, how are the initial and final velocities related when one of the masses is initially at rest? Using the velocity of just before the collision from Part A, what is the velocity of just after the collision in this case? What are the kinetic and potential energies of mass just after the collision? What is the kinetic energy of mass at its maximum rebound height? Using conservation of energy, what is the potential energy of mass at its maximum height? What is the maximum height? ANSWER: Correct Problem 10.35 A cannon tilted up at a 35.0 angle fires a cannon ball at 79.0 from atop a 21.0 -high fortress wall. Part A What is the ball’s impact speed on the ground below? Express your answer with the appropriate units. ANSWER: Correct Problem 10.45 A 1000 safe is 2.5 above a heavy-duty spring when the rope holding the safe breaks. The safe hits the spring and compresses it 48 . m m m m m h = 24 cm $ m/s m vf = 81.6 ms kg m cm Part A What is the spring constant of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.49 A 100 block on a frictionless table is firmly attached to one end of a spring with = 21 . The other end of the spring is anchored to the wall. A 30 ball is thrown horizontally toward the block with a speed of 6.0 . Part A If the collision is perfectly elastic, what is the ball’s speed immediately after the collision? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the maximum compression of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: = 2.5×105 k Nm g k N/m g m/s v = 3.2 ms Correct Part C Repeat part A for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D Repeat part B for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 99.4%. You received 120.28 out of a possible total of 121 points. x = 0.19 m v = 1.4 ms x = 0.11 m

Assignment 8 Due: 11:59pm on Friday, April 4, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 10.3 Part A If a particle’s speed increases by a factor of 5, by what factor does its kinetic energy change? ANSWER: Correct Conceptual Question 10.11 A spring is compressed 1.5 . Part A How far must you compress a spring with twice the spring constant to store the same amount of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct = 25 K2 K1 cm x = 1.1 cm Problem 10.2 The lowest point in Death Valley is below sea level. The summit of nearby Mt. Whitney has an elevation of 4420 . Part A What is the change in potential energy of an energetic 80 hiker who makes it from the floor of Death Valley to the top of Mt.Whitney? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.3 Part A At what speed does a 1800 compact car have the same kinetic energy as a 1.80×104 truck going 21.0 ? Express your answer with the appropriate units. ANSWER: Correct Problem 10.5 A boy reaches out of a window and tosses a ball straight up with a speed of 13 . The ball is 21 above the ground as he releases it. 85m m kg U = 3.5×106 J kg kg km/hr vc = 66.4 km hr m/s m Part A Use energy to find the ball’s maximum height above the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B Use energy to find the ball’s speed as it passes the window on its way down. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C Use energy to find the speed of impact on the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Hmax = 30 m v = 13 ms v = 24 ms Problem 10.8 A 59.0 skateboarder wants to just make it to the upper edge of a “quarter pipe,” a track that is one-quarter of a circle with a radius of 2.30 . Part A What speed does he need at the bottom? Express your answer with the appropriate units. ANSWER: Correct Problem 10.12 A 1500 car traveling at 12 suddenly runs out of gas while approaching the valley shown in the figure. The alert driver immediately puts the car in neutral so that it will roll. Part A kg m 6.71 ms kg m/s What will be the car’s speed as it coasts into the gas station on the other side of the valley? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Ups and Downs Learning Goal: To apply the law of conservation of energy to an object launched upward in the gravitational field of the earth. In the absence of nonconservative forces such as friction and air resistance, the total mechanical energy in a closed system is conserved. This is one particular case of the law of conservation of energy. In this problem, you will apply the law of conservation of energy to different objects launched from the earth. The energy transformations that take place involve the object’s kinetic energy and its gravitational potential energy . The law of conservation of energy for such cases implies that the sum of the object’s kinetic energy and potential energy does not change with time. This idea can be expressed by the equation , where “i” denotes the “initial” moment and “f” denotes the “final” moment. Since any two moments will work, the choice of the moments to consider is, technically, up to you. That choice, though, is usually suggested by the question posed in the problem. First, let us consider an object launched vertically upward with an initial speed . Neglect air resistance. Part A As the projectile goes upward, what energy changes take place? ANSWER: v = 6.8 ms K = (1/2)mv2 U = mgh Ki + Ui = Kf + Uf v Correct Part B At the top point of the flight, what can be said about the projectile’s kinetic and potential energy? ANSWER: Correct Strictly speaking, it is not the ball that possesses potential energy; rather, it is the system “Earth-ball.” Although we will often talk about “the gravitational potential energy of an elevated object,” it is useful to keep in mind that the energy, in fact, is associated with the interactions between the earth and the elevated object. Part C The potential energy of the object at the moment of launch __________. ANSWER: Both kinetic and potential energy decrease. Both kinetic and potential energy increase. Kinetic energy decreases; potential energy increases. Kinetic energy increases; potential energy decreases. Both kinetic and potential energy are at their maximum values. Both kinetic and potential energy are at their minimum values. Kinetic energy is at a maximum; potential energy is at a minimum. Kinetic energy is at a minimum; potential energy is at a maximum. Correct Usually, the zero level is chosen so as to make the relevant calculations simpler. In this case, it makes good sense to assume that at the ground level–but this is not, by any means, the only choice! Part D Using conservation of energy, find the maximum height to which the object will rise. Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: Correct You may remember this result from kinematics. It is comforting to know that our new approach yields the same answer. Part E At what height above the ground does the projectile have a speed of ? Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: is negative is positive is zero depends on the choice of the “zero level” of potential energy U = 0 hmax v g hmax = v2 2g h 0.5v v g h = 3 v2 8g Correct Part F What is the speed of the object at the height of ? Express your answer in terms of and . Use three significant figures in the numeric coefficient. Hint 1. How to approach the problem You are being asked for the speed at half of the maximum height. You know that at the initial height ( ), the speed is . All of the energy is kinetic energy, and so, the total energy is . At the maximum height, all of the energy is potential energy. Since the gravitational potential energy is proportional to , half of the initial kinetic energy must have been converted to potential energy when the projectile is at . Thus, the kinetic energy must be half of its original value (i.e., when ). You need to determine the speed, as a multiple of , that corresponds to such a kinetic energy. ANSWER: Correct Let us now consider objects launched at an angle. For such situations, using conservation of energy leads to a quicker solution than can be produced by kinematics. Part G A ball is launched as a projectile with initial speed at an angle above the horizontal. Using conservation of energy, find the maximum height of the ball’s flight. Express your answer in terms of , , and . Hint 1. Find the final kinetic energy Find the final kinetic energy of the ball. Here, the best choice of “final” moment is the point at which the ball reaches its maximum height, since this is the point we are interested in. u (1/2)hmax v g h = 0 v (1/2)mv2 h (1/2)hmax (1/4)mv2 h = (1/2)hmax v u = 0.707v v hmax v g Kf Express your answer in terms of , , and . Hint 1. Find the speed at the maximum height The speed of the ball at the maximum height is __________. ANSWER: ANSWER: ANSWER: Correct Part H A ball is launched with initial speed from ground level up a frictionless slope. The slope makes an angle with the horizontal. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of , , and . You may or may not use all of these quantities. v m 0 v v cos v sin v tan Kf = 0.5m(vcos( ))2 hmax = (vsin( ))2 2g v hmax v g ANSWER: Correct Interestingly, the answer does not depend on . The difference between this situation and the projectile case is that the ball moving up a slope has no kinetic energy at the top of its trajectory whereas the projectile launched at an angle does. Part I A ball is launched with initial speed from the ground level up a frictionless hill. The hill becomes steeper as the ball slides up; however, the ball remains in contact with the hill at all times. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of and . ANSWER: Correct The profile of the hill does not matter; the equation would have the same terms regardless of the steepness of the hill. Problem 10.14 A 12- -long spring is attached to the ceiling. When a 2.2 mass is hung from it, the spring stretches to a length of 17 . Part A What is the spring constant ? Express your answer to two significant figures and include the appropriate units. hmax = v2 2g v hmax v g hmax = v2 2g Ki + Ui = Kf + Uf cm kg cm k ANSWER: Correct Part B How long is the spring when a 3.0 mass is suspended from it? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.17 A 6.2 mass hanging from a spring scale is slowly lowered onto a vertical spring, as shown in . You may want to review ( pages 255 – 257) . For help with math skills, you may want to review: Solving Algebraic Equations = 430 k Nm kg y = 19 cm kg Part A What does the spring scale read just before the mass touches the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass before it touches the scale. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? ANSWER: Correct Part B The scale reads 22 when the lower spring has been compressed by 2.7 . What is the value of the spring constant for the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? Use these to determine the force on the mass by the spring, taking note of the directions from your picture. How is the spring constant related to the force by the spring and the compression of the spring? Check your units. ANSWER: F = 61 N N cm k = 1400 k Nm Correct Part C At what compression length will the scale read zero? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces on the mass. When the scale reads zero, what is the force on the mass due to the scale? What is the gravitational force on the mass? What is the force on the mass by the spring? How is the compression length related to the force by the spring and the spring constant? Check your units. ANSWER: Correct Problem 10.18 Part A How far must you stretch a spring with = 800 to store 180 of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: y = 4.2 cm k N/m J Correct Problem 10.22 A 15 runaway grocery cart runs into a spring with spring constant 230 and compresses it by 57 . Part A What was the speed of the cart just before it hit the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Spring Gun A spring-loaded toy gun is used to shoot a ball straight up in the air. The ball reaches a maximum height , measured from the equilibrium position of the spring. s = 0.67 m kg N/m cm v = 2.2 ms H Part A The same ball is shot straight up a second time from the same gun, but this time the spring is compressed only half as far before firing. How far up does the ball go this time? Neglect friction. Assume that the spring is ideal and that the distance by which the spring is compressed is negligible compared to . Hint 1. Potential energy of the spring The potential energy of a spring is proportional to the square of the distance the spring is compressed. The spring was compressed half the distance, so the mass, when launched, has one quarter of the energy as in the first trial. Hint 2. Potential energy of the ball At the highest point in the ball’s trajectory, all of the spring’s potential energy has been converted into gravitational potential energy of the ball. ANSWER: Correct A Bullet Is Fired into a Wooden Block A bullet of mass is fired horizontally with speed at a wooden block of mass resting on a frictionless table. The bullet hits the block and becomes completely embedded within it. After the bullet has come to rest within the block, the block, with the bullet in it, is traveling at speed . H height = H 4 mb vi mw vf Part A Which of the following best describes this collision? Hint 1. Types of collisions An inelastic collision is a collision in which kinetic energy is not conserved. In a partially inelastic collision, kinetic energy is lost, but the objects colliding do not stick together. From this information, you can infer what completely inelastic and elastic collisions are. ANSWER: Correct Part B Which of the following quantities, if any, are conserved during this collision? Hint 1. When is kinetic energy conserved? Kinetic energy is conserved only in perfectly elastic collisions. ANSWER: perfectly elastic partially inelastic perfectly inelastic Correct Part C What is the speed of the block/bullet system after the collision? Express your answer in terms of , , and . Hint 1. Find the momentum after the collision What is the total momentum of the block/bullet system after the collision? Express your answer in terms of and other given quantities. ANSWER: Hint 2. Use conservation of momentum The momentum of the block/bullet system is conserved. Therefore, the momentum before the collision is the same as the momentum after the collision. Find a second expression for , this time expressed as the total momentum of the system before the collision. Express your answer in terms of and other given quantities. ANSWER: kinetic energy only momentum only kinetic energy and momentum neither momentum nor kinetic energy vi mw mb ptotal vf ptotal = (mw + mb)vf ptotal vi ptotal = mbvi ANSWER: Correct Problem 10.31 Ball 1, with a mass of 150 and traveling at 15.0 , collides head on with ball 2, which has a mass of 340 and is initially at rest. Part A What are the final velocities of each ball if the collision is perfectly elastic? Express your answer with the appropriate units. ANSWER: Correct Part B Express your answer with the appropriate units. ANSWER: Correct Part C vf = mb vi mb+mw g m/s g (vfx) = -5.82 1 ms (vfx) = 9.18 2 ms What are the final velocities of each ball if the collision is perfectly inelastic? Express your answer with the appropriate units. ANSWER: Correct Part D Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.43 A package of mass is released from rest at a warehouse loading dock and slides down the = 2.2 – high, frictionless chute to a waiting truck. Unfortunately, the truck driver went on a break without having removed the previous package, of mass , from the bottom of the chute. You may want to review ( pages 265 – 269) . For help with math skills, you may want to review: Solving Algebraic Equations (vfx) = 4.59 1 ms (vfx) = 4.59 2 ms m h m 2m Part A Suppose the packages stick together. What is their common speed after the collision? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are two parts to this problem: the block sliding down the frictionless incline and the collision. What conservation laws are valid in each part? In terms of , what are the kinetic and potential energies of the block at the top of the incline? What is the potential energy of the same block at the bottom just before the collision? What are the kinetic energy and velocity of block just before the collision? What is conserved during the collision? What is the total momentum of the two blocks before the collision? What is the momentum of the two blocks stuck together after the collision? What is the velocity of the two blocks after the collision? ANSWER: Correct Part B Suppose the collision between the packages is perfectly elastic. To what height does the package of mass rebound? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are three parts to this problem: the block sliding down the incline, the collision, and mass going back up the incline. What conservation laws are valid in each part? m m v = 2.2 ms m m What is an elastic collision? For an elastic collision, how are the initial and final velocities related when one of the masses is initially at rest? Using the velocity of just before the collision from Part A, what is the velocity of just after the collision in this case? What are the kinetic and potential energies of mass just after the collision? What is the kinetic energy of mass at its maximum rebound height? Using conservation of energy, what is the potential energy of mass at its maximum height? What is the maximum height? ANSWER: Correct Problem 10.35 A cannon tilted up at a 35.0 angle fires a cannon ball at 79.0 from atop a 21.0 -high fortress wall. Part A What is the ball’s impact speed on the ground below? Express your answer with the appropriate units. ANSWER: Correct Problem 10.45 A 1000 safe is 2.5 above a heavy-duty spring when the rope holding the safe breaks. The safe hits the spring and compresses it 48 . m m m m m h = 24 cm $ m/s m vf = 81.6 ms kg m cm Part A What is the spring constant of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.49 A 100 block on a frictionless table is firmly attached to one end of a spring with = 21 . The other end of the spring is anchored to the wall. A 30 ball is thrown horizontally toward the block with a speed of 6.0 . Part A If the collision is perfectly elastic, what is the ball’s speed immediately after the collision? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the maximum compression of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: = 2.5×105 k Nm g k N/m g m/s v = 3.2 ms Correct Part C Repeat part A for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D Repeat part B for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 99.4%. You received 120.28 out of a possible total of 121 points. x = 0.19 m v = 1.4 ms x = 0.11 m

please email info@checkyourstudy.com
Corporate Report Assignment Due April 17 Your final paper should include: -5 pages double-spaced narrative. Papers over 5 pages will receive point deduction. -Additional Pages: -Graph of stock performance 3 year price history of company (with article marked), S&P 500, and a benchmark company -Bibliography. But you still need to cite sources in the body of your paper. -Ratio Worksheets – fully completed. You will attach the same ratios that were graded; any corrections that were indicated in the initial grading should be made. -Headings and page numbers -Labels for the ratios (example: times, %, days) Format of Paper: COMPANY BACKGROUND (½-1 page) Include information like founding date, headquarters location, product or service provided, date when first traded in public markets, market on which it trades, and any other information that seems important for understanding the company. FINANCIAL ANALYSIS (2-3 pages) Discuss at least 8 ratios from the Ratio Worksheet that you feel explain the trends/changes within the company over the time period. You will need to choose at least one ratio from each of the overall categories (i.e. one from asset utilization, one from liquidity, etc.) Discuss all of the following for the ratios chosen: -Has it improved, deteriorated or stayed the same over the last 3 years? Do not use the words increasing/decreasing or higher/lower. Instead use better/worse or improving/deteriorating. Explain whether the change in the ratio was a good thing or a bad thing. -What is the reason behind the changes in the ratio? Not just what part of the ratio changed, but what was happening with the company that could have affected the ratio? If you can not find specific news, what do you think was affecting the ratio? -How does it compare to the industry? At least one ratio from each category should be discussed. As you write your paper think about (These were top reasons I docked points in the past): What are the ratios? This is a finance class give me numbers What does the ratio mean or measure? Discuss components (assets increasing but not as much as_____) Discuss company specific things that might impact the component Compare to industry or benchmark After talking about ratios in a specific category, state how the company is doing in that category of ratios. For example: Liquidity ratios measure the firm’s ability to meet short-term obligations. Are you confident your company can meet their short term obligations? Overall discussion of the company’s performance based upon the ratio analysis. Although you don’t have to tell me every number you looked at you should include plenty of numbers in your paper. STOCK GRAPH (1-2 pages) Analyze your company’s stock performance over the last 3 years. Comment on any patterns you notice for your company and how it moves with the S&P500. When and what was the high price/low price? Does this make sense with what you see overall in your financial analysis? Discuss if the Beta of your company makes sense with what you see on the graph (and your financial analysis.) If your company is too new that no beta has been calculated, you will have to estimate what you believe the beta would be based on the performance. What was the price trend throughout the semester? Why did it move this way? Discuss at least one news event found in an article from a business publication or journal (i.e. Wall Street Journal, Business Week, or any article from library website) that occurred in the 3 year time period you are evaluating. Summarize the article (more than one sentence) and tell me whether you thought the stock price would increase or decrease when investors heard this news; and then tell me what actually happened. Mark the date of the article on your graph. The news event should be about the company not just about the industry. CONCLUSION (¼-½ page) State what actions you think the company should take to become or remain financially strong. The paper should end with a statement about whether you would buy, hold or sell your stock in this company. BIBLIOGRAPHY All sources used should be referenced on the bibliography and throughout the paper.

Corporate Report Assignment Due April 17 Your final paper should include: -5 pages double-spaced narrative. Papers over 5 pages will receive point deduction. -Additional Pages: -Graph of stock performance 3 year price history of company (with article marked), S&P 500, and a benchmark company -Bibliography. But you still need to cite sources in the body of your paper. -Ratio Worksheets – fully completed. You will attach the same ratios that were graded; any corrections that were indicated in the initial grading should be made. -Headings and page numbers -Labels for the ratios (example: times, %, days) Format of Paper: COMPANY BACKGROUND (½-1 page) Include information like founding date, headquarters location, product or service provided, date when first traded in public markets, market on which it trades, and any other information that seems important for understanding the company. FINANCIAL ANALYSIS (2-3 pages) Discuss at least 8 ratios from the Ratio Worksheet that you feel explain the trends/changes within the company over the time period. You will need to choose at least one ratio from each of the overall categories (i.e. one from asset utilization, one from liquidity, etc.) Discuss all of the following for the ratios chosen: -Has it improved, deteriorated or stayed the same over the last 3 years? Do not use the words increasing/decreasing or higher/lower. Instead use better/worse or improving/deteriorating. Explain whether the change in the ratio was a good thing or a bad thing. -What is the reason behind the changes in the ratio? Not just what part of the ratio changed, but what was happening with the company that could have affected the ratio? If you can not find specific news, what do you think was affecting the ratio? -How does it compare to the industry? At least one ratio from each category should be discussed. As you write your paper think about (These were top reasons I docked points in the past): What are the ratios? This is a finance class give me numbers What does the ratio mean or measure? Discuss components (assets increasing but not as much as_____) Discuss company specific things that might impact the component Compare to industry or benchmark After talking about ratios in a specific category, state how the company is doing in that category of ratios. For example: Liquidity ratios measure the firm’s ability to meet short-term obligations. Are you confident your company can meet their short term obligations? Overall discussion of the company’s performance based upon the ratio analysis. Although you don’t have to tell me every number you looked at you should include plenty of numbers in your paper. STOCK GRAPH (1-2 pages) Analyze your company’s stock performance over the last 3 years. Comment on any patterns you notice for your company and how it moves with the S&P500. When and what was the high price/low price? Does this make sense with what you see overall in your financial analysis? Discuss if the Beta of your company makes sense with what you see on the graph (and your financial analysis.) If your company is too new that no beta has been calculated, you will have to estimate what you believe the beta would be based on the performance. What was the price trend throughout the semester? Why did it move this way? Discuss at least one news event found in an article from a business publication or journal (i.e. Wall Street Journal, Business Week, or any article from library website) that occurred in the 3 year time period you are evaluating. Summarize the article (more than one sentence) and tell me whether you thought the stock price would increase or decrease when investors heard this news; and then tell me what actually happened. Mark the date of the article on your graph. The news event should be about the company not just about the industry. CONCLUSION (¼-½ page) State what actions you think the company should take to become or remain financially strong. The paper should end with a statement about whether you would buy, hold or sell your stock in this company. BIBLIOGRAPHY All sources used should be referenced on the bibliography and throughout the paper.

checkyourstudy.com Whatsapp +919911743277
Jamal is entering his freshman year of high school. According to Erikson’s psychosocial stages, Jamal is likely to face a(n) ________. Question 7 options: inferiority complex struggle for intimacy identity crisis sense of shame and doubt

Jamal is entering his freshman year of high school. According to Erikson’s psychosocial stages, Jamal is likely to face a(n) ________. Question 7 options: inferiority complex struggle for intimacy identity crisis sense of shame and doubt

Jamal is entering his freshman year of high school. According … Read More...
Assignment 10 Due: 11:59pm on Wednesday, April 23, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 12.3 Part A The figure shows three rotating disks, all of equal mass. Rank in order, from largest to smallest, their rotational kinetic energies to . Rank from largest to smallest. To rank items as equivalent, overlap them. ANSWER: Ka Kc Correct Conceptual Question 12.6 You have two steel solid spheres. Sphere 2 has twice the radius of sphere 1. Part A By what factor does the moment of inertia of sphere 2 exceed the moment of inertia of sphere 1? ANSWER: I2 I1 Correct Problem 12.2 A high-speed drill reaches 2500 in 0.59 . Part A What is the drill’s angular acceleration? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B Through how many revolutions does it turn during this first 0.59 ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct I2/I1 = 32 rpm s  = 440 rad s2 s  = 12 rev Constant Angular Acceleration in the Kitchen Dario, a prep cook at an Italian restaurant, spins a salad spinner and observes that it rotates 20.0 times in 5.00 seconds and then stops spinning it. The salad spinner rotates 6.00 more times before it comes to rest. Assume that the spinner slows down with constant angular acceleration. Part A What is the angular acceleration of the salad spinner as it slows down? Express your answer numerically in degrees per second per second. Hint 1. How to approach the problem Recall from your study of kinematics the three equations of motion derived for systems undergoing constant linear acceleration. You are now studying systems undergoing constant angular acceleration and will need to work with the three analogous equations of motion. Collect your known quantities and then determine which of the angular kinematic equations is appropriate to find the angular acceleration . Hint 2. Find the angular velocity of the salad spinner while Dario is spinning it What is the angular velocity of the salad spinner as Dario is spinning it? Express your answer numerically in degrees per second. Hint 1. Converting rotations to degrees When the salad spinner spins through one revolution, it turns through 360 degrees. ANSWER: Hint 3. Find the angular distance the salad spinner travels as it comes to rest Through how many degrees does the salad spinner rotate as it comes to rest? Express your answer numerically in degrees. Hint 1. Converting rotations to degrees  0 = 1440 degrees/s  =  − 0 One revolution is equivalent to 360 degrees. ANSWER: Hint 4. Determine which equation to use You know the initial and final velocities of the system and the angular distance through which the spinner rotates as it comes to a stop. Which equation should be used to solve for the unknown constant angular acceleration ? ANSWER: ANSWER: Correct Part B How long does it take for the salad spinner to come to rest? Express your answer numerically in seconds.  = 2160 degrees   = 0 + 0t+  1 2 t2  = 0 + t = + 2( − ) 2 20 0  = -480 degrees/s2 Hint 1. How to approach the problem Again, you will need the equations of rotational kinematics that apply to situations of constant angular acceleration. Collect your known quantities and then determine which of the angular kinematic equations is appropriate to find . Hint 2. Determine which equation to use You have the initial and final velocities of the system and the angular acceleration, which you found in the previous part. Which is the best equation to use to solve for the unknown time ? ANSWER: ANSWER: Correct ± A Spinning Electric Fan An electric fan is turned off, and its angular velocity decreases uniformly from 540 to 250 in a time interval of length 4.40 . Part A Find the angular acceleration in revolutions per second per second. Hint 1. Average acceleration Recall that if the angular velocity decreases uniformly, the angular acceleration will remain constant. Therefore, the angular acceleration is just the total change in angular velocity divided by t t  = 0 + 0t+  1 2 t2  = 0 + t = + 2( − ) 2 20 0 t = 3.00 s rev/min rev/min s  the total change in time. Be careful of the sign of the angular acceleration. ANSWER: Correct Part B Find the number of revolutions made by the fan blades during the time that they are slowing down in Part A. Hint 1. Determine the correct kinematic equation Which of the following kinematic equations is best suited to this problem? Here and are the initial and final angular velocities, is the elapsed time, is the constant angular acceleration, and and are the initial and final angular displacements. Hint 1. How to chose the right equation Notice that you were given in the problem introduction the initial and final speeds, as well as the length of time between them. In this problem, you are asked to find the number of revolutions (which here is the change in angular displacement, ). If you already found the angular acceleration in Part A, you could use that as well, but you would end up using a more complex equation. Also, in general, it is somewhat favorable to use given quantities instead of quantities that you have calculated. ANSWER:  = -1.10 rev/s2 0  t  0   − 0  = 0 + t  = 0 + t+  1 2 t2 = + 2( − ) 2 20 0 − 0 = (+ )t 1 2 0 ANSWER: Correct Part C How many more seconds are required for the fan to come to rest if the angular acceleration remains constant at the value calculated in Part A? Hint 1. Finding the total time for spin down To find the total time for spin down, just calculate when the velocity will equal zero. This is accomplished by setting the initial velocity plus the acceleration multipled by the time equal to zero and then solving for the time. One can then just subtract the time it took to reach 250 from the total time. Be careful of your signs when you set up the equation. ANSWER: Correct Problem 12.8 A 100 ball and a 230 ball are connected by a 34- -long, massless, rigid rod. The balls rotate about their center of mass at 130 . Part A What is the speed of the 100 ball? Express your answer to two significant figures and include the appropriate units. ANSWER: 29.0 rev rev/min 3.79 s g g cm rpm g Correct Problem 12.10 A thin, 60.0 disk with a diameter of 9.00 rotates about an axis through its center with 0.200 of kinetic energy. Part A What is the speed of a point on the rim? Express your answer with the appropriate units. ANSWER: Correct Problem 12.12 A drum major twirls a 95- -long, 470 baton about its center of mass at 150 . Part A What is the baton’s rotational kinetic energy? Express your answer to two significant figures and include the appropriate units. ANSWER: v = 3.2 ms g cm J 3.65 ms cm g rpm K = 4.4 J Correct Net Torque on a Pulley The figure below shows two blocks suspended by a cord over a pulley. The mass of block B is twice the mass of block A, while the mass of the pulley is equal to the mass of block A. The blocks are let free to move and the cord moves on the pulley without slipping or stretching. There is no friction in the pulley axle, and the cord’s weight can be ignored. Part A Which of the following statements correctly describes the system shown in the figure? Check all that apply. Hint 1. Conditions for equilibrium If the blocks had the same mass, the system would be in equilibrium. The blocks would have zero acceleration and the tension in each part of the cord would equal the weight of each block. Both parts of the cord would then pull with equal force on the pulley, resulting in a zero net torque and no rotation of the pulley. Is this still the case in the current situation where block B has twice the mass of block A? Hint 2. Rotational analogue of Newton’s second law The net torque of all the forces acting on a rigid body is proportional to the angular acceleration of the body net  and is given by , where is the moment of inertia of the body. Hint 3. Relation between linear and angular acceleration A particle that rotates with angular acceleration has linear acceleration equal to , where is the distance of the particle from the axis of rotation. In the present case, where there is no slipping or stretching of the cord, the cord and the pulley must move together at the same speed. Therefore, if the cord moves with linear acceleration , the pulley must rotate with angular acceleration , where is the radius of the pulley. ANSWER: Correct Part B What happens when block B moves downward? Hint 1. How to approach the problem To determine whether the tensions in both parts of the cord are equal, it is convenient to write a mathematical expression for the net torque on the pulley. This will allow you to relate the tensions in the cord to the pulley’s angular acceleration. Hint 2. Find the net torque on the pulley Let’s assume that the tensions in both parts of the cord are different. Let be the tension in the right cord and the tension in the left cord. If is the radius of the pulley, what is the net torque acting on the pulley? Take the positive sense of rotation to be counterclockwise. Express your answer in terms of , , and . net = I I  a a = R R a  = a R R The acceleration of the blocks is zero. The net torque on the pulley is zero. The angular acceleration of the pulley is nonzero. T1 T2 R net T1 T2 R Hint 1. Torque The torque of a force with respect to a point is defined as the product of the magnitude times the perpendicular distance between the line of action of and the point . In other words, . ANSWER: ANSWER: Correct Note that if the pulley were stationary (as in many systems where only linear motion is studied), then the tensions in both parts of the cord would be equal. However, if the pulley rotates with a certain angular acceleration, as in the present situation, the tensions must be different. If they were equal, the pulley could not have an angular acceleration. Problem 12.18 Part A In the figure , what is the magnitude of net torque about the axle? Express your answer to two significant figures and include the appropriate units.  F  O F l F  O  = Fl net = R(T2 − T1 ) The left cord pulls on the pulley with greater force than the right cord. The left and right cord pull with equal force on the pulley. The right cord pulls on the pulley with greater force than the left cord. ANSWER: Correct Part B What is the direction of net torque about the axle? ANSWER: Correct Problem 12.22 An athlete at the gym holds a 3.5 steel ball in his hand. His arm is 78 long and has a mass of 3.6 . Assume the center of mass of the arm is at the geometrical center of the arm. Part A What is the magnitude of the torque about his shoulder if he holds his arm straight out to his side, parallel to the floor? Express your answer to two significant figures and include the appropriate units.  = 0.20 Nm Clockwise Counterclockwise kg cm kg ANSWER: Correct Part B What is the magnitude of the torque about his shoulder if he holds his arm straight, but below horizontal? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Parallel Axis Theorem The parallel axis theorem relates , the moment of inertia of an object about an axis passing through its center of mass, to , the moment of inertia of the same object about a parallel axis passing through point p. The mathematical statement of the theorem is , where is the perpendicular distance from the center of mass to the axis that passes through point p, and is the mass of the object. Part A Suppose a uniform slender rod has length and mass . The moment of inertia of the rod about about an axis that is perpendicular to the rod and that passes through its center of mass is given by . Find , the moment of inertia of the rod with respect to a parallel axis through one end of the rod. Express in terms of and . Use fractions rather than decimal numbers in your answer. Hint 1. Find the distance from the axis to the center of mass Find the distance appropriate to this problem. That is, find the perpendicular distance from the center of mass of the rod to the axis passing through one end of the rod.  = 41 Nm 45  = 29 Nm Icm Ip Ip = Icm + Md2 d M L m Icm = m 1 12 L2 Iend Iend m L d ANSWER: ANSWER: Correct Part B Now consider a cube of mass with edges of length . The moment of inertia of the cube about an axis through its center of mass and perpendicular to one of its faces is given by . Find , the moment of inertia about an axis p through one of the edges of the cube Express in terms of and . Use fractions rather than decimal numbers in your answer. Hint 1. Find the distance from the axis to the axis Find the perpendicular distance from the center of mass axis to the new edge axis (axis labeled p in the figure). ANSWER: d = L 2 Iend = mL2 3 m a Icm Icm = m 1 6 a2 Iedge Iedge m a o p d ANSWER: Correct Problem 12.26 Starting from rest, a 12- -diameter compact disk takes 2.9 to reach its operating angular velocity of 2000 . Assume that the angular acceleration is constant. The disk’s moment of inertia is . Part A How much torque is applied to the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How many revolutions does it make before reaching full speed? Express your answer using two significant figures. ANSWER: d = a 2 Iedge = 2ma2 3 cm s rpm 2.5 × 10−5 kg m2 = 1.8×10−3  Nm Correct Problem 12.23 An object’s moment of inertia is 2.20 . Its angular velocity is increasing at the rate of 3.70 . Part A What is the total torque on the object? ANSWER: Correct Problem 12.31 A 5.1 cat and a 2.5 bowl of tuna fish are at opposite ends of the 4.0- -long seesaw. N = 48 rev kgm2 rad/s2 8.14 N  m kg kg m Part A How far to the left of the pivot must a 3.8 cat stand to keep the seesaw balanced? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Static Equilibrium of the Arm You are able to hold out your arm in an outstretched horizontal position because of the action of the deltoid muscle. Assume the humerus bone has a mass , length and its center of mass is a distance from the scapula. (For this problem ignore the rest of the arm.) The deltoid muscle attaches to the humerus a distance from the scapula. The deltoid muscle makes an angle of with the horizontal, as shown. Use throughout the problem. Part A kg d = 1.4 m M1 = 3.6 kg L = 0.66 m L1 = 0.33 m L2 = 0.15 m  = 17 g = 9.8 m/s2 Find the tension in the deltoid muscle. Express the tension in newtons, to the nearest integer. Hint 1. Nature of the problem Remember that this is a statics problem, so all forces and torques are balanced (their sums equal zero). Hint 2. Origin of torque Calculate the torque about the point at which the arm attaches to the rest of the body. This allows one to balance the torques without having to worry about the undefined forces at this point. Hint 3. Adding up the torques Add up the torques about the point in which the humerus attaches to the body. Answer in terms of , , , , , and . Remember that counterclockwise torque is positive. ANSWER: ANSWER: Correct Part B Using the conditions for static equilibrium, find the magnitude of the vertical component of the force exerted by the scapula on the humerus (where the humerus attaches to the rest of the body). Express your answer in newtons, to the nearest integer. T L1 L2 M1 g T  total = 0 = L1M1g − Tsin()L2 T = 265 N Fy Hint 1. Total forces involved Recall that there are three vertical forces in this problem: the force of gravity acting on the bone, the force from the vertical component of the muscle tension, and the force exerted by the scapula on the humerus (where it attaches to the rest of the body). ANSWER: Correct Part C Now find the magnitude of the horizontal component of the force exerted by the scapula on the humerus. Express your answer in newtons, to the nearest integer. ANSWER: Correct ± Moments around a Rod A rod is bent into an L shape and attached at one point to a pivot. The rod sits on a frictionless table and the diagram is a view from above. This means that gravity can be ignored for this problem. There are three forces that are applied to the rod at different points and angles: , , and . Note that the dimensions of the bent rod are in centimeters in the figure, although the answers are requested in SI units (kilograms, meters, seconds). |Fy| = 42 N Fx |Fx| = 254 N F 1 F  2 F  3 Part A If and , what does the magnitude of have to be for there to be rotational equilibrium? Answer numerically in newtons to two significant figures. Hint 1. Finding torque about pivot from What is the magnitude of the torque | | provided by around the pivot point? Give your answer numerically in newton-meters to two significant figures. ANSWER: ANSWER: Correct Part B If the L-shaped rod has a moment of inertia , , , and again , how long a time would it take for the object to move through ( /4 radians)? Assume that as the object starts to move, each force moves with the object so as to retain its initial angle relative to the object. Express the time in seconds to two significant figures. F3 = 0 F1 = 12 N F 2 F 1   1 F  1 |  1 | = 0.36 N  m F2 = 4.5 N I = 9 kg m2 F1 = 12 N F2 = 27 N F3 = 0 t 45  Hint 1. Find the net torque about the pivot What is the magnitude of the total torque around the pivot point? Answer numerically in newton-meters to two significant figures. ANSWER: Hint 2. Calculate Given the total torque around the pivot point, what is , the magnitude of the angular acceleration? Express your answer numerically in radians per second squared to two significant figures. Hint 1. Equation for If you know the magnitude of the total torque ( ) and the rotational inertia ( ), you can then find the rotational acceleration ( ) from ANSWER: Hint 3. Description of angular kinematics Now that you know the angular acceleration, this is a problem in rotational kinematics; find the time needed to go through a given angle . For constant acceleration ( ) and starting with (where is angular speed) the relation is given by which is analogous to the expression for linear displacement ( ) with constant acceleration ( ) starting from rest, | p ivot| | p ivot| = 1.8 N  m    vot Ivot  pivot = Ipivot.  = 0.20 radians/s2    = 0   = 1  , 2 t2 x a . ANSWER: Correct Part C Now consider the situation in which and , but now a force with nonzero magnitude is acting on the rod. What does have to be to obtain equilibrium? Give a numerical answer, without trigonometric functions, in newtons, to two significant figures. Hint 1. Find the required component of Only the tangential (perpendicular) component of (call it ) provides a torque. What is ? Answer in terms of . You will need to evaluate any trigonometric functions. ANSWER: ANSWER: Correct x = 1 a 2 t2 t = 2.8 s F1 = 12 N F2 = 0 F3 F3 F 3 F  3 F3t F3t F3 F3t = 1 2 F3 F3 = 9.0 N Problem 12.32 A car tire is 55.0 in diameter. The car is traveling at a speed of 24.0 . Part A What is the tire’s rotation frequency, in rpm? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part B What is the speed of a point at the top edge of the tire? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C What is the speed of a point at the bottom edge of the tire? Express your answer as an integer and include the appropriate units. ANSWER: cm m/s 833 rpm 48.0 ms 0 ms Correct Problem 12.33 A 460 , 8.00-cm-diameter solid cylinder rolls across the floor at 1.30 . Part A What is the can’s kinetic energy? Express your answer with the appropriate units. ANSWER: Correct Problem 12.45 Part A What is the magnitude of the angular momentum of the 780 rotating bar in the figure ? g m/s 0.583 J g ANSWER: Correct Part B What is the direction of the angular momentum of the bar ? ANSWER: Correct Problem 12.46 Part A What is the magnitude of the angular momentum of the 2.20 , 4.60-cm-diameter rotating disk in the figure ? 3.27 kgm2/s into the page out of the page kg ANSWER: Correct Part B What is its direction? ANSWER: Correct Problem 12.60 A 3.0- -long ladder, as shown in the following figure, leans against a frictionless wall. The coefficient of static friction between the ladder and the floor is 0.46. 3.66×10−2 kgm /s 2 x direction -x direction y direction -y direction z direction -z direction m Part A What is the minimum angle the ladder can make with the floor without slipping? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 12.61 The 3.0- -long, 90 rigid beam in the following figure is supported at each end. An 70 student stands 2.0 from support 1.  = 47 m kg kg m Part A How much upward force does the support 1 exert on the beam? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How much upward force does the support 2 exert on the beam? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 12.63 A 44 , 5.5- -long beam is supported, but not attached to, the two posts in the figure . A 22 boy starts walking along the beam. You may want to review ( pages 330 – 334) . For help with math skills, you may want to review: F1 = 670 N F2 = 900 N kg m kg The Vector Cross Product Part A How close can he get to the right end of the beam without it falling over? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture of the four forces acting on the beam, indicating both their direction and the place on the beam that the forces are acting. Choose a coordinate system with a direction for the axis along the beam, and indicate the position of the boy. What is the net force on the beam if it is stationary? Just before the beam tips, the force of the left support on the beam is zero. Using the zero net force condition, what is the force due to the right support just before the beam tips? For the beam to remain stationary, what must be zero besides the net force on the beam? Choose a point on the beam, and compute the net torque on the beam about that point. Be sure to choose a positive direction for the rotation axis and therefore the torques. Using the zero torque condition, what is the position of the boy on the beam just prior to tipping? How far is this position from the right edge of the beam? ANSWER: Correct d = 2.0 m Problem 12.68 Flywheels are large, massive wheels used to store energy. They can be spun up slowly, then the wheel’s energy can be released quickly to accomplish a task that demands high power. An industrial flywheel has a 1.6 diameter and a mass of 270 . Its maximum angular velocity is 1500 . Part A A motor spins up the flywheel with a constant torque of 54 . How long does it take the flywheel to reach top speed? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How much energy is stored in the flywheel? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C The flywheel is disconnected from the motor and connected to a machine to which it will deliver energy. Half the energy stored in the flywheel is delivered in 2.2 . What is the average power delivered to the machine? Express your answer to two significant figures and include the appropriate units. ANSWER: m kg rpm N  m t = 250 s = 1.1×106 E J s Correct Part D How much torque does the flywheel exert on the machine? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 12.71 The 3.30 , 40.0-cm-diameter disk in the figure is spinning at 350 . Part A How much friction force must the brake apply to the rim to bring the disk to a halt in 2.10 ? P = 2.4×105 W  = 1800 Nm kg rpm s Express your answer with the appropriate units. ANSWER: Correct Problem 12.74 A 5.0 , 60- -diameter cylinder rotates on an axle passing through one edge. The axle is parallel to the floor. The cylinder is held with the center of mass at the same height as the axle, then released. Part A What is the magnitude of the cylinder’s initial angular acceleration? Express your answer to two significant figures and include the appropriate units. ANSWER: 5.76 N kg cm  = 22 rad s2 Correct Part B What is the magnitude of the cylinder’s angular velocity when it is directly below the axle? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 12.82 A 45 figure skater is spinning on the toes of her skates at 0.90 . Her arms are outstretched as far as they will go. In this orientation, the skater can be modeled as a cylindrical torso (40 , 20 average diameter, 160 tall) plus two rod-like arms (2.5 each, 67 long) attached to the outside of the torso. The skater then raises her arms straight above her head, where she appears to be a 45 , 20- -diameter, 200- -tall cylinder. Part A What is her new rotation frequency, in revolutions per second? Express your answer to two significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Score Summary:  = 6.6 rad s kg rev/s kg cm cm kg cm kg cm cm 2 = Your score on this assignment is 95.7%. You received 189.42 out of a possible total of 198 points.

Assignment 10 Due: 11:59pm on Wednesday, April 23, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 12.3 Part A The figure shows three rotating disks, all of equal mass. Rank in order, from largest to smallest, their rotational kinetic energies to . Rank from largest to smallest. To rank items as equivalent, overlap them. ANSWER: Ka Kc Correct Conceptual Question 12.6 You have two steel solid spheres. Sphere 2 has twice the radius of sphere 1. Part A By what factor does the moment of inertia of sphere 2 exceed the moment of inertia of sphere 1? ANSWER: I2 I1 Correct Problem 12.2 A high-speed drill reaches 2500 in 0.59 . Part A What is the drill’s angular acceleration? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B Through how many revolutions does it turn during this first 0.59 ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct I2/I1 = 32 rpm s  = 440 rad s2 s  = 12 rev Constant Angular Acceleration in the Kitchen Dario, a prep cook at an Italian restaurant, spins a salad spinner and observes that it rotates 20.0 times in 5.00 seconds and then stops spinning it. The salad spinner rotates 6.00 more times before it comes to rest. Assume that the spinner slows down with constant angular acceleration. Part A What is the angular acceleration of the salad spinner as it slows down? Express your answer numerically in degrees per second per second. Hint 1. How to approach the problem Recall from your study of kinematics the three equations of motion derived for systems undergoing constant linear acceleration. You are now studying systems undergoing constant angular acceleration and will need to work with the three analogous equations of motion. Collect your known quantities and then determine which of the angular kinematic equations is appropriate to find the angular acceleration . Hint 2. Find the angular velocity of the salad spinner while Dario is spinning it What is the angular velocity of the salad spinner as Dario is spinning it? Express your answer numerically in degrees per second. Hint 1. Converting rotations to degrees When the salad spinner spins through one revolution, it turns through 360 degrees. ANSWER: Hint 3. Find the angular distance the salad spinner travels as it comes to rest Through how many degrees does the salad spinner rotate as it comes to rest? Express your answer numerically in degrees. Hint 1. Converting rotations to degrees  0 = 1440 degrees/s  =  − 0 One revolution is equivalent to 360 degrees. ANSWER: Hint 4. Determine which equation to use You know the initial and final velocities of the system and the angular distance through which the spinner rotates as it comes to a stop. Which equation should be used to solve for the unknown constant angular acceleration ? ANSWER: ANSWER: Correct Part B How long does it take for the salad spinner to come to rest? Express your answer numerically in seconds.  = 2160 degrees   = 0 + 0t+  1 2 t2  = 0 + t = + 2( − ) 2 20 0  = -480 degrees/s2 Hint 1. How to approach the problem Again, you will need the equations of rotational kinematics that apply to situations of constant angular acceleration. Collect your known quantities and then determine which of the angular kinematic equations is appropriate to find . Hint 2. Determine which equation to use You have the initial and final velocities of the system and the angular acceleration, which you found in the previous part. Which is the best equation to use to solve for the unknown time ? ANSWER: ANSWER: Correct ± A Spinning Electric Fan An electric fan is turned off, and its angular velocity decreases uniformly from 540 to 250 in a time interval of length 4.40 . Part A Find the angular acceleration in revolutions per second per second. Hint 1. Average acceleration Recall that if the angular velocity decreases uniformly, the angular acceleration will remain constant. Therefore, the angular acceleration is just the total change in angular velocity divided by t t  = 0 + 0t+  1 2 t2  = 0 + t = + 2( − ) 2 20 0 t = 3.00 s rev/min rev/min s  the total change in time. Be careful of the sign of the angular acceleration. ANSWER: Correct Part B Find the number of revolutions made by the fan blades during the time that they are slowing down in Part A. Hint 1. Determine the correct kinematic equation Which of the following kinematic equations is best suited to this problem? Here and are the initial and final angular velocities, is the elapsed time, is the constant angular acceleration, and and are the initial and final angular displacements. Hint 1. How to chose the right equation Notice that you were given in the problem introduction the initial and final speeds, as well as the length of time between them. In this problem, you are asked to find the number of revolutions (which here is the change in angular displacement, ). If you already found the angular acceleration in Part A, you could use that as well, but you would end up using a more complex equation. Also, in general, it is somewhat favorable to use given quantities instead of quantities that you have calculated. ANSWER:  = -1.10 rev/s2 0  t  0   − 0  = 0 + t  = 0 + t+  1 2 t2 = + 2( − ) 2 20 0 − 0 = (+ )t 1 2 0 ANSWER: Correct Part C How many more seconds are required for the fan to come to rest if the angular acceleration remains constant at the value calculated in Part A? Hint 1. Finding the total time for spin down To find the total time for spin down, just calculate when the velocity will equal zero. This is accomplished by setting the initial velocity plus the acceleration multipled by the time equal to zero and then solving for the time. One can then just subtract the time it took to reach 250 from the total time. Be careful of your signs when you set up the equation. ANSWER: Correct Problem 12.8 A 100 ball and a 230 ball are connected by a 34- -long, massless, rigid rod. The balls rotate about their center of mass at 130 . Part A What is the speed of the 100 ball? Express your answer to two significant figures and include the appropriate units. ANSWER: 29.0 rev rev/min 3.79 s g g cm rpm g Correct Problem 12.10 A thin, 60.0 disk with a diameter of 9.00 rotates about an axis through its center with 0.200 of kinetic energy. Part A What is the speed of a point on the rim? Express your answer with the appropriate units. ANSWER: Correct Problem 12.12 A drum major twirls a 95- -long, 470 baton about its center of mass at 150 . Part A What is the baton’s rotational kinetic energy? Express your answer to two significant figures and include the appropriate units. ANSWER: v = 3.2 ms g cm J 3.65 ms cm g rpm K = 4.4 J Correct Net Torque on a Pulley The figure below shows two blocks suspended by a cord over a pulley. The mass of block B is twice the mass of block A, while the mass of the pulley is equal to the mass of block A. The blocks are let free to move and the cord moves on the pulley without slipping or stretching. There is no friction in the pulley axle, and the cord’s weight can be ignored. Part A Which of the following statements correctly describes the system shown in the figure? Check all that apply. Hint 1. Conditions for equilibrium If the blocks had the same mass, the system would be in equilibrium. The blocks would have zero acceleration and the tension in each part of the cord would equal the weight of each block. Both parts of the cord would then pull with equal force on the pulley, resulting in a zero net torque and no rotation of the pulley. Is this still the case in the current situation where block B has twice the mass of block A? Hint 2. Rotational analogue of Newton’s second law The net torque of all the forces acting on a rigid body is proportional to the angular acceleration of the body net  and is given by , where is the moment of inertia of the body. Hint 3. Relation between linear and angular acceleration A particle that rotates with angular acceleration has linear acceleration equal to , where is the distance of the particle from the axis of rotation. In the present case, where there is no slipping or stretching of the cord, the cord and the pulley must move together at the same speed. Therefore, if the cord moves with linear acceleration , the pulley must rotate with angular acceleration , where is the radius of the pulley. ANSWER: Correct Part B What happens when block B moves downward? Hint 1. How to approach the problem To determine whether the tensions in both parts of the cord are equal, it is convenient to write a mathematical expression for the net torque on the pulley. This will allow you to relate the tensions in the cord to the pulley’s angular acceleration. Hint 2. Find the net torque on the pulley Let’s assume that the tensions in both parts of the cord are different. Let be the tension in the right cord and the tension in the left cord. If is the radius of the pulley, what is the net torque acting on the pulley? Take the positive sense of rotation to be counterclockwise. Express your answer in terms of , , and . net = I I  a a = R R a  = a R R The acceleration of the blocks is zero. The net torque on the pulley is zero. The angular acceleration of the pulley is nonzero. T1 T2 R net T1 T2 R Hint 1. Torque The torque of a force with respect to a point is defined as the product of the magnitude times the perpendicular distance between the line of action of and the point . In other words, . ANSWER: ANSWER: Correct Note that if the pulley were stationary (as in many systems where only linear motion is studied), then the tensions in both parts of the cord would be equal. However, if the pulley rotates with a certain angular acceleration, as in the present situation, the tensions must be different. If they were equal, the pulley could not have an angular acceleration. Problem 12.18 Part A In the figure , what is the magnitude of net torque about the axle? Express your answer to two significant figures and include the appropriate units.  F  O F l F  O  = Fl net = R(T2 − T1 ) The left cord pulls on the pulley with greater force than the right cord. The left and right cord pull with equal force on the pulley. The right cord pulls on the pulley with greater force than the left cord. ANSWER: Correct Part B What is the direction of net torque about the axle? ANSWER: Correct Problem 12.22 An athlete at the gym holds a 3.5 steel ball in his hand. His arm is 78 long and has a mass of 3.6 . Assume the center of mass of the arm is at the geometrical center of the arm. Part A What is the magnitude of the torque about his shoulder if he holds his arm straight out to his side, parallel to the floor? Express your answer to two significant figures and include the appropriate units.  = 0.20 Nm Clockwise Counterclockwise kg cm kg ANSWER: Correct Part B What is the magnitude of the torque about his shoulder if he holds his arm straight, but below horizontal? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Parallel Axis Theorem The parallel axis theorem relates , the moment of inertia of an object about an axis passing through its center of mass, to , the moment of inertia of the same object about a parallel axis passing through point p. The mathematical statement of the theorem is , where is the perpendicular distance from the center of mass to the axis that passes through point p, and is the mass of the object. Part A Suppose a uniform slender rod has length and mass . The moment of inertia of the rod about about an axis that is perpendicular to the rod and that passes through its center of mass is given by . Find , the moment of inertia of the rod with respect to a parallel axis through one end of the rod. Express in terms of and . Use fractions rather than decimal numbers in your answer. Hint 1. Find the distance from the axis to the center of mass Find the distance appropriate to this problem. That is, find the perpendicular distance from the center of mass of the rod to the axis passing through one end of the rod.  = 41 Nm 45  = 29 Nm Icm Ip Ip = Icm + Md2 d M L m Icm = m 1 12 L2 Iend Iend m L d ANSWER: ANSWER: Correct Part B Now consider a cube of mass with edges of length . The moment of inertia of the cube about an axis through its center of mass and perpendicular to one of its faces is given by . Find , the moment of inertia about an axis p through one of the edges of the cube Express in terms of and . Use fractions rather than decimal numbers in your answer. Hint 1. Find the distance from the axis to the axis Find the perpendicular distance from the center of mass axis to the new edge axis (axis labeled p in the figure). ANSWER: d = L 2 Iend = mL2 3 m a Icm Icm = m 1 6 a2 Iedge Iedge m a o p d ANSWER: Correct Problem 12.26 Starting from rest, a 12- -diameter compact disk takes 2.9 to reach its operating angular velocity of 2000 . Assume that the angular acceleration is constant. The disk’s moment of inertia is . Part A How much torque is applied to the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How many revolutions does it make before reaching full speed? Express your answer using two significant figures. ANSWER: d = a 2 Iedge = 2ma2 3 cm s rpm 2.5 × 10−5 kg m2 = 1.8×10−3  Nm Correct Problem 12.23 An object’s moment of inertia is 2.20 . Its angular velocity is increasing at the rate of 3.70 . Part A What is the total torque on the object? ANSWER: Correct Problem 12.31 A 5.1 cat and a 2.5 bowl of tuna fish are at opposite ends of the 4.0- -long seesaw. N = 48 rev kgm2 rad/s2 8.14 N  m kg kg m Part A How far to the left of the pivot must a 3.8 cat stand to keep the seesaw balanced? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Static Equilibrium of the Arm You are able to hold out your arm in an outstretched horizontal position because of the action of the deltoid muscle. Assume the humerus bone has a mass , length and its center of mass is a distance from the scapula. (For this problem ignore the rest of the arm.) The deltoid muscle attaches to the humerus a distance from the scapula. The deltoid muscle makes an angle of with the horizontal, as shown. Use throughout the problem. Part A kg d = 1.4 m M1 = 3.6 kg L = 0.66 m L1 = 0.33 m L2 = 0.15 m  = 17 g = 9.8 m/s2 Find the tension in the deltoid muscle. Express the tension in newtons, to the nearest integer. Hint 1. Nature of the problem Remember that this is a statics problem, so all forces and torques are balanced (their sums equal zero). Hint 2. Origin of torque Calculate the torque about the point at which the arm attaches to the rest of the body. This allows one to balance the torques without having to worry about the undefined forces at this point. Hint 3. Adding up the torques Add up the torques about the point in which the humerus attaches to the body. Answer in terms of , , , , , and . Remember that counterclockwise torque is positive. ANSWER: ANSWER: Correct Part B Using the conditions for static equilibrium, find the magnitude of the vertical component of the force exerted by the scapula on the humerus (where the humerus attaches to the rest of the body). Express your answer in newtons, to the nearest integer. T L1 L2 M1 g T  total = 0 = L1M1g − Tsin()L2 T = 265 N Fy Hint 1. Total forces involved Recall that there are three vertical forces in this problem: the force of gravity acting on the bone, the force from the vertical component of the muscle tension, and the force exerted by the scapula on the humerus (where it attaches to the rest of the body). ANSWER: Correct Part C Now find the magnitude of the horizontal component of the force exerted by the scapula on the humerus. Express your answer in newtons, to the nearest integer. ANSWER: Correct ± Moments around a Rod A rod is bent into an L shape and attached at one point to a pivot. The rod sits on a frictionless table and the diagram is a view from above. This means that gravity can be ignored for this problem. There are three forces that are applied to the rod at different points and angles: , , and . Note that the dimensions of the bent rod are in centimeters in the figure, although the answers are requested in SI units (kilograms, meters, seconds). |Fy| = 42 N Fx |Fx| = 254 N F 1 F  2 F  3 Part A If and , what does the magnitude of have to be for there to be rotational equilibrium? Answer numerically in newtons to two significant figures. Hint 1. Finding torque about pivot from What is the magnitude of the torque | | provided by around the pivot point? Give your answer numerically in newton-meters to two significant figures. ANSWER: ANSWER: Correct Part B If the L-shaped rod has a moment of inertia , , , and again , how long a time would it take for the object to move through ( /4 radians)? Assume that as the object starts to move, each force moves with the object so as to retain its initial angle relative to the object. Express the time in seconds to two significant figures. F3 = 0 F1 = 12 N F 2 F 1   1 F  1 |  1 | = 0.36 N  m F2 = 4.5 N I = 9 kg m2 F1 = 12 N F2 = 27 N F3 = 0 t 45  Hint 1. Find the net torque about the pivot What is the magnitude of the total torque around the pivot point? Answer numerically in newton-meters to two significant figures. ANSWER: Hint 2. Calculate Given the total torque around the pivot point, what is , the magnitude of the angular acceleration? Express your answer numerically in radians per second squared to two significant figures. Hint 1. Equation for If you know the magnitude of the total torque ( ) and the rotational inertia ( ), you can then find the rotational acceleration ( ) from ANSWER: Hint 3. Description of angular kinematics Now that you know the angular acceleration, this is a problem in rotational kinematics; find the time needed to go through a given angle . For constant acceleration ( ) and starting with (where is angular speed) the relation is given by which is analogous to the expression for linear displacement ( ) with constant acceleration ( ) starting from rest, | p ivot| | p ivot| = 1.8 N  m    vot Ivot  pivot = Ipivot.  = 0.20 radians/s2    = 0   = 1  , 2 t2 x a . ANSWER: Correct Part C Now consider the situation in which and , but now a force with nonzero magnitude is acting on the rod. What does have to be to obtain equilibrium? Give a numerical answer, without trigonometric functions, in newtons, to two significant figures. Hint 1. Find the required component of Only the tangential (perpendicular) component of (call it ) provides a torque. What is ? Answer in terms of . You will need to evaluate any trigonometric functions. ANSWER: ANSWER: Correct x = 1 a 2 t2 t = 2.8 s F1 = 12 N F2 = 0 F3 F3 F 3 F  3 F3t F3t F3 F3t = 1 2 F3 F3 = 9.0 N Problem 12.32 A car tire is 55.0 in diameter. The car is traveling at a speed of 24.0 . Part A What is the tire’s rotation frequency, in rpm? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part B What is the speed of a point at the top edge of the tire? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C What is the speed of a point at the bottom edge of the tire? Express your answer as an integer and include the appropriate units. ANSWER: cm m/s 833 rpm 48.0 ms 0 ms Correct Problem 12.33 A 460 , 8.00-cm-diameter solid cylinder rolls across the floor at 1.30 . Part A What is the can’s kinetic energy? Express your answer with the appropriate units. ANSWER: Correct Problem 12.45 Part A What is the magnitude of the angular momentum of the 780 rotating bar in the figure ? g m/s 0.583 J g ANSWER: Correct Part B What is the direction of the angular momentum of the bar ? ANSWER: Correct Problem 12.46 Part A What is the magnitude of the angular momentum of the 2.20 , 4.60-cm-diameter rotating disk in the figure ? 3.27 kgm2/s into the page out of the page kg ANSWER: Correct Part B What is its direction? ANSWER: Correct Problem 12.60 A 3.0- -long ladder, as shown in the following figure, leans against a frictionless wall. The coefficient of static friction between the ladder and the floor is 0.46. 3.66×10−2 kgm /s 2 x direction -x direction y direction -y direction z direction -z direction m Part A What is the minimum angle the ladder can make with the floor without slipping? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 12.61 The 3.0- -long, 90 rigid beam in the following figure is supported at each end. An 70 student stands 2.0 from support 1.  = 47 m kg kg m Part A How much upward force does the support 1 exert on the beam? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How much upward force does the support 2 exert on the beam? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 12.63 A 44 , 5.5- -long beam is supported, but not attached to, the two posts in the figure . A 22 boy starts walking along the beam. You may want to review ( pages 330 – 334) . For help with math skills, you may want to review: F1 = 670 N F2 = 900 N kg m kg The Vector Cross Product Part A How close can he get to the right end of the beam without it falling over? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture of the four forces acting on the beam, indicating both their direction and the place on the beam that the forces are acting. Choose a coordinate system with a direction for the axis along the beam, and indicate the position of the boy. What is the net force on the beam if it is stationary? Just before the beam tips, the force of the left support on the beam is zero. Using the zero net force condition, what is the force due to the right support just before the beam tips? For the beam to remain stationary, what must be zero besides the net force on the beam? Choose a point on the beam, and compute the net torque on the beam about that point. Be sure to choose a positive direction for the rotation axis and therefore the torques. Using the zero torque condition, what is the position of the boy on the beam just prior to tipping? How far is this position from the right edge of the beam? ANSWER: Correct d = 2.0 m Problem 12.68 Flywheels are large, massive wheels used to store energy. They can be spun up slowly, then the wheel’s energy can be released quickly to accomplish a task that demands high power. An industrial flywheel has a 1.6 diameter and a mass of 270 . Its maximum angular velocity is 1500 . Part A A motor spins up the flywheel with a constant torque of 54 . How long does it take the flywheel to reach top speed? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How much energy is stored in the flywheel? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C The flywheel is disconnected from the motor and connected to a machine to which it will deliver energy. Half the energy stored in the flywheel is delivered in 2.2 . What is the average power delivered to the machine? Express your answer to two significant figures and include the appropriate units. ANSWER: m kg rpm N  m t = 250 s = 1.1×106 E J s Correct Part D How much torque does the flywheel exert on the machine? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 12.71 The 3.30 , 40.0-cm-diameter disk in the figure is spinning at 350 . Part A How much friction force must the brake apply to the rim to bring the disk to a halt in 2.10 ? P = 2.4×105 W  = 1800 Nm kg rpm s Express your answer with the appropriate units. ANSWER: Correct Problem 12.74 A 5.0 , 60- -diameter cylinder rotates on an axle passing through one edge. The axle is parallel to the floor. The cylinder is held with the center of mass at the same height as the axle, then released. Part A What is the magnitude of the cylinder’s initial angular acceleration? Express your answer to two significant figures and include the appropriate units. ANSWER: 5.76 N kg cm  = 22 rad s2 Correct Part B What is the magnitude of the cylinder’s angular velocity when it is directly below the axle? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 12.82 A 45 figure skater is spinning on the toes of her skates at 0.90 . Her arms are outstretched as far as they will go. In this orientation, the skater can be modeled as a cylindrical torso (40 , 20 average diameter, 160 tall) plus two rod-like arms (2.5 each, 67 long) attached to the outside of the torso. The skater then raises her arms straight above her head, where she appears to be a 45 , 20- -diameter, 200- -tall cylinder. Part A What is her new rotation frequency, in revolutions per second? Express your answer to two significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Score Summary:  = 6.6 rad s kg rev/s kg cm cm kg cm kg cm cm 2 = Your score on this assignment is 95.7%. You received 189.42 out of a possible total of 198 points.

please email info@checkyourstudy.com
• Question 1 10 out of 10 points The composition of the Alexander Mosaic is designed to convey: • Question 2 10 out of 10 points What is so revolutionary about Walking Man? • Question 3 10 out of 10 points What does the Justinian mosaic in the Church of San Vitale in Ravenna demonstrate? • Question 4 10 out of 10 points Who is the artist of Brillo Box? • Question 5 10 out of 10 points What is Shiva Nataraja responsible for doing? • Question 6 0 out of 10 points Willard Wigan created a lifesize replica of the Statue of Liberty for the people of France. • Question 7 10 out of 10 points Who is the artist of The Nightmare? • Question 8 10 out of 10 points Astrolabes were used by Muslims to determine the direction of Mecca. • Question 9 10 out of 10 points Who is the artist of the painting Woman Holding a Balance? • Question 10 10 out of 10 points The lyre from the Royal Cemetery of Ur (4.14) cannot be appreciated by viewers today in the same way that it was by the ancient Sumerians who made it. • Question 11 10 out of 10 points Which part of René Magritte’s The Human Condition is painted? • Question 12 10 out of 10 points The sarcophagus lid from the tomb of Lord Pacal shows him ________. • Question 13 10 out of 10 points Which artist created a three-dimensional sculpture of his own face? • Question 14 10 out of 10 points Salvador Dalí’s painting Persistence of Memory shows warped clocks, ants, and a distorted face, all of which are symbols of his mother, who died the month before this was painted. • Question 15 10 out of 10 points Muqarnas are ________. • Question 16 10 out of 10 points Synesthesia is when stimulation of one sense triggers an experience in another, for example visualizing color when one hears music. • Question 17 10 out of 10 points Mary Richardson, the attacker of the Rokeby Venus in 1914, did so because: • Question 18 10 out of 10 points Which of the following is emphasized in Lewis Wickes Hine’s Power House Mechanic Working on Steam Pump? • Question 19 10 out of 10 points Artemisia Gentileschi made ________ paintings of the biblical story of Judith and Holofernes. • Question 20 10 out of 10 points Which artist was investigated by the U.S. Treasury Department for counterfeiting because his painting of a dollar bill looked so incredibly real? • Question 21 10 out of 10 points Ancient Egyptian pyramids were only positioned according to geographical coordinates. • Question 22 10 out of 10 points The form of the goddess’s figure in The Birth of Venus was based on ________. • Question 23 10 out of 10 points Dorothea Lange’s Migrant Mother shows ________. • Question 24 0 out of 10 points Which of the following artworks does not address social class: • Question 25 10 out of 10 points How are the dual genders of the Hermaphrodite with a Dog made visible? • Question 26 10 out of 10 points The ziggurat at Ur was dedicated to: • Question 27 10 out of 10 points The sculpture of a head, which probably represents a king of Ife (4.134), was made using which medium? • Question 28 10 out of 10 points What is the subject matter of Myron’s Discus Thrower? • Question 29 10 out of 10 points Nick Ut’s photographs of the Vietnam War are brutally truthful, but he was not an impartial photographer. • Question 30 10 out of 10 points J. M. W. Turner’s painting Slave Ship uses pale colors and smooth brushstrokes to depict the serenity of life at sea. • Question 31 0 out of 10 points A lyre is used for what purpose? • Question 32 10 out of 10 points The Hopi of the southwestern United States are responsible for making which of the following sculptures? • Question 33 10 out of 10 points What is the medium of Yves Klein’s Anthropométries de l’époque bleue? • Question 34 10 out of 10 points Artists have often been influenced by scientific discoveries. • Question 35 10 out of 10 points Rituals that connect with ancestors and nature spirits are as important as the tasks of daily life for African peoples like the Kongo. • Question 36 10 out of 10 points As described in the article, Linda Bengalis made headlines when she strapped dead eagle around her waist and posed in Art Forum • Question 37 10 out of 10 points Shepard Fairey sued Barak Obama for using his original image. • Question 38 10 out of 10 points Hennessey Youngman made the Spiral Jetty • Question 39 10 out of 10 points According to the video, Mary Mattingly’s greatest concern coincides with that of the Guerrilla Girls.

• Question 1 10 out of 10 points The composition of the Alexander Mosaic is designed to convey: • Question 2 10 out of 10 points What is so revolutionary about Walking Man? • Question 3 10 out of 10 points What does the Justinian mosaic in the Church of San Vitale in Ravenna demonstrate? • Question 4 10 out of 10 points Who is the artist of Brillo Box? • Question 5 10 out of 10 points What is Shiva Nataraja responsible for doing? • Question 6 0 out of 10 points Willard Wigan created a lifesize replica of the Statue of Liberty for the people of France. • Question 7 10 out of 10 points Who is the artist of The Nightmare? • Question 8 10 out of 10 points Astrolabes were used by Muslims to determine the direction of Mecca. • Question 9 10 out of 10 points Who is the artist of the painting Woman Holding a Balance? • Question 10 10 out of 10 points The lyre from the Royal Cemetery of Ur (4.14) cannot be appreciated by viewers today in the same way that it was by the ancient Sumerians who made it. • Question 11 10 out of 10 points Which part of René Magritte’s The Human Condition is painted? • Question 12 10 out of 10 points The sarcophagus lid from the tomb of Lord Pacal shows him ________. • Question 13 10 out of 10 points Which artist created a three-dimensional sculpture of his own face? • Question 14 10 out of 10 points Salvador Dalí’s painting Persistence of Memory shows warped clocks, ants, and a distorted face, all of which are symbols of his mother, who died the month before this was painted. • Question 15 10 out of 10 points Muqarnas are ________. • Question 16 10 out of 10 points Synesthesia is when stimulation of one sense triggers an experience in another, for example visualizing color when one hears music. • Question 17 10 out of 10 points Mary Richardson, the attacker of the Rokeby Venus in 1914, did so because: • Question 18 10 out of 10 points Which of the following is emphasized in Lewis Wickes Hine’s Power House Mechanic Working on Steam Pump? • Question 19 10 out of 10 points Artemisia Gentileschi made ________ paintings of the biblical story of Judith and Holofernes. • Question 20 10 out of 10 points Which artist was investigated by the U.S. Treasury Department for counterfeiting because his painting of a dollar bill looked so incredibly real? • Question 21 10 out of 10 points Ancient Egyptian pyramids were only positioned according to geographical coordinates. • Question 22 10 out of 10 points The form of the goddess’s figure in The Birth of Venus was based on ________. • Question 23 10 out of 10 points Dorothea Lange’s Migrant Mother shows ________. • Question 24 0 out of 10 points Which of the following artworks does not address social class: • Question 25 10 out of 10 points How are the dual genders of the Hermaphrodite with a Dog made visible? • Question 26 10 out of 10 points The ziggurat at Ur was dedicated to: • Question 27 10 out of 10 points The sculpture of a head, which probably represents a king of Ife (4.134), was made using which medium? • Question 28 10 out of 10 points What is the subject matter of Myron’s Discus Thrower? • Question 29 10 out of 10 points Nick Ut’s photographs of the Vietnam War are brutally truthful, but he was not an impartial photographer. • Question 30 10 out of 10 points J. M. W. Turner’s painting Slave Ship uses pale colors and smooth brushstrokes to depict the serenity of life at sea. • Question 31 0 out of 10 points A lyre is used for what purpose? • Question 32 10 out of 10 points The Hopi of the southwestern United States are responsible for making which of the following sculptures? • Question 33 10 out of 10 points What is the medium of Yves Klein’s Anthropométries de l’époque bleue? • Question 34 10 out of 10 points Artists have often been influenced by scientific discoveries. • Question 35 10 out of 10 points Rituals that connect with ancestors and nature spirits are as important as the tasks of daily life for African peoples like the Kongo. • Question 36 10 out of 10 points As described in the article, Linda Bengalis made headlines when she strapped dead eagle around her waist and posed in Art Forum • Question 37 10 out of 10 points Shepard Fairey sued Barak Obama for using his original image. • Question 38 10 out of 10 points Hennessey Youngman made the Spiral Jetty • Question 39 10 out of 10 points According to the video, Mary Mattingly’s greatest concern coincides with that of the Guerrilla Girls.

checkyourstudy.com Whatsapp +919911743277
4. Using your knowledge of the Stevenson’s career management model identify and briefly describe one activity that should be included in an organization’s career management program. Identify which element of the model the activity you identified fits within.

4. Using your knowledge of the Stevenson’s career management model identify and briefly describe one activity that should be included in an organization’s career management program. Identify which element of the model the activity you identified fits within.

Discipline Expertise- There is an apparent type of interdisciplinary in … Read More...
Chapter 6 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, March 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy PSS 6.1 Equilibrium Problems Learning Goal: To practice Problem-Solving Strategy 6.1 for equilibrium problems. A pair of students are lifting a heavy trunk on move-in day. Using two ropes tied to a small ring at the center of the top of the trunk, they pull the trunk straight up at a constant velocity . Each rope makes an angle with respect to the vertical. The gravitational force acting on the trunk has magnitude . Find the tension in each rope. PROBLEM-SOLVING STRATEGY 6.1 Equilibrium problems MODEL: Make simplifying assumptions. VISUALIZE: Establish a coordinate system, define symbols, and identify what the problem is asking you to find. This is the process of translating words into symbols. Identify all forces acting on the object, and show them on a free-body diagram. These elements form the pictorial representation of the problem. SOLVE: The mathematical representation is based on Newton’s first law: . The vector sum of the forces is found directly from the free-body diagram. v  FG T F  = = net i F  i 0 ASSESS: Check if your result has the correct units, is reasonable, and answers the question. Model The trunk is moving at a constant velocity. This means that you can model it as a particle in dynamic equilibrium and apply the strategy above. Furthermore, you can ignore the masses of the ropes and the ring because it is reasonable to assume that their combined weight is much less than the weight of the trunk. Visualize Part A The most convenient coordinate system for this problem is one in which the y axis is vertical and the ropes both lie in the xy plane, as shown below. Identify the forces acting on the trunk, and then draw a free-body diagram of the trunk in the diagram below. The black dot represents the trunk as it is lifted by the students. Draw the vectors starting at the black dot. The location and orientation of the vectors will be graded. The length of the vectors will not be graded. ANSWER: Part B This question will be shown after you complete previous question(s). Solve Part C This question will be shown after you complete previous question(s). Assess Part D This question will be shown after you complete previous question(s). A Gymnast on a Rope A gymnast of mass 70.0 hangs from a vertical rope attached to the ceiling. You can ignore the weight of the rope and assume that the rope does not stretch. Use the value for the acceleration of gravity. Part A Calculate the tension in the rope if the gymnast hangs motionless on the rope. Express your answer in newtons. You did not open hints for this part. ANSWER: Part B Calculate the tension in the rope if the gymnast climbs the rope at a constant rate. Express your answer in newtons. You did not open hints for this part. kg 9.81m/s2 T T = N T ANSWER: Part C Calculate the tension in the rope if the gymnast climbs up the rope with an upward acceleration of magnitude 1.10 . Express your answer in newtons. You did not open hints for this part. ANSWER: Part D Calculate the tension in the rope if the gymnast slides down the rope with a downward acceleration of magnitude 1.10 . Express your answer in newtons. You did not open hints for this part. ANSWER: T = N T m/s2 T = N T m/s2 T = N Applying Newton’s 2nd Law Learning Goal: To learn a systematic approach to solving Newton’s 2nd law problems using a simple example. Once you have decided to solve a problem using Newton’s 2nd law, there are steps that will lead you to a solution. One such prescription is the following: Visualize the problem and identify special cases. Isolate each body and draw the forces acting on it. Choose a coordinate system for each body. Apply Newton’s 2nd law to each body. Write equations for the constraints and other given information. Solve the resulting equations symbolically. Check that your answer has the correct dimensions and satisfies special cases. If numbers are given in the problem, plug them in and check that the answer makes sense. Think about generalizations or simplfications of the problem. As an example, we will apply this procedure to find the acceleration of a block of mass that is pulled up a frictionless plane inclined at angle with respect to the horizontal by a perfect string that passes over a perfect pulley to a block of mass that is hanging vertically. Visualize the problem and identify special cases First examine the problem by drawing a picture and visualizing the motion. Apply Newton’s 2nd law, , to each body in your mind. Don’t worry about which quantities are given. Think about the forces on each body: How are these consistent with the direction of the acceleration for that body? Can you think of any special cases that you can solve quickly now and use to test your understanding later? m2  m1 F = ma One special case in this problem is if , in which case block 1 would simply fall freely under the acceleration of gravity: . Part A Consider another special case in which the inclined plane is vertical ( ). In this case, for what value of would the acceleration of the two blocks be equal to zero? Express your answer in terms of some or all of the variables and . ANSWER: Isolate each body and draw the forces acting on it A force diagram should include only real forces that act on the body and satisfy Newton’s 3rd law. One way to check if the forces are real is to detrmine whether they are part of a Newton’s 3rd law pair, that is, whether they result from a physical interaction that also causes an opposite force on some other body, which may not be part of the problem. Do not decompose the forces into components, and do not include resultant forces that are combinations of other real forces like centripetal force or fictitious forces like the “centrifugal” force. Assign each force a symbol, but don’t start to solve the problem at this point. Part B Which of the four drawings is a correct force diagram for this problem? = 0 m2 = −g a 1 j ^  = /2 m1 m2 g m1 = ANSWER: Choose a coordinate system for each body Newton’s 2nd law, , is a vector equation. To add or subtract vectors it is often easiest to decompose each vector into components. Whereas a particular set of vector components is only valid in a particular coordinate system, the vector equality holds in any coordinate system, giving you freedom to pick a coordinate system that most simplifies the equations that result from the component equations. It’s generally best to pick a coordinate system where the acceleration of the system lies directly on one of the coordinate axes. If there is no acceleration, then pick a coordinate system with as many unknowns as possible along the coordinate axes. Vectors that lie along the axes appear in only one of the equations for each component, rather than in two equations with trigonometric prefactors. Note that it is sometimes advantageous to use different coordinate systems for each body in the problem. In this problem, you should use Cartesian coordinates and your axes should be stationary with respect to the inclined plane. Part C Given the criteria just described, what orientation of the coordinate axes would be best to use in this problem? In the answer options, “tilted” means with the x axis oriented parallel to the plane (i.e., at angle to the horizontal), and “level” means with the x axis horizontal. ANSWER: Apply Newton’s 2nd law to each body a b c d F  = ma  tilted for both block 1 and block 2 tilted for block 1 and level for block 2 level for block 1 and tilted for block 2 level for both block 1 and block 2 Part D What is , the sum of the x components of the forces acting on block 2? Take forces acting up the incline to be positive. Express your answer in terms of some or all of the variables tension , , the magnitude of the acceleration of gravity , and . You did not open hints for this part. ANSWER: Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Lifting a Bucket A 6- bucket of water is being pulled straight up by a string at a constant speed. F2x T m2 g  m2a2x =F2x = kg Part A What is the tension in the rope? ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Friction Force on a Dancer on a Drawbridge A dancer is standing on one leg on a drawbridge that is about to open. The coefficients of static and kinetic friction between the drawbridge and the dancer’s foot are and , respectively. represents the normal force exerted on the dancer by the bridge, and represents the gravitational force exerted on the dancer, as shown in the drawing . For all the questions, we can assume that the bridge is a perfectly flat surface and lacks the curvature characteristic of most bridges. about 42 about 60 about 78 0 because the bucket has no acceleration. N N N N μs μk n F  g Part A Before the drawbridge starts to open, it is perfectly level with the ground. The dancer is standing still on one leg. What is the x component of the friction force, ? Express your answer in terms of some or all of the variables , , and/or . You did not open hints for this part. ANSWER: Part B The drawbridge then starts to rise and the dancer continues to stand on one leg. The drawbridge stops just at the point where the dancer is on the verge of slipping. What is the magnitude of the frictional force now? Express your answer in terms of some or all of the variables , , and/or . The angle should not appear in your answer. F  f n μs μk Ff = Ff n μs μk  You did not open hints for this part. ANSWER: Part C Then, because the bridge is old and poorly designed, it falls a little bit and then jerks. This causes the person to start to slide down the bridge at a constant speed. What is the magnitude of the frictional force now? Express your answer in terms of some or all of the variables , , and/or . The angle should not appear in your answer. ANSWER: Part D The bridge starts to come back down again. The dancer stops sliding. However, again because of the age and design of the bridge it never makes it all the way down; rather it stops half a meter short. This half a meter corresponds to an angle degree (see the diagram, which has the angle exaggerated). What is the force of friction now? Express your answer in terms of some or all of the variables , , and . Ff = Ff n μs μk  Ff =   1 Ff  n Fg You did not open hints for this part. ANSWER: Kinetic Friction Ranking Task Below are eight crates of different mass. The crates are attached to massless ropes, as indicated in the picture, where the ropes are marked by letters. Each crate is being pulled to the right at the same constant speed. The coefficient of kinetic friction between each crate and the surface on which it slides is the same for all eight crates. Ff = Part A Rank the ropes on the basis of the force each exerts on the crate immediately to its left. Rank from largest to smallest. To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: Pushing a Block Learning Goal: To understand kinetic and static friction. A block of mass lies on a horizontal table. The coefficient of static friction between the block and the table is . The coefficient of kinetic friction is , with . Part A m μs μk μk < μs If the block is at rest (and the only forces acting on the block are the force due to gravity and the normal force from the table), what is the magnitude of the force due to friction? You did not open hints for this part. ANSWER: Part B Suppose you want to move the block, but you want to push it with the least force possible to get it moving. With what force must you be pushing the block just before the block begins to move? Express the magnitude of in terms of some or all the variables , , and , as well as the acceleration due to gravity . You did not open hints for this part. ANSWER: Part C Suppose you push horizontally with half the force needed to just make the block move. What is the magnitude of the friction force? Express your answer in terms of some or all of the variables , , and , as well as the acceleration due to gravity . You did not open hints for this part. Ffriction = F F μs μk m g F = μs μk m g ANSWER: Part D Suppose you push horizontally with precisely enough force to make the block start to move, and you continue to apply the same amount of force even after it starts moving. Find the acceleration of the block after it begins to move. Express your answer in terms of some or all of the variables , , and , as well as the acceleration due to gravity . You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. Ffriction = a μs μk m g a =

Chapter 6 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, March 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy PSS 6.1 Equilibrium Problems Learning Goal: To practice Problem-Solving Strategy 6.1 for equilibrium problems. A pair of students are lifting a heavy trunk on move-in day. Using two ropes tied to a small ring at the center of the top of the trunk, they pull the trunk straight up at a constant velocity . Each rope makes an angle with respect to the vertical. The gravitational force acting on the trunk has magnitude . Find the tension in each rope. PROBLEM-SOLVING STRATEGY 6.1 Equilibrium problems MODEL: Make simplifying assumptions. VISUALIZE: Establish a coordinate system, define symbols, and identify what the problem is asking you to find. This is the process of translating words into symbols. Identify all forces acting on the object, and show them on a free-body diagram. These elements form the pictorial representation of the problem. SOLVE: The mathematical representation is based on Newton’s first law: . The vector sum of the forces is found directly from the free-body diagram. v  FG T F  = = net i F  i 0 ASSESS: Check if your result has the correct units, is reasonable, and answers the question. Model The trunk is moving at a constant velocity. This means that you can model it as a particle in dynamic equilibrium and apply the strategy above. Furthermore, you can ignore the masses of the ropes and the ring because it is reasonable to assume that their combined weight is much less than the weight of the trunk. Visualize Part A The most convenient coordinate system for this problem is one in which the y axis is vertical and the ropes both lie in the xy plane, as shown below. Identify the forces acting on the trunk, and then draw a free-body diagram of the trunk in the diagram below. The black dot represents the trunk as it is lifted by the students. Draw the vectors starting at the black dot. The location and orientation of the vectors will be graded. The length of the vectors will not be graded. ANSWER: Part B This question will be shown after you complete previous question(s). Solve Part C This question will be shown after you complete previous question(s). Assess Part D This question will be shown after you complete previous question(s). A Gymnast on a Rope A gymnast of mass 70.0 hangs from a vertical rope attached to the ceiling. You can ignore the weight of the rope and assume that the rope does not stretch. Use the value for the acceleration of gravity. Part A Calculate the tension in the rope if the gymnast hangs motionless on the rope. Express your answer in newtons. You did not open hints for this part. ANSWER: Part B Calculate the tension in the rope if the gymnast climbs the rope at a constant rate. Express your answer in newtons. You did not open hints for this part. kg 9.81m/s2 T T = N T ANSWER: Part C Calculate the tension in the rope if the gymnast climbs up the rope with an upward acceleration of magnitude 1.10 . Express your answer in newtons. You did not open hints for this part. ANSWER: Part D Calculate the tension in the rope if the gymnast slides down the rope with a downward acceleration of magnitude 1.10 . Express your answer in newtons. You did not open hints for this part. ANSWER: T = N T m/s2 T = N T m/s2 T = N Applying Newton’s 2nd Law Learning Goal: To learn a systematic approach to solving Newton’s 2nd law problems using a simple example. Once you have decided to solve a problem using Newton’s 2nd law, there are steps that will lead you to a solution. One such prescription is the following: Visualize the problem and identify special cases. Isolate each body and draw the forces acting on it. Choose a coordinate system for each body. Apply Newton’s 2nd law to each body. Write equations for the constraints and other given information. Solve the resulting equations symbolically. Check that your answer has the correct dimensions and satisfies special cases. If numbers are given in the problem, plug them in and check that the answer makes sense. Think about generalizations or simplfications of the problem. As an example, we will apply this procedure to find the acceleration of a block of mass that is pulled up a frictionless plane inclined at angle with respect to the horizontal by a perfect string that passes over a perfect pulley to a block of mass that is hanging vertically. Visualize the problem and identify special cases First examine the problem by drawing a picture and visualizing the motion. Apply Newton’s 2nd law, , to each body in your mind. Don’t worry about which quantities are given. Think about the forces on each body: How are these consistent with the direction of the acceleration for that body? Can you think of any special cases that you can solve quickly now and use to test your understanding later? m2  m1 F = ma One special case in this problem is if , in which case block 1 would simply fall freely under the acceleration of gravity: . Part A Consider another special case in which the inclined plane is vertical ( ). In this case, for what value of would the acceleration of the two blocks be equal to zero? Express your answer in terms of some or all of the variables and . ANSWER: Isolate each body and draw the forces acting on it A force diagram should include only real forces that act on the body and satisfy Newton’s 3rd law. One way to check if the forces are real is to detrmine whether they are part of a Newton’s 3rd law pair, that is, whether they result from a physical interaction that also causes an opposite force on some other body, which may not be part of the problem. Do not decompose the forces into components, and do not include resultant forces that are combinations of other real forces like centripetal force or fictitious forces like the “centrifugal” force. Assign each force a symbol, but don’t start to solve the problem at this point. Part B Which of the four drawings is a correct force diagram for this problem? = 0 m2 = −g a 1 j ^  = /2 m1 m2 g m1 = ANSWER: Choose a coordinate system for each body Newton’s 2nd law, , is a vector equation. To add or subtract vectors it is often easiest to decompose each vector into components. Whereas a particular set of vector components is only valid in a particular coordinate system, the vector equality holds in any coordinate system, giving you freedom to pick a coordinate system that most simplifies the equations that result from the component equations. It’s generally best to pick a coordinate system where the acceleration of the system lies directly on one of the coordinate axes. If there is no acceleration, then pick a coordinate system with as many unknowns as possible along the coordinate axes. Vectors that lie along the axes appear in only one of the equations for each component, rather than in two equations with trigonometric prefactors. Note that it is sometimes advantageous to use different coordinate systems for each body in the problem. In this problem, you should use Cartesian coordinates and your axes should be stationary with respect to the inclined plane. Part C Given the criteria just described, what orientation of the coordinate axes would be best to use in this problem? In the answer options, “tilted” means with the x axis oriented parallel to the plane (i.e., at angle to the horizontal), and “level” means with the x axis horizontal. ANSWER: Apply Newton’s 2nd law to each body a b c d F  = ma  tilted for both block 1 and block 2 tilted for block 1 and level for block 2 level for block 1 and tilted for block 2 level for both block 1 and block 2 Part D What is , the sum of the x components of the forces acting on block 2? Take forces acting up the incline to be positive. Express your answer in terms of some or all of the variables tension , , the magnitude of the acceleration of gravity , and . You did not open hints for this part. ANSWER: Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Lifting a Bucket A 6- bucket of water is being pulled straight up by a string at a constant speed. F2x T m2 g  m2a2x =F2x = kg Part A What is the tension in the rope? ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Friction Force on a Dancer on a Drawbridge A dancer is standing on one leg on a drawbridge that is about to open. The coefficients of static and kinetic friction between the drawbridge and the dancer’s foot are and , respectively. represents the normal force exerted on the dancer by the bridge, and represents the gravitational force exerted on the dancer, as shown in the drawing . For all the questions, we can assume that the bridge is a perfectly flat surface and lacks the curvature characteristic of most bridges. about 42 about 60 about 78 0 because the bucket has no acceleration. N N N N μs μk n F  g Part A Before the drawbridge starts to open, it is perfectly level with the ground. The dancer is standing still on one leg. What is the x component of the friction force, ? Express your answer in terms of some or all of the variables , , and/or . You did not open hints for this part. ANSWER: Part B The drawbridge then starts to rise and the dancer continues to stand on one leg. The drawbridge stops just at the point where the dancer is on the verge of slipping. What is the magnitude of the frictional force now? Express your answer in terms of some or all of the variables , , and/or . The angle should not appear in your answer. F  f n μs μk Ff = Ff n μs μk  You did not open hints for this part. ANSWER: Part C Then, because the bridge is old and poorly designed, it falls a little bit and then jerks. This causes the person to start to slide down the bridge at a constant speed. What is the magnitude of the frictional force now? Express your answer in terms of some or all of the variables , , and/or . The angle should not appear in your answer. ANSWER: Part D The bridge starts to come back down again. The dancer stops sliding. However, again because of the age and design of the bridge it never makes it all the way down; rather it stops half a meter short. This half a meter corresponds to an angle degree (see the diagram, which has the angle exaggerated). What is the force of friction now? Express your answer in terms of some or all of the variables , , and . Ff = Ff n μs μk  Ff =   1 Ff  n Fg You did not open hints for this part. ANSWER: Kinetic Friction Ranking Task Below are eight crates of different mass. The crates are attached to massless ropes, as indicated in the picture, where the ropes are marked by letters. Each crate is being pulled to the right at the same constant speed. The coefficient of kinetic friction between each crate and the surface on which it slides is the same for all eight crates. Ff = Part A Rank the ropes on the basis of the force each exerts on the crate immediately to its left. Rank from largest to smallest. To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: Pushing a Block Learning Goal: To understand kinetic and static friction. A block of mass lies on a horizontal table. The coefficient of static friction between the block and the table is . The coefficient of kinetic friction is , with . Part A m μs μk μk < μs If the block is at rest (and the only forces acting on the block are the force due to gravity and the normal force from the table), what is the magnitude of the force due to friction? You did not open hints for this part. ANSWER: Part B Suppose you want to move the block, but you want to push it with the least force possible to get it moving. With what force must you be pushing the block just before the block begins to move? Express the magnitude of in terms of some or all the variables , , and , as well as the acceleration due to gravity . You did not open hints for this part. ANSWER: Part C Suppose you push horizontally with half the force needed to just make the block move. What is the magnitude of the friction force? Express your answer in terms of some or all of the variables , , and , as well as the acceleration due to gravity . You did not open hints for this part. Ffriction = F F μs μk m g F = μs μk m g ANSWER: Part D Suppose you push horizontally with precisely enough force to make the block start to move, and you continue to apply the same amount of force even after it starts moving. Find the acceleration of the block after it begins to move. Express your answer in terms of some or all of the variables , , and , as well as the acceleration due to gravity . You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. Ffriction = a μs μk m g a =

please email info@checkyourstudy.com
2. When Protagoras said “Man is the measure of all things,” why was this a different and new way of seeing the world? To what degree does contemporary US culture agree with Protagoras?

2. When Protagoras said “Man is the measure of all things,” why was this a different and new way of seeing the world? To what degree does contemporary US culture agree with Protagoras?

  2.    When Protagoras said “Man is the measure of … Read More...