How fast a person can type or play the piano is ultimately limited by the number of impulses a person can send to their finger muscles per second. This in turn is limited by Select one: primarily the type of muscle. whether the signal is pain, sound, motor, etc. the magnitude or strength of the nerve impulse. the number of neurons and synapses involved. the speed with which sodium ion can be pumped back outside the neuron membrane.

How fast a person can type or play the piano is ultimately limited by the number of impulses a person can send to their finger muscles per second. This in turn is limited by Select one: primarily the type of muscle. whether the signal is pain, sound, motor, etc. the magnitude or strength of the nerve impulse. the number of neurons and synapses involved. the speed with which sodium ion can be pumped back outside the neuron membrane.

How fast a person can type or play the piano … Read More...
An FM radio-station located at Pasadena College with call id KPCC 89.3 broadcasts at carrier frequency of 89.3 MHz. What is the wavelength of the carrier signal of the station? A. 214 cm B. 753 cm C. 0.14 cm D. 336 cm + E. 154 cm

An FM radio-station located at Pasadena College with call id KPCC 89.3 broadcasts at carrier frequency of 89.3 MHz. What is the wavelength of the carrier signal of the station? A. 214 cm B. 753 cm C. 0.14 cm D. 336 cm + E. 154 cm

info@checkyourstudy.com An FM radio-station located at Pasadena College with call … Read More...
ELEC153 Circuit Theory II M2A1 Textbook Assignment: Problem Set A: Chapter 15 Instructions Save this document and place your answers into it so you can submit it to the appropriate homework dropbox. Handwritten solutions should be scanned and saved as a BMP, GIF, or JPG image, or scanned and pasted into this document. Questions 1. Find the impedance of this AC series circuit as seen from the two open-ended terminals. Show your answer in rectangular and polar form. The AC signal frequency is 1 KHz. 2. Repeat your analysis of Question 1 for a frequency of 200 Hz. 3. Consider the following AC series circuit: a. Find the total impedance across the voltage source in polar form. b. Find the source current, in polar form. Note: the source voltage is 20 volts rms at 0 degrees. c. Find the voltage across each component, in polar form. d. Find the real power supplied to the circuit, in Watts. ELEC153 Circuit Theory II M2A2 Textbook Assignment: Problem Set B: Chapter 15 Instructions Save this document and place your answers into it so you can submit it to the appropriate homework dropbox. Handwritten solutions should be scanned and saved as a BMP, GIF, or JPG image, or scanned and pasted into this document. Questions 1. Find the impedance of this AC parallel circuit between the two open-ended terminals, in rectangular and polar forms: 2. Consider the following AC parallel circuit: a. Find the total impedance across the voltage source in polar form. b. Find the source current, in polar form. Note: the source voltage is 12 volts rms at 0 degrees. c. Find the current through each component, in polar form. d. Find the real power supplied to the circuit, in Watts.

ELEC153 Circuit Theory II M2A1 Textbook Assignment: Problem Set A: Chapter 15 Instructions Save this document and place your answers into it so you can submit it to the appropriate homework dropbox. Handwritten solutions should be scanned and saved as a BMP, GIF, or JPG image, or scanned and pasted into this document. Questions 1. Find the impedance of this AC series circuit as seen from the two open-ended terminals. Show your answer in rectangular and polar form. The AC signal frequency is 1 KHz. 2. Repeat your analysis of Question 1 for a frequency of 200 Hz. 3. Consider the following AC series circuit: a. Find the total impedance across the voltage source in polar form. b. Find the source current, in polar form. Note: the source voltage is 20 volts rms at 0 degrees. c. Find the voltage across each component, in polar form. d. Find the real power supplied to the circuit, in Watts. ELEC153 Circuit Theory II M2A2 Textbook Assignment: Problem Set B: Chapter 15 Instructions Save this document and place your answers into it so you can submit it to the appropriate homework dropbox. Handwritten solutions should be scanned and saved as a BMP, GIF, or JPG image, or scanned and pasted into this document. Questions 1. Find the impedance of this AC parallel circuit between the two open-ended terminals, in rectangular and polar forms: 2. Consider the following AC parallel circuit: a. Find the total impedance across the voltage source in polar form. b. Find the source current, in polar form. Note: the source voltage is 12 volts rms at 0 degrees. c. Find the current through each component, in polar form. d. Find the real power supplied to the circuit, in Watts.

No expert has answered this question yet. You can browse … Read More...
Develop a 4 page-500 word précis on Chapter 7 “How to Monitor & Control a TPM Project” of the Wysocki 7th Ed. text.”

Develop a 4 page-500 word précis on Chapter 7 “How to Monitor & Control a TPM Project” of the Wysocki 7th Ed. text.”

Summary of ‘How to Monitor and Control a TPM Project’ … Read More...
MAE 384. Advanced Mathematical Methods for Engineers. The army is interested in characterizing the acoustic signature of a helicopter. The following data show measurements of acoustic pressure (made dimensionless) for a two-bladed helicopter rotor through 1 2 of a rotor revolution. The data points are equally spaced in time, and the period of the data collection is 1 6 of a second. p0 = [ 0 0.0004 0.0015 0.0028 0.0040 0.0048 0.0057 0.0071 0.0095 0.0134 . . . 0.0185 0.0242 0.0302 0.0364 0.0447 0.0577 0.0776 0.0955 0.0907 -0.0477 . . . -0.0812 -0.0563 -0.0329 -0.0127 0.0032 0.0147 0.0221 0.0256 0.0255 0.0222 . . . 0.0170 0.0112 0.0064 0.0035 0.0023 0.0020 0.0019 0.0016 0.0009 0.0002 ] (a) Find the real Discrete Fourier Transform for this data set. That is, …nd the Fourier coe¢ cients (the Ak’s and Bk’s). (b) Any term in the Fourier series can be written: Ak cos(k!t) + Bk sin(k!t) = Ck cos(k!t + k) where Ck = q A2 k + B2 k and k = tan?1 ?Bk Ak Find the Ck’s and plot their amplitude vs. k to illustrate the relative size of each term in the series. (The amplitude should drop of with increasing k.) (c) Plot the function (Fourier series) and the original data on the same plot. (d) The actual loudness of the helicopter depends on the maximum peak-to-peak amplitude of the signal. Find the peak-to-peak amplitude by …nding the maximum and minimum values of p0 as predicted by the Fourier series solution. Recall that a function has a maximum or a minimum when its derivative equals zero. (e) Extra Credit. Try …nding Ak’s and Bk’s for k > N 2 (where N = the number of data points). Show that the resulting series does not represent the data.

MAE 384. Advanced Mathematical Methods for Engineers. The army is interested in characterizing the acoustic signature of a helicopter. The following data show measurements of acoustic pressure (made dimensionless) for a two-bladed helicopter rotor through 1 2 of a rotor revolution. The data points are equally spaced in time, and the period of the data collection is 1 6 of a second. p0 = [ 0 0.0004 0.0015 0.0028 0.0040 0.0048 0.0057 0.0071 0.0095 0.0134 . . . 0.0185 0.0242 0.0302 0.0364 0.0447 0.0577 0.0776 0.0955 0.0907 -0.0477 . . . -0.0812 -0.0563 -0.0329 -0.0127 0.0032 0.0147 0.0221 0.0256 0.0255 0.0222 . . . 0.0170 0.0112 0.0064 0.0035 0.0023 0.0020 0.0019 0.0016 0.0009 0.0002 ] (a) Find the real Discrete Fourier Transform for this data set. That is, …nd the Fourier coe¢ cients (the Ak’s and Bk’s). (b) Any term in the Fourier series can be written: Ak cos(k!t) + Bk sin(k!t) = Ck cos(k!t + k) where Ck = q A2 k + B2 k and k = tan?1 ?Bk Ak Find the Ck’s and plot their amplitude vs. k to illustrate the relative size of each term in the series. (The amplitude should drop of with increasing k.) (c) Plot the function (Fourier series) and the original data on the same plot. (d) The actual loudness of the helicopter depends on the maximum peak-to-peak amplitude of the signal. Find the peak-to-peak amplitude by …nding the maximum and minimum values of p0 as predicted by the Fourier series solution. Recall that a function has a maximum or a minimum when its derivative equals zero. (e) Extra Credit. Try …nding Ak’s and Bk’s for k > N 2 (where N = the number of data points). Show that the resulting series does not represent the data.

clear all; clc; period = 1/6; p = [0       0.0004 … Read More...
Using the average won’t work very well. We use some other values. We use Peak to Peak voltage, Vpp, Peak Voltage, Vp, and we use RMS voltage. We will discuss RMS voltage in more detail in class. What is the peak voltage and peak to peak voltage for the signal shown above?

Using the average won’t work very well. We use some other values. We use Peak to Peak voltage, Vpp, Peak Voltage, Vp, and we use RMS voltage. We will discuss RMS voltage in more detail in class. What is the peak voltage and peak to peak voltage for the signal shown above?

Peak voltage: +1 volt Peak to peak voltage = 2 … Read More...
Doppler Shift 73 Because of the Doppler Effect, light emitted by an object can appear to change wavelength due to its motion toward or away from an observer. When the observer and the source of light are moving toward each other, the light is shifted to shorter wavelengths (blueshifted). When the observer and the source of light are moving away from each other, the light is shifted to longer wavelengths (redshifted). Part I: Motion of Source Star is not . rnovrng r ABCD 1) Consider the situations shown (A—D). a) In which situation will the observer receive light that is shifted to shorter wavelengths? b) Will this light be blueshifted or redshifted for this case? c) What direction is the star moving relative to the observer for this case? 2) Consider the situations shown (A—D). a) In which situation will the observer receive light that is shifted to longer wavelengths? b) Will this light be blueshifted or redshifted for this case? c) What direction is the star moving relative to the observer for this case? . 74 Doppler Shift 3) In which of the srtuations shown (A—D) will theobserver receive light that Is not Doppler Shifted at all? Explain your reasoning. – 4) Imagine our solar system Is moving In the Milky Way toward a group of three stars. Star A is a blue star that is slightly closer to us than the other two. Star B is a red star that is farthest away from us. Star C is a yellow star that is halfway between Stars A end B. a) Which of these three stars, if any, will give off light that appears to be blueshifted? Explain your reasoning. . / b) Which of these three stars, if any, will give off light that appears to be redshifted? Explain your reasoning. c) Which of these three stars, if any, will give off light that appears to have no shift? Explain your reasoning. — 5) You overhear two students discussing the topic of Doppler Shift. Student 1: Since Betelgeuse is a red star, it must be going away from us, and since Rigel is a blue star it must be coming toward us. Student 2: 1 disagree, the color of the star does not tell you if it is moving. You have to look at the shift in wavelength of the lines in the star’s absorption spectrum to determine whether it’s moving toward or away from you. Do you agree or disagree with either or both of the students? Explain your reasoning. 5 Part II: Shift in Absorption Spectra When we study an astronomical object like a star or galaxy, we examine the spectrum of light it gives off. Since the lines of a spectrum occur at specific wavelengths we can determine that an object is moving when we see that the lines have been shifted to either longer or shorter wavelengths. For the absorption line spectra shown on the next page, short-wavelength light (the blue end of the spectrum) is shown on the left-hand side and long-wavelength light (the red end of the spectrum) is shown on the right-hand side. Doppler Shift 75 For the three absorption line spectra shown below (A, B, and C), one of the spectra corresponds to a star that is not moving relative to you, one of the spectra is from a star that is moving toward you, and one of the spectra is from a star that is moving away from you. A B Blue J___ ..‘ C 6) Which of the three spectra above corresponds with the star moving toward you? Explain your reasoning. If two sources of llght are moving relative to an observer, the light from the star that is moving faster will appear to undergo a greater Doppler Consider the four spectra at the right. The spectrum labeled F is an absorption line spectrum from a star that is at rest. Again, note that short-wavelength (blue) light is shown on the left-hand side of each spectrum and long-wavelength (red) light is shown on the right-hand side of each spectrum. 7) Which of the three spectra corresponds with the star moving away from you? Explain your reasoning. Part 111: Size of Shift and Speed Blue Red . – 76 Doppler Shift 8) Which of the four spectra would be from the star that is moving the fastest? Would this star be moving toward or away from the observer? 9) Of the stars that are moving, which spectra would be from the star that is moving the slowest? Describe the motion of this star, – (fJ 1O)An Important line In the absorption spectrum of stars occurs at a wavelength of 656 nm for stars at rest. Irna me that you observe five stars (H—L) from Earth and discover that this Important absorption line Is measured at the wavelength shown in the table below for each of the five stars, Star Wavelength of Absorption Line H 649nm I 660 nm J 656nrn K 658nrn L 647nm a) Which of the stars are gMng off light that appears blueshifted? Explain your reasoning. b) Which of the stars are gMng off light that appears redshifted? Explain your reasoning. d) Which star is moving the fastest? Is it moving toward or away from the observer? Explain your reasoning. , . . c) Which star is giving off light that appears shifted by the greatest amount? Is this light shifted to longer or shorter wavelengths? Explain your reasoning. a) Which planets will receive a radio signal that Is redshifted? Explain your reasoning. b) Which planets wfll receive a radio signal that is shifted to shorter wavelengths? Explain your reasoning. a a . ii) The figure at right shows a spaceprobe and five planets. The motion of the spaceprobe is indicated by the arrow. The spaceprobe is continuously broadcasting a radio signal in all directions. 4 C E not to scale c) Will all the planets receive radio signals from the spaceprobe that are Doppler shifted? Explain your reasoning. d) How will the size of the Doppler Shift in the radio signals detected at Planets A and B compare? Explain your reasoning. Cats r , ‘, e) How Will the slz of 1h Dupler Shift in the radio signals deteed °lane E and B compare? Explain your reasoning. ‘

Doppler Shift 73 Because of the Doppler Effect, light emitted by an object can appear to change wavelength due to its motion toward or away from an observer. When the observer and the source of light are moving toward each other, the light is shifted to shorter wavelengths (blueshifted). When the observer and the source of light are moving away from each other, the light is shifted to longer wavelengths (redshifted). Part I: Motion of Source Star is not . rnovrng r ABCD 1) Consider the situations shown (A—D). a) In which situation will the observer receive light that is shifted to shorter wavelengths? b) Will this light be blueshifted or redshifted for this case? c) What direction is the star moving relative to the observer for this case? 2) Consider the situations shown (A—D). a) In which situation will the observer receive light that is shifted to longer wavelengths? b) Will this light be blueshifted or redshifted for this case? c) What direction is the star moving relative to the observer for this case? . 74 Doppler Shift 3) In which of the srtuations shown (A—D) will theobserver receive light that Is not Doppler Shifted at all? Explain your reasoning. – 4) Imagine our solar system Is moving In the Milky Way toward a group of three stars. Star A is a blue star that is slightly closer to us than the other two. Star B is a red star that is farthest away from us. Star C is a yellow star that is halfway between Stars A end B. a) Which of these three stars, if any, will give off light that appears to be blueshifted? Explain your reasoning. . / b) Which of these three stars, if any, will give off light that appears to be redshifted? Explain your reasoning. c) Which of these three stars, if any, will give off light that appears to have no shift? Explain your reasoning. — 5) You overhear two students discussing the topic of Doppler Shift. Student 1: Since Betelgeuse is a red star, it must be going away from us, and since Rigel is a blue star it must be coming toward us. Student 2: 1 disagree, the color of the star does not tell you if it is moving. You have to look at the shift in wavelength of the lines in the star’s absorption spectrum to determine whether it’s moving toward or away from you. Do you agree or disagree with either or both of the students? Explain your reasoning. 5 Part II: Shift in Absorption Spectra When we study an astronomical object like a star or galaxy, we examine the spectrum of light it gives off. Since the lines of a spectrum occur at specific wavelengths we can determine that an object is moving when we see that the lines have been shifted to either longer or shorter wavelengths. For the absorption line spectra shown on the next page, short-wavelength light (the blue end of the spectrum) is shown on the left-hand side and long-wavelength light (the red end of the spectrum) is shown on the right-hand side. Doppler Shift 75 For the three absorption line spectra shown below (A, B, and C), one of the spectra corresponds to a star that is not moving relative to you, one of the spectra is from a star that is moving toward you, and one of the spectra is from a star that is moving away from you. A B Blue J___ ..‘ C 6) Which of the three spectra above corresponds with the star moving toward you? Explain your reasoning. If two sources of llght are moving relative to an observer, the light from the star that is moving faster will appear to undergo a greater Doppler Consider the four spectra at the right. The spectrum labeled F is an absorption line spectrum from a star that is at rest. Again, note that short-wavelength (blue) light is shown on the left-hand side of each spectrum and long-wavelength (red) light is shown on the right-hand side of each spectrum. 7) Which of the three spectra corresponds with the star moving away from you? Explain your reasoning. Part 111: Size of Shift and Speed Blue Red . – 76 Doppler Shift 8) Which of the four spectra would be from the star that is moving the fastest? Would this star be moving toward or away from the observer? 9) Of the stars that are moving, which spectra would be from the star that is moving the slowest? Describe the motion of this star, – (fJ 1O)An Important line In the absorption spectrum of stars occurs at a wavelength of 656 nm for stars at rest. Irna me that you observe five stars (H—L) from Earth and discover that this Important absorption line Is measured at the wavelength shown in the table below for each of the five stars, Star Wavelength of Absorption Line H 649nm I 660 nm J 656nrn K 658nrn L 647nm a) Which of the stars are gMng off light that appears blueshifted? Explain your reasoning. b) Which of the stars are gMng off light that appears redshifted? Explain your reasoning. d) Which star is moving the fastest? Is it moving toward or away from the observer? Explain your reasoning. , . . c) Which star is giving off light that appears shifted by the greatest amount? Is this light shifted to longer or shorter wavelengths? Explain your reasoning. a) Which planets will receive a radio signal that Is redshifted? Explain your reasoning. b) Which planets wfll receive a radio signal that is shifted to shorter wavelengths? Explain your reasoning. a a . ii) The figure at right shows a spaceprobe and five planets. The motion of the spaceprobe is indicated by the arrow. The spaceprobe is continuously broadcasting a radio signal in all directions. 4 C E not to scale c) Will all the planets receive radio signals from the spaceprobe that are Doppler shifted? Explain your reasoning. d) How will the size of the Doppler Shift in the radio signals detected at Planets A and B compare? Explain your reasoning. Cats r , ‘, e) How Will the slz of 1h Dupler Shift in the radio signals deteed °lane E and B compare? Explain your reasoning. ‘

  ANSWERS Part 1 1 C is the answer because … Read More...
Essay – Athlete’s high salaries. Should they be paid that amount or not?

Essay – Athlete’s high salaries. Should they be paid that amount or not?

Athlete’s high salaries: Should they be paid that amount or … Read More...
MAE 318: System Dynamics and Control Dr. Panagiotis K. Artemiadis MAE 318: System Dynamics and Control Homework 4 Problem 1: (Points: 25) The circuit shown in Fig. 1 is excited by an impulse of 0.015V. Assuming the capacitor is initially discharged, obtain an analytic expression of vO (t), and make a Matlab program that plots the system response to the impulse. Figure 1 Problem 2: Extra Credit (Points: 25) A winding oscillator consists of two steel spheres on each end of a long slender rod, as shown in Fig. 2. The rod is hung on a thin wire that can be twisted many revolutions without breaking. The device will be wound up 4000 degrees. Make a Matlab script that computes the system response and determine how long will it take until the motion decays to a swing of only 10 degrees? Assume that the thin wire has a rotational spring constant of 2  10?4Nm/rad and that the viscous friction coecient for the sphere in air is 2  10?4Nms/rad. Each sphere has a mass of 1Kg. Figure 2: Winding oscillator. Problem 3: (Points: 25) Find the equivalent transfer function T (s) = C(s) R(s) for the system shown in Fig. 3. Arizona State University. Fall 2015. Class # 73024. MAE 318. Homework 4: Page 1 of 4 MAE 318: System Dynamics and Control Dr. Panagiotis K. Artemiadis Figure 3 Problem 4: (Points: 25) Reduce the block diagram shown in Fig. 4 to a single transfer function T (s) = C(s) R(s) . Figure 4 Problem 5: (Points: 25) Consider the rotational mechanical system shown in Fig. 5. Represent the system as a block diagram. Arizona State University. Fall 2015. Class # 73024. MAE 318. Homework 4: Page 2 of 4 MAE 318: System Dynamics and Control Dr. Panagiotis K. Artemiadis Figure 5 Problem 6: (Points: 25) During ascent the space shuttle is steered by commands generated by the computer’s guidance calcu- lations. These commands are in the form of vehicle attitude, attitude rates, and attitude accelerations obtained through measurements made by the vehicle’s inertial measuring unit, rate gyro assembly, and accelerometer assembly, respectively. The ascent digital autopilot uses the errors between the actual and commanded attitude, rates, and accelerations to gimbal the space shuttle main engines (called thrust vectoring) and the solid rocket boosters to a ect the desired vehicle attitude. The space shut- tle’s attitude control system employs the same method in the pitch, roll, and yaw control systems. A simpli ed model of the pitch control system is shown in Fig. 6.  a) Find the closed-loop transfer function relating the actual pitch to commanded pitch. Assume all other inputs are zero.  b) Find the closed-loop transfer function relating the actual pitch rate to commanded pitch rate. Assume all other inputs are zero.  c) Find the closed-loop transfer function relating the actual pitch acceleration to commanded pitch acceleration. Assume all other inputs are zero. Figure 6: Space shuttle pitch control system (simpli ed). Arizona State University. Fall 2015. Class # 73024. MAE 318. Homework 4: Page 3 of 4 MAE 318: System Dynamics and Control Dr. Panagiotis K. Artemiadis Problem 7: (Extra Credit Points: 25) Extenders are robot manipulators that extend (i.e. increase) the strength of the human arm in load- maneuvering tasks (see Fig. 7). The system is represented by the transfer function Y (s) U(s) = G(s) = 30 s2+4s+3 where U (s) is the force of the human hand applied to the robot manipulator, and Y (s) is the force of the robot manipulator applied to the load. Assuming that the force of the human hand that is applied is given by u (t) = 5 sin (!t), create a MATLAB code that will compute and plot the di erence in magnitude and phase between the applied human force and the force of the robot manipulator applied to the load, as a function of the frequency !. Use 100 values for ! in the range ! 2 [0:01; 100] rad s for your two plots. See Fig. 8 on how to de ne di erence in magnitude and phase between two signals. You need to include your code and the two resulted plots in your solution. Figure 7: Human extender. A B dt T: signal period magnitude difference phase difference B A Figure 8: Magnitude and phase di erence (deg) between two sinusoidal signals.

MAE 318: System Dynamics and Control Dr. Panagiotis K. Artemiadis MAE 318: System Dynamics and Control Homework 4 Problem 1: (Points: 25) The circuit shown in Fig. 1 is excited by an impulse of 0.015V. Assuming the capacitor is initially discharged, obtain an analytic expression of vO (t), and make a Matlab program that plots the system response to the impulse. Figure 1 Problem 2: Extra Credit (Points: 25) A winding oscillator consists of two steel spheres on each end of a long slender rod, as shown in Fig. 2. The rod is hung on a thin wire that can be twisted many revolutions without breaking. The device will be wound up 4000 degrees. Make a Matlab script that computes the system response and determine how long will it take until the motion decays to a swing of only 10 degrees? Assume that the thin wire has a rotational spring constant of 2  10?4Nm/rad and that the viscous friction coecient for the sphere in air is 2  10?4Nms/rad. Each sphere has a mass of 1Kg. Figure 2: Winding oscillator. Problem 3: (Points: 25) Find the equivalent transfer function T (s) = C(s) R(s) for the system shown in Fig. 3. Arizona State University. Fall 2015. Class # 73024. MAE 318. Homework 4: Page 1 of 4 MAE 318: System Dynamics and Control Dr. Panagiotis K. Artemiadis Figure 3 Problem 4: (Points: 25) Reduce the block diagram shown in Fig. 4 to a single transfer function T (s) = C(s) R(s) . Figure 4 Problem 5: (Points: 25) Consider the rotational mechanical system shown in Fig. 5. Represent the system as a block diagram. Arizona State University. Fall 2015. Class # 73024. MAE 318. Homework 4: Page 2 of 4 MAE 318: System Dynamics and Control Dr. Panagiotis K. Artemiadis Figure 5 Problem 6: (Points: 25) During ascent the space shuttle is steered by commands generated by the computer’s guidance calcu- lations. These commands are in the form of vehicle attitude, attitude rates, and attitude accelerations obtained through measurements made by the vehicle’s inertial measuring unit, rate gyro assembly, and accelerometer assembly, respectively. The ascent digital autopilot uses the errors between the actual and commanded attitude, rates, and accelerations to gimbal the space shuttle main engines (called thrust vectoring) and the solid rocket boosters to a ect the desired vehicle attitude. The space shut- tle’s attitude control system employs the same method in the pitch, roll, and yaw control systems. A simpli ed model of the pitch control system is shown in Fig. 6.  a) Find the closed-loop transfer function relating the actual pitch to commanded pitch. Assume all other inputs are zero.  b) Find the closed-loop transfer function relating the actual pitch rate to commanded pitch rate. Assume all other inputs are zero.  c) Find the closed-loop transfer function relating the actual pitch acceleration to commanded pitch acceleration. Assume all other inputs are zero. Figure 6: Space shuttle pitch control system (simpli ed). Arizona State University. Fall 2015. Class # 73024. MAE 318. Homework 4: Page 3 of 4 MAE 318: System Dynamics and Control Dr. Panagiotis K. Artemiadis Problem 7: (Extra Credit Points: 25) Extenders are robot manipulators that extend (i.e. increase) the strength of the human arm in load- maneuvering tasks (see Fig. 7). The system is represented by the transfer function Y (s) U(s) = G(s) = 30 s2+4s+3 where U (s) is the force of the human hand applied to the robot manipulator, and Y (s) is the force of the robot manipulator applied to the load. Assuming that the force of the human hand that is applied is given by u (t) = 5 sin (!t), create a MATLAB code that will compute and plot the di erence in magnitude and phase between the applied human force and the force of the robot manipulator applied to the load, as a function of the frequency !. Use 100 values for ! in the range ! 2 [0:01; 100] rad s for your two plots. See Fig. 8 on how to de ne di erence in magnitude and phase between two signals. You need to include your code and the two resulted plots in your solution. Figure 7: Human extender. A B dt T: signal period magnitude difference phase difference B A Figure 8: Magnitude and phase di erence (deg) between two sinusoidal signals.

info@checkyourstudy.com