. An experiment is performed by passing light through one or two slits and the light pattern to the right is produced. Determine the best answer and explain how you can tell: the pattern produced was a result of a double slit interference experiment the pattern produced was a result of a single slit diffraction experiment More information is needed, i.e. the wavelength of the source, the distance it is from the slit(s) and how far the slit is to the viewing screen, before it can be determined which type of experiment produced the pattern

## . An experiment is performed by passing light through one or two slits and the light pattern to the right is produced. Determine the best answer and explain how you can tell: the pattern produced was a result of a double slit interference experiment the pattern produced was a result of a single slit diffraction experiment More information is needed, i.e. the wavelength of the source, the distance it is from the slit(s) and how far the slit is to the viewing screen, before it can be determined which type of experiment produced the pattern

Single slit (Choice B) Reason: The central maximum is two … Read More...
ELEC153 Circuit Theory II M2A3 Lab: AC Series Circuits Introduction Previously you worked with two simple AC series circuits, R-C and R-L circuits. We continue that work in this experiment. Procedure 1. Setup the following circuit in MultiSim.The voltage source is 10 volts peak at 1000 Hz. Figure 1: Circuit for analysis using MultiSim 2. Change R1 to 1 k and C1 to 0.1 uF. Connect the oscilloscope to measure both the source voltage and the voltage across the resistor.You should have the following arrangement. Figure 2: Circuit of figure 1 connected to oscilloscope To color the wires, right click the desired wire and select “Color Segment…” and follow the instructions. Start the simulation and open the oscilloscope. You should get the following plot: Figure 3: Source voltage (red) and the voltage (blue) across the resistor The red signal is the voltage of the source and the blue is the voltage across the resistor. The colors correspond to the colors of the wires from the oscilloscope. 3. From the resulting analysis plotdetermine the peak current. To determine the peak current measure the peak voltage across the resistor and divide by the value of the resistor (1000 Ohms). Record it here. Measured Peak Current 4. Determine the peak current by calculation. Record it here. Does it match the measured peak current? Explain. Calculated Peak Current 5 Determine the phase shift between the current in the circuit and the source voltage. We look at the time between zero crossings to determine the phase shift between two waveforms. In our plot, the blue waveform (representing the circuit current or the voltage across the resistor) crosses zero before the red waveform (the circuit voltage). So, current is leading voltage in this circuit. This is exactly what should happen when we have a capacitive circuit. 6. To determine the phase shift, we first have to measure the time between zero crossings on the red and blue waveforms. This is done by moving the oscillator probes to the two zero crossing as is shown in the following figure Figure 4: Determining the phase shift between the two voltage waveforms We can see from the figure that the zero crossing difference (T2 – T1) is approximately 134 us. The ratio of the zero-crossing time difference to the period of the waveform determines the phase shift, as follows: Using our time values, we have: How do we know if this phase shift is correct? In step 4 when you did your manual calculations to find the peak current, you had to find the total impedance of the circuit, which was: Now, the current will be: Here, the positive angle on the current indicates it is leading the circuit voltage. 7. Change the frequency of the voltage source to 5000 Hz. Estimulate and perform a Transient Analysis to find the new circuit current and phase angle. Measure them and record them here: Measured Current Measured Phase Shift 8. Perform the manual calculations needed to find the circuit current and phase shift. Record the calculated values here. Do they match the measured values within reason? What has happened to the circuit with an increase in frequency? Calculated Current Calculated Phase Shift Writeup and Submission In general, for each lab you do, you will be asked to setup certain circuits, simulate them, record the results, verify the results are correct by hand, and then discuss the solution. Your lab write-up should contain a one page, single spaced discussion of the lab experiment, what went right for you, what you had difficulty with, what you learned from the experiment, how it applies to our coursework, and any other comment you can think of. In addition, you should include screen shots from the MultiSim software and any other figure, table, or diagram as necessary.

## ELEC153 Circuit Theory II M2A3 Lab: AC Series Circuits Introduction Previously you worked with two simple AC series circuits, R-C and R-L circuits. We continue that work in this experiment. Procedure 1. Setup the following circuit in MultiSim.The voltage source is 10 volts peak at 1000 Hz. Figure 1: Circuit for analysis using MultiSim 2. Change R1 to 1 k and C1 to 0.1 uF. Connect the oscilloscope to measure both the source voltage and the voltage across the resistor.You should have the following arrangement. Figure 2: Circuit of figure 1 connected to oscilloscope To color the wires, right click the desired wire and select “Color Segment…” and follow the instructions. Start the simulation and open the oscilloscope. You should get the following plot: Figure 3: Source voltage (red) and the voltage (blue) across the resistor The red signal is the voltage of the source and the blue is the voltage across the resistor. The colors correspond to the colors of the wires from the oscilloscope. 3. From the resulting analysis plotdetermine the peak current. To determine the peak current measure the peak voltage across the resistor and divide by the value of the resistor (1000 Ohms). Record it here. Measured Peak Current 4. Determine the peak current by calculation. Record it here. Does it match the measured peak current? Explain. Calculated Peak Current 5 Determine the phase shift between the current in the circuit and the source voltage. We look at the time between zero crossings to determine the phase shift between two waveforms. In our plot, the blue waveform (representing the circuit current or the voltage across the resistor) crosses zero before the red waveform (the circuit voltage). So, current is leading voltage in this circuit. This is exactly what should happen when we have a capacitive circuit. 6. To determine the phase shift, we first have to measure the time between zero crossings on the red and blue waveforms. This is done by moving the oscillator probes to the two zero crossing as is shown in the following figure Figure 4: Determining the phase shift between the two voltage waveforms We can see from the figure that the zero crossing difference (T2 – T1) is approximately 134 us. The ratio of the zero-crossing time difference to the period of the waveform determines the phase shift, as follows: Using our time values, we have: How do we know if this phase shift is correct? In step 4 when you did your manual calculations to find the peak current, you had to find the total impedance of the circuit, which was: Now, the current will be: Here, the positive angle on the current indicates it is leading the circuit voltage. 7. Change the frequency of the voltage source to 5000 Hz. Estimulate and perform a Transient Analysis to find the new circuit current and phase angle. Measure them and record them here: Measured Current Measured Phase Shift 8. Perform the manual calculations needed to find the circuit current and phase shift. Record the calculated values here. Do they match the measured values within reason? What has happened to the circuit with an increase in frequency? Calculated Current Calculated Phase Shift Writeup and Submission In general, for each lab you do, you will be asked to setup certain circuits, simulate them, record the results, verify the results are correct by hand, and then discuss the solution. Your lab write-up should contain a one page, single spaced discussion of the lab experiment, what went right for you, what you had difficulty with, what you learned from the experiment, how it applies to our coursework, and any other comment you can think of. In addition, you should include screen shots from the MultiSim software and any other figure, table, or diagram as necessary.

No expert has answered this question yet. You can browse … Read More...

ITM 220 – Excel Assignment, ver 5.1  Individual (not group) … Read More...
Lab Assignment-09 Note: Create and save m-files for each problem individually. Copy all the m-files into a ‘single’ folder and upload the folder to D2L. Read chapters 2 and chapter 3.1-3.3 of the textbook (Introduction to MATLAB 7 for Engineers), solve the following problems in MATLAB. Given A= [■(3&-2&1@6&8&-5@7&9&10)] ; B= [■(6&9&-4@7&5&3@-8&2&1)] ; C= [■(-7&-5&2@10&6&1@3&-9&8)] ; Find the following A+B+C Verify the associative law (A+B)+C=A+ (B+C) D=Transpose(AB) E=A4 + B2 – C3 Find F, given that F = E-1 * D-1 – (AT) -1 Use MATLAB to solve the following set of equations 5x+7y + 9z = 12 7x- 4y + 8z = 86 15x- 9y – 6z = -57 Write a function that accepts temperature in degrees F and computes the corresponding value in degree C. The relation between the two is Aluminum alloys are made by adding other elements to aluminum to improve its properties, such as hardness or tensile strength. The following table shows the composition of five commonly used alloys, which are known by their alloy numbers ( 2024, 6061, and so on) [Kutz, 1999]. Obtain a matrix algorithm to compute the amounts of raw materials needed to produce a given amount of each alloy. Use MATLAB to determine how much raw material each type is needed to produce 1000tons of each alloy. Composition of aluminum alloys Alloy % Cu % Mg % Mn % Si % Zn 2024 4.4 1.5 0.6 0 0 6061 0 1 0 0.6 0 7005 0 1.4 0 0 4.5 7075 1.6 2.5 0 0 5.6 356.0 0 0.3 0 7 0

## Lab Assignment-09 Note: Create and save m-files for each problem individually. Copy all the m-files into a ‘single’ folder and upload the folder to D2L. Read chapters 2 and chapter 3.1-3.3 of the textbook (Introduction to MATLAB 7 for Engineers), solve the following problems in MATLAB. Given A= [■(3&-2&1@6&8&-5@7&9&10)] ; B= [■(6&9&-4@7&5&3@-8&2&1)] ; C= [■(-7&-5&2@10&6&1@3&-9&8)] ; Find the following A+B+C Verify the associative law (A+B)+C=A+ (B+C) D=Transpose(AB) E=A4 + B2 – C3 Find F, given that F = E-1 * D-1 – (AT) -1 Use MATLAB to solve the following set of equations 5x+7y + 9z = 12 7x- 4y + 8z = 86 15x- 9y – 6z = -57 Write a function that accepts temperature in degrees F and computes the corresponding value in degree C. The relation between the two is Aluminum alloys are made by adding other elements to aluminum to improve its properties, such as hardness or tensile strength. The following table shows the composition of five commonly used alloys, which are known by their alloy numbers ( 2024, 6061, and so on) [Kutz, 1999]. Obtain a matrix algorithm to compute the amounts of raw materials needed to produce a given amount of each alloy. Use MATLAB to determine how much raw material each type is needed to produce 1000tons of each alloy. Composition of aluminum alloys Alloy % Cu % Mg % Mn % Si % Zn 2024 4.4 1.5 0.6 0 0 6061 0 1 0 0.6 0 7005 0 1.4 0 0 4.5 7075 1.6 2.5 0 0 5.6 356.0 0 0.3 0 7 0

info@checkyourstudy.com Whatsapp +919911743277
The nucleus of a cell is the primary location of protein synthesis. is contained within the nucleolus. contains DNA. is surrounded by a single layer of membrane

contains DNA.